MOTION OF AN ELECTRON IN A HOMOGENEOUS MAGNETIC
FIELD, WITH THE REACTION OF THE EMISSION INCLUDED
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The article gives a solution of the classical Dirac equation for a point-like electron in a
homogeneous magnetic field. The solution is obtained in the form of a power series of a
characteristic small parameter. The solution is compared with the results of other
scientists,

The problem of electron motion in a magnetic field was previously considered with proper regard for
the emission-induced reaction {1, 2]. The solution of the classical Dirac equation in a homogeneous mag-
netic field was determined in [1], but, as indicated by the author, the approximation is valid only for suf-
ficiently small eigentimes
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where T ~ m3c%/e’H? and E, denotes the initial energy of the particle.

An approximating equation (see [3], p.274) was used from the very beginning in [2]. Obviously, when
this approach is used, the accuracy of the solution is necessarily limited, It is therefore interesting to
consider the accurate equation and to use perturbation theory for obtaining a solution which has any desired
degree of accuracy.

We base our considerations on the classical Dirac equation for a point-like electron (see, for example, [4]):
. e , . . 1 "
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where y = (2/3) ¢%/mc?; F, denotes the tensor of the external electromagnetic field; u, = x,, denotes the
four -dimensional velocity; and a® = 1'1“1'1“ denotes the square of the four-dimensional acceleration, Through-
out the present article, a dot is used to denote a derivative with respect to the eigentime. A metric with an
imaginary force component of four-dimensional vectors is used in the present article.

Assume the magnetic field to be parallel to the z-axis. Thus, when Eq. (1) is resolved into compo-
nents, we obtain;
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where w = ejli/me (¢ =—e; < 0 denotes the charge of the electron); and ¢ denotes the particle energy ex-
pressed in multiples of mc?. It follows from the last two equations of (2) that the z component of the three-
dimensional velocity is constant: v, = c¢f8,, and, hence, we have for the four-dimensional velocity:

1w, = cBe. (3)
We look for a solution for uy(r) and uy('r) in the form*

*The results of [1, 2] point to a solution of this type; this solution follows also from the physics involved.
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uy(v) =uy(v)cos¢(z), #,(7)=u.(x)sing (), 4)
where
» u, (':)=c{iwe-‘l'(r)[l__pgo_ﬁﬁ_oe—%(i)]_%,

with 8, , = v ,8}2{(0) + ﬁé,(O) denoting the initial value of the velocity component which is perpendicular to the
magnetic field. We obtain the following equation system for the functions ¥ and ¢:

b=1@+i—Poth¢+a)) ¢=ou+7[¢—¢d(l+cth(+a)] (5)
with the initial conditions y(0) = 0, ¢(0) = 0, where a is given by the formula
ctha=2(1-Bl)ef —1, (6)

and &, denotes the initial energy. We introduce new functions ¢ and n which are related to y and ¢ by the
formulas

;;) = BE, (P = ‘”o"L (7)
where 6 = yw3. By switching to the new independent variable s = cth® + a), we obtain for £(s) and 7(s)
= LA f(1 — %) —sE], n=14M[(1—s)y —( +s)7], (8)

where A = "yzw% . Obviously, A is a small parameter, As a matter of fact, even at fields of the order of
the critical field [4], we have A ~ 1078, It is therefore logical to determine a solution of equation system
(8) in the form of an expansion in powers of A:

Hs)= AP (), n(s) = onnQn(s). ©
n=0 ==

By substituting this expansion into Eq. (8), we obtain recursion relations for the functions Pp and Qp:

'Pn = Qn +n2—1{Qn—l—lc Qx+Pn—1—x [(1 — Sz) P,'C— SP”]},
=0 (10)

Q=S Price[1=5)Q— (1 +9)Q], Po()=Q(s)=1.

&=0
It is easy to infer from these formulas that P, and Q, are polynomials of order n in s. The following are
formulas for the first two polynomials:

Py(s)=—(2+35), Quls)=—(1+5), Py(s)=2(1+10s+10s), (11)
Q,(s) =2+ T7s+ 5s%.

We obtain the following equations (see Eqs. (7) and (9)) for the initial functions # and ¢:

b =3 (m-l— ixngpn(s) d’:) , 0 =0, (w. + ﬁ ?\"({Qn(s) dc) ) (12)

n==l

The solution of these equations is represented in the form of a power expansion in A:
o0 54 ’
d.)'::_a('t—i—z)‘nfn(':))’ <P"_“mo(":"'{-E)\ngn(‘c))‘ (13)
n==1 n=1

By substituting these expansions into Eq. (12), we obtain formulas for the functions f, and g,. The follow-
ing are expressions for the first three functions:

Fo=[Pi(sa)ds, fa= [ [/1P1(50) + Py (s0)] d,
| ! (19)
fo= (j: [f2P1 (s0) + %f% p;(so) + f1 P2 (50) + Py (so)] d,

where sy = cth(1 + a).

Similar formulas for g, are obtained when Py (s is replaced by Qp(s¢) (@s above, the functions f;, re-
main in the expressions under the integral signs).
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When we use Eqgs. (1), (13), and (14), we can calculate first and second approximations:

N h (3t +
fi(zx) = ~'<2'\: -+ 38 tin S-%Ez_a)_) ,
Fa(%) = 13t — 115=" [cth (35 4 @) — cth a] + 6% cth (b -+ @) + 31 [14 + Octh (= 4 a)] 1n 2T (1)
[ sha

Similarly, we obtain

N h (@ +a)
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S

(16)

In the zeroth approximation in A, we obtain the well-known solution of [2]. Let us consider the limit
cases of small and large 7. We obtain from Eqgs, (13), (15), and (16) for 67 «< q

0(t) =8 [1 —h(2+ 3ctha) + 22(1 + 10ctha + 10cth?a) 4+ -], (17)
¢ () = 0ot [1 — k(1 4-ctha) +#{(2 4 7ctha 4 Scth?a) 4- - - -]
In the case 67 > q, we obtain
P(r) =3 (L — B4 4D24-+.), o(t) = o (1 — A4 1424 ). (18)
It follows from Eq, (17) that this expansion is useful if
Actha =<1,
The second term of the expansion of Eq. (17) is then smaller than the first term,

In the case of a two-dimensional motion (85, = 0) of an ultra-relativistic particle (g, > 1}, the latter
condition assumes the form &4 ¢ A™1/2 in accordance with Eq. (6). For fields H ~10% Oe this inequality is
valid to energies E( = ggmc? 2 1077 GeV. The classical description is limited by the energy E, £ 105 GeV
for a given H,

Let us consider the nonrelativistic limit when cthae =~ 1. We have in this case
O(£) = BE(1—Bh - 422 -.1), o () = 0t (1 — 2k 1482 - - +»), (19)
which coincides with Eq. (18). This is not surprising because for &7 > a, the particle looses a large por-
tion of its energy and becomes nonrelativistic., Equation (19) is an expansion of the accurate solution of the
nonrelativistic equation, taking into account the emission-induced reaction (solution obtained in [i]). The
solution can be written in our notation as follows;

£yt LT
vt=____ _— - 2 ?
4 () 21{{2+2(1+16”] 1},

N N I | }
cp(lf)-m[ 2+2(1+16)\) J

An expansion of this solution in powers of A results in Eq. (19).

In conclusion, the authors thank professor A. A. Sokolov for formulating the problem and for discuss-
ing the results.
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