
M O T I O N  OF AN E L E C T R O N  IN A H O M O G E N E O U S  M A G N E T I C  

F I E L D ,  W I T H  T H E  R E A C T I O N  OF T H E  E M I S S I O N  I N C L U D E D  

A .  V.  B o r i s o v  a n d  Y u .  V. G r a t s  

The ar t ic le  gives a solution of the c lass ica l  Dirac equation for a point-l ike e lectron in a 
homogeneous magnetic field. The solution is obtained in the form of a power ser ies  of a 
cha rac te r i s t i c  smal l  pa rame te r .  The solution is compared with the resul ts  of other 

sc ient is ts .  

The problem of e lectron motion in a magnetic field was previously considered with proper  regard  for 
the emiss ion- induced react ion [1, 2]. The solution of the c lass ica l  Dirac equation in a homogeneous mag-  
netic field was determined in [1], but, as indicated by the author, the approximation is valid only for suf-  

ficiently smal l  eigentimes 

( m c ~  ~ << / T, 

where T ~ m3eh/e4H 2 and E 0 denotes the initial energy of the par t ic le .  

An approximating equation (see [3], p. 274) was used f rom the very  beginning in [2]. Obviously, when 
this approach is used, the accuracy  of the solution is necessa r i ly  l imited.  It is therefore  interest ing to 
consider  the accura te  equation and to use per turbat ion theory for obtaining a solution which has any desi red 

degree of accuracy .  

We base our considerat ions  on the c lass ica l  Dirac equation for  a point-l ike electron (see, for example,  [4 ]): 

mu~ = e__c F~  tt~ + 7m ( t t ~ -  l__c ~ a~u~,~j, (1) 

where y = (2/3)(e2/mc3); F/o / denotes the tensor  of the external  e lect romagnet ic  field; up = x# denotes the 
four-d imensional  velocity;  and a 2 = tl#flr denotes the square of the four-dimensional  accelerat ion,  Through-  
out the presen t  ar t ic le ,  a dot is used to denote a derivative with respec t  to the eigentime. A met r ic  with an 
imaginary force component of four-dimensional  vectors  is used in the present  ar t ic le .  

Assume the magnetic  field to be paral le l  to the z -axis .  Thus, when Eq. (1) is resolved into compo-  
nents,  we obtain: 

�9 ( , )  u,, = - O, oUy + ~ fix - ~ a~ux , 

C ~ ] ' 

C 2 J ]  ' 

$ = ~" r  a 2 e  ' 

(2) 

where w 0 = e0H/mc (e = - e  0 < 0 denotes the charge of the electron);  and e denotes the par t ic le  ene rgy  ex-  
p re s sed  in multiples of mc 2. It  follows f rom the las t  two equations of (2) that the z component of the th ree -  
dimensional velocity is constant:  v z = Cflz 0 and, hence, we have for the four-dimensional  velocity: 

tt~ ---. C~zo~. (3) 

We look for a solution for Ux(Z ) and Uyff) in the form* 

*The resul ts  of [1, 2] point to a solution of this type; this solution follows also f rom the physics  involved. 
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and e 0 denotes the initial  energy .  
fo rmulas  

u~ (~) = u~ (*) cos  ~ (~), uy (~) = u .  (~) s in r (~), (4) 

where  
1 

u~  (x) = C~• e - r  (')[1 - -  ~g0 - -  ~ ,0  e -~* (')1- ~, 

with fl• = ~/f12(O) + ~y(O) denoting the initial  value of the veloci ty  component  which is perpendicu la r  to the 
magne t i c  field.  We obtain the following equation s y s t e m  for  the functions r and ~: 

~ - - - - ~ ( ~ ' + ~ - - ~ Z c t h ( , + a ) ) ,  ~ = ~ 0 + T I ~ - - + ~ ( l + c t h ( , + a ) )  l (5) 

with the init ial  conditions r = 0, r = 0, where  a is  given by the fo rmula  

cth a = 2 (1 ~ [3~0) ~2 _ 1, (6) 

We introduce new functions ~ and ~? which a r e  re la ted  to r and q~ by the 

where  5 = TwO. 

=~}, ~ = % ~ ,  (7) 

where  X = ~2w~. 

By switching to the new independent va r iab le  s = eth(r + a), we obtain for  ~(s) and ~(s) 

~ =~q2-}-Z~[(1 - - s ~ ) U - - s ~ ] ,  ~ =  1 +k~[(1 - -s~)~ ' --(1 + s ) ~ ] ,  

Obviously, X is a smal l  p a r a m e t e r .  As a m a t t e r  of fact ,  even at f ields of the o rde r  of 

(8) 

the c r i t i ca l  field [4], we have X ~ 10 -6. 
(8) in the f o r m  of an expansion in powers  of X: 

" co  co  

}(s) = ~knpn(s) ,  ~q(S) : ~ k n Q n ( s ) .  (9) 
n=O n~O 

By subst i tut ing this expansion into Eq. (8), we obtain r e c u r s i o n  re la t ions  for  the functions Pn and Qn: 

n - - I  

P.  = (2. + ~] {Q. - , -~  Q~ + P . - , - ~  [(1 - : )  P'~ - sp~] } ,  
r (i0) 

. - 1  
Q, = :E P , - , - , ,  [(1 - : 1  Q',, - (1 + s) Q,,], Po(S) = Qo (s)  =- 1. 

