Postsynaptically different inhibitory postsynaptic currents in Cajal–Retzius cells in the developing neocortex

Anton Dvorzhak^{a,b}, Olga Myakhar^{a,b}, Andre Kamkin^b, Knut Kirmse^a and Sergei Kirischuk^a

^aInstitute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University-Medicine Berlin, Berlin, Germany and ^bDepartment of Fundamental and Applied Physiology, Russian States Medical University, Moscow, Russia

Correspondence to Dr Sergei Kirischuk, Institute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University-Medicine Berlin, Tucholskystr. 2, Berlin 10117, Germany

Tel: + 49 30 450 528 102; fax: + 49 30 450 528 952; e-mail: sergei.kirischuk@charite.de

Received 2I April 2008; accepted I5 May 2008

Fast and slowly rising inhibitory postsynaptic currents (IPSCs, IPSC_F and IPSC_S) in neocortical Cajal–Retzius cells are observed. In this study, zolpidem, a benzodiazepine agonist that specifically modulates γ -aminobutyric acid type A receptors (GABA_ARs) containing γ_2 subunit, was used to characterize GABA_ARs mediating IPSC_F and IPSC_S. One-hundred-nanomolar zolpidem prolonged IPSC_S, increased evoked IPSC_S (eIPSC_S) amplitude, and decreased paired-pulse ratio (PPR) of eIPSC_S. Two micromolar zolpidem prolonged both IPSC_F and IP

eIPSC_F amplitudes, increased eIPSC_S amplitude but not miniature IPSC_S amplitude, decreased PPR of eIPSC_S, but failed to affect PPR of eIPSC_F. We conclude that IPSC_F are mediated by $\alpha_{2/3}$ -containing GABA_ARs, which are not saturated by synaptic GABA release, whereas IPSC_S are mediated by α_1 -containing and $\alpha_{2/3}$ -containing GABA_ARs, which are saturated by quantal GABA release. *NeuroReport* 19:1213–1216 © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Keywords: evoked inhibitory postsynaptic currents, gamma aminobutyric acid, miniature inhibitory postsynaptic currents, paired-pulse plasticity

Introduction

Cajal–Retzius (CR) cells are the principal neurons in the marginal zone/layer I of the developing neocortex. These early-born neurons have large pericarya with long horizontal dendrites and axonal arbors that are restricted to layer I. CR cells represent a transient cell population and disappear approximately by the end of the second postnatal week in rodents [1,2]. Owing to their strategic location in layer I and the coincidence of their life span with the period of cortical migration, CR cells have been proposed to play a key role in the structural organization of the neocortex. Recent experimental findings have shown that CR cells synthesize and secrete reelin, an extracellular matrix protein necessary for cortical lamination [3]. In reelin-deficient mice the inside-out formation of the neocortex is compromised [4].

CR cells receive excitatory γ -aminobutyric acid (GABA)ergic inputs [5,6] and are involved in the synchronized network activity in layer I in both wild-type and reelin-deficient mice [7]. Recently, we have shown that CR cells receive two types of GABAergic inputs [8]. As CR cells express γ_2 subunitcontaining GABA_A receptors (GABA_ARs) during postnatal development [9], in this study we have used zolpidem, a benzodiazepine agonist that specifically modulates GABA_ARs containing γ_2 subunit. Moreover, zolpidem modulates $\alpha_1\gamma_2$ containing, $\alpha_{2/3}\gamma_2$ -containing, and $\alpha_5\gamma_2$ -containing GABA_ARs with K_i values of 20, 450, and 15 000 nM [10]. Therefore, different zolpidem concentrations were used to assess the composition of postsynaptic GABA_ARs and to investigate whether $GABA_ARs$ are saturated by the synaptically released GABA [11].

Materials and methods Preparation of brain slices

All experiments were conducted with pigmented C57BL/6J mice pups of postnatal days (P) 5-7 (the day of birth was designated as P0). Animals were decapitated under deep ether anesthesia. The brain was removed quickly and transferred into ice-cold saline that contained (in mM): 125 NaCl, 4 KCl, 10 glucose, 1.25 NaH₂PO₄, 25 NaHCO₃, 0.5 CaCl₂, and 2.5 MgCl₂ constantly aerated with a 5% CO₂–95% O_2 mixture (pH=7.3). Sagittal slices of both hemispheres were cut on a vibratome (Campden Instruments Ltd, Loughborough, Leicestershire, UK). After preparation, slices (200-µmthick) were stored for at least 1 h at room temperature in artificial cerebrospinal fluid (ACSF) that contained (in mM): 125 NaCl, 4 KCl, 10 glucose, 1.25 NaH₂PO₄, 25 NaHCO₃, 2 CaCl₂, and 1 MgCl₂. pH was buffered to 7.3 by continuous bubbling with a 5% CO₂-95% O₂ mixture. All experiments were carried out according to the guidelines laid down by the Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit Berlin, T0406/03.