K = O  

I t  is t he re fo re  logical  to de te rmine  a solution of equation s y s t e m  

I t  is e a sy  to infer  f r o m  these  fo rmulas  that Pn and Qn a r e  polynomials  of o rde r  n in s .  
fo rmulas  for  the f i r s t  two polynomials :  

P x ( s ) = - - ( 2 + 3 s ) ,  Q x ( s ) = - - ( l + s ) ,  P 2 ( s ) = 2 ( 1 + l O s + l O s 2 ) ,  

Q~ (s) = 2 + 7s  + 5s  ~. 

We obtain the following equations (see Eqs.  (7) and (9)) for  the initial  functions r and ~o: 

The solution of these  equations is r e p r e s e n t e d  in the f o r m  of a power  expansion in •: 

0 = ~ "~ , ,~ , r = co o ,r ~,ngn ,~ . 
= 1  : 1 

The following a re  

( i i )  

(12) 

(13) 

By subst i tut ing these  expansions into Eq. (12), we obtain fo rmulas  for  the functions fn and gn. The fol low.  
ing a r e  expres s ions  for the f i r s t  th ree  functions: 

A = S P: (s0) d~, A = S IAP: (So) + P2 (So)] d~, 
0 0 

f3 = ~ [AP1 (So) + ~ f~ JOl (So) + A #~ (So) + P3 (So)] a% 
0 

(14) 

wher  e s 0 = cth (6r + a). 

S imi lar  fo rmulas  for  gn a r e  obtained when Pn(S0 is rep laced  by Qn(s0) (as above,  the functions fn r e -  
main  in the exp res s ions  under  the in tegra l  s igns) .  
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When we use  Eqs .  (11), (13), and (14), we can ca lcu la t e  f i r s t  and second  app rox ima t ions :  

f ~ ( , ) = - - ( 2 ~ + 3 ~ - ~ l n  s h ( ~ + a ) )  
�9 sha  ' 

f2 (~) = 13x --  1 lg -1 [cth (;z -{- a) --  cth a] + 6~ cth (~  + a)  + ~-~ [14 + 9 cth (g= + a)] In sh (gx + a) 
sha  

(15) 

Similarly, we obtain 

el  (v) = -- (~ + ~ - '  lnSh (~= + a) / 
sha  / ' 

g~ (~) = 4z --  2~ -~ [cth (~ + a) --  cth a] + 2~ cth (~,~ + a) + ~-1 [5 + 3 cth (~= + a)] In - -  
sh (~ + a) 

sh a 
(16) 

In the z e r o t h  app rox ima t ion  in X, we obtain  the we l l -known solu t ion  of  [2]. Le t  us c o n s i d e r  the l imi t  
c a s e s  of  s m a l l  and l a r g e  T. We obtain  f r o m  Eqs .  (13), (15), and (16) for  57 << a 

~ ( ~ ) = ~ [ 1 - - k ( 2 + 3 c t h a ) + 2 k 2 ( l + l O c t h a @ l O c t h 2 a ) + . . . ] ,  (17) 
(~) = ~~ --X(1 + c t h a )  +~2(2  + 7 c t h a +  5cth 2a) + - - . ] .  

In  the case  6r >> a,  we obtain 

~? (x )=~x(1 - -5k+42k~- t  - - . . ) ,  , ~ ( x ) = % z ( l - - 2 ) , + 1 4 k ~ + . - . ) .  (18) 

It fol lows f r o m  Eq.  (17) that  this expans ion  is usefu l  if 

Xcth a ~ .  1. 

The second  t e r m  of the expans ion  of Eq.  (17) is then s m a l l e r  than the f i r s t  t e r m .  

In the c a s e  of a t w o - d i m e n s i o n a l  mo t ion  (/3z0 = 0) of an u l t r a - r e l a t i v i s t i c  p a r t i c l e  (e 0 >> 1), the l a t t e r  
condi t ion a s s u m e s  the f o r m  e 0 ~ X-l/2 in a c c o r d a n c e  with Eq.  (6). F o r  f ields H ~ 104 Oe this inequal i ty  is 
val id to e n e r g i e s  E 0 = e0me 2 ~ 10 -7 GeV. The c l a s s i c a l  d e s c r i p t i o n  is l imi ted  by  the e n e r g y  E 0 ~ 105 GeV 
for  a given H. 

Le t  us c o n s i d e r  the non re l a t i v i s t i c  l imi t  when cth a -~ 1. We have in this c a s e  

(t) = ~t(1 --5),  + 42k 2 + . . .  ), ? (t) =- %t(1 --  2). + 14k 2 + -- , ) ,  (19) 

which  co inc ides  with Eq.  (18). This  is not  s u r p r i s i n g  b e c a u s e  for  ~ >> a,  the p a r t i c l e  l ooses  a l a r g e  p o r -  
t ion  of  i ts  e n e r g y  and b e c o m e s  n o n r e l a t i v i s t i c .  Equat ion  (19) is an expans ion  of the a c c u r a t e  solut ion of  the 
n o n r e l a t i v i s t i c  equat ion ,  taking into accoun t  the e m i s s i o n - i n d u c e d  r e a c t i o n  (solution obta ined  in [11). The 
so lu t ion  can  be wr i t t e n  in our  nota t ion  as fol lows:  

~(t) = r i l l +  2 (1 + 16k)~ ] ~ - -  1 } 
2 y { [ 2  

2~[ 1 ~ 0 +16k)~] ~ ~(t)= --~+~ 

An expans ion  of  this solut ion in p o w e r s  of  X r e s u l t s  in Eq. (19). 

In conc lus ion ,  the au thors  thank p r o f e s s o r  A. A. Sokolov for  fo rmu la t i ng  the p r o b l e m  and for  d i s c u s s -  
ing the r e s u l t s .  
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