Electrophysiological recordings in acute slices

For recordings, slices were placed into a recording chamber (~ 0.4 ml volume) on the microscope stage (Axioscope FS,

Zeiss, Oberkochen, Germany) equipped with phase contrast optics. Slices were submerged with a constant flow of oxygenated ACSF. Flow rate was set to 1 ml/min. A 40x water immersion objective was used in all experiments. CR cells were visually selected according to morphological criteria: (i) location in layer I, (ii) horizontal orientation, (iii) large ovoid soma, and (iv) one thick-tapered dendrite typically extended in parallel to the pial surface.

Ten micromolar 6,7-dinitroquinoxaline-2,3-dione (an AMPA/kainate receptor antagonist) and 50 µM DL-2-amino-5-phosphonopentanoic acid (a N-methyl D-aspartate receptor blocker) were added to the ACSF to block glutamatergic currents. Inhibitory postsynaptic currents (IPSCs) were recorded using the whole-cell configuration of the patchclamp technique. Intrapipette solution contained (in mM): 100 potassium gluconate, 50 KCl, 5 NaCl, 0.5 CaCl₂, 5 ethylene glycol-bis (b-aminoethyl ether), 25 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 2 MgATP, 0.3 GTP, pH was set to 7.2 with KOH. Pipette resistance was $3-5M\Omega$, when filled with the above saline. Electrophysiological signals were acquired using an EPC-7 amplifier (List Electronics, Darmstadt, Germany), a 16-bit AD/DA board (ITC-16, HEKA Elektronik, Lambrecht, Germany), and TIDA 4.11 software (HEKA Elektronik). The signals were filtered at 3 kHz and sampled at a rate of 10 kHz. Access resistance was controlled by applying hyperpolarizing pulses of 10 mV. Only recordings with a series resistance below $40 M\Omega$ were accepted. Series resistance compensation was not applied. Cells exhibiting more than 20% changes in the access resistance during an experiment were discarded. The chloride reversal potential was about -20 mV. The holding potential was set to -70 mV. In this study, GABA_AR-mediated postsynaptic currents will be referred to as IPSCs even though the action of GABA is depolarizing in CR cells.

Electrical stimulation

Evoked postsynaptic currents were elicited by focal electrical stimulation through a glass pipette filled with ACSF (about $10 \text{ M}\Omega$). In this case, quinoxaline 314 (2 mM) was added to the intracellular solution to prevent generation of action potentials in the tested neurons. An isolated stimulation unit was used to generate rectangular electrical pulses. Pulse duration was set to 0.5 ms. Pulse intensity was adjusted to activate a unitary synaptic input (minimal stimulation). Simulation was accepted as minimal if the following criteria were satisfied: (i) evoked inhibitory postsynaptic current (eIPSC) latency remained stable (<20% fluctuations); (ii) lowering stimulus intensity by 20% resulted in a complete failure of eIPSCs; and (iii) an increase in stimulus intensity by 20% changed neither mean eIPSC amplitude nor eIPSC shape. Typical pulse intensity required for minimal stimulation was between 1 and $2\mu A$.

Miniature inhibitory postsynaptic current and evoked inhibitory postsynaptic current separation

Recently, we have shown that in CR cells the distribution of miniature inhibitory postsynaptic current (mIPSC) rise times is better fitted with the sum of two Gaussian functions [8]. Therefore, we separated fast and slowly rising mIPSCs (mIPSC_F and mIPSC_S) using the following procedure. mIPSC rise time distribution was fitted by two Gaussians. After this, all mIPSCs with rise times shorter than the first peak plus two standard deviations were selected as mIPSC_F. All mIPSCs

with longer rise times were defined as mIPSC_S. eIPSCs with rise times shorter and longer than 1 ms were defined as $eIPSC_F$ (typical value was 0.7 ms) and $eIPSC_S$ (typically 1.3 ms), respectively.

Superfusion

All experiments were carried out at room temperature (22–25°C). Tetrodotoxin was obtained from Alomone Labs (Jerusalem, Israel). All other chemicals were obtained from Sigma-Aldrich (Munich, Germany).

Data evaluation and statistics

Data were evaluated off-line using PeakCount V3.2 software (C. Henneberger, Institute of Neurophysiology, Berlin, Germany). The program uses a derivative threshold-crossing algorithm to detect individual IPSCs. Each automatically detected event is displayed for visual inspection. IPSC rise (10–90%) and half-decay times can be also obtained. All results are presented as mean \pm SEM. The error bars in all figures indicate SEM. Means were tested for significance using one population Student's *t*-test.

Results

Zolpidem differentially modulates fast rising miniature inhibitory postsynaptic current and slowly rising miniature inhibitory postsynaptic current

As extracellular [GABA] in layer I of the developing cortex is relatively high [8], we asked if zolpidem affects the resting membrane conductance. In all cases, zolpidem changed neither the resting potential, nor the membrane resistance, nor the holding current (n=13, data not shown) of CR cells.

Next, we asked if zolpidem affects mIPSCs. mIPSCs were recorded in the presence of 1 µM tetrodotoxin. In addition, to increase mIPSC frequency, *N*-ethylmaleimide (50 µM) was preapplied for 5 min. *N*-ethylmaleimide was shown to affect neither mIPSC amplitudes nor kinetics in CR cells [12]. Onehundred nanomolar zolpidem, a concentration at which the drug modulates only α_1 -containing GABA_ARs, influenced neither the median amplitude of mIPSC_F (107±9% of control, *P*>0.3) nor mIPSC_F half-decay time (109±12% of control, *P*>0.2, *n*=18, Fig. 1b). In contrast to mIPSC_F, mIPSC_S half-decay time was significantly increased (131±6% of control, *P*<0.001), whereas the median amplitude of mIPSC_S was unaffected (104±6% of control, *P*>0.4, *n*=18, Fig. 1b) by 100 nM zolpidem.

Two micromolar zolpidem, a concentration at which zolpidem also affects $\alpha_{2/3}$ -containing GABA_ARs, increased the median amplitude of mIPSC_F to $126\pm5\%$ of control (P < 0.001, n=14) and mIPSC_F half-decay time to $166 \pm 8\%$ of control (P < 0.001, n=14, Fig. 1a, B). The median amplitude of mIPSC_S was not changed $(108\pm9\% \text{ of control}, P>0.3)$, whereas mIPSC_S half-decay time was further increased $(173 \pm 10\% \text{ of control}, P < 0.001, n = 14$, Fig. 1a and b). Interestingly, 2µM zolpidem decreased the coefficient of variation [coefficient of variation (CV)=the mean mIPSC amplitude divided by the standard deviation] of mIPSCs $(88\pm3\%$ of control, P < 0.05, n=14, Fig. 1b). Ten micromolar zolpidem applied after 2 µM zolpidem failed to produce any further effect on both mIPSC_F and mIPSC_S (n=5, data not shown). Thus, mIPSCF seems to be mediated mainly by $\alpha_{2/3}\text{-}$ containing GABA_ARs, whereas both $\alpha_{2/3}$ -containing and α_1 -containing GABA_ARs contribute to mIPSC_S generation. Moreover, as 2 µM zolpidem increases the median amplitude

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

of mIPSC $_{\rm Fr}$ postsynaptic GABA_ARs seem to be not saturated by the quantal GABA release at synapses that generate these currents.

Fig. 1 Zolpidem (Zol) effects on mIPSCs. (a) Sample traces demonstrate mIPSCs recorded in control and in the presence of 2 μ M Zol. Insets show mIPSC_F and mIPSC_S. (b) Statistical data showing the effects of Zol (0.1 μ M – open bars, 2 μ M – grey bars) on the median amplitude, half-decay time and CV of mIPSC_F (left) and mIPSC_S (right). *P<0.05, ***P<0.001. CV, coefficient of variation; mIPSC, miniature inhibitory postsynaptic current; mIPSC₅, slowly rising miniature inhibitory postsynaptic current.

Fast rising evoked inhibitory postsynaptic current and slowly rising evoked inhibitory postsynaptic current differ in their sensitivity to zolpidem

To corroborate these results, we investigated zolpidem effects on eIPSCs. eIPSCs were elicited using a paired-pulse protocol with interstimulus interval of 50 ms. Similar to the zolpidem effects on mIPSC_E only $2 \mu M$ zolpidem affected the mean amplitude of eIPSC_F ($126 \pm 9\%$ of control, *P* < 0.05) and eIPSC_F half-decay time ($167 \pm 10\%$ of control, P < 0.001, n=9, Fig. 2a and b). Similar to mIPSC_S, eIPSC_S half-decay time was increased by zolpidem $[126\pm6\% (P<0.01, n=10)]$ and $167 \pm 7\%$ of control (P<0.001, n=8) in the presence of 100 nM and 2 µM zolpidem, respectively]. Surprisingly, zolpidem increased the mean amplitude of $eIPSC_{S}$ [110±4% (P < 0.05, n=10) and 128 ± 8 of control (P < 0.01, n=8] in the presence of 100 nM and 2 µM of zolpidem, respectively, Fig. 2c and d). Moreover, zolpidem decreased the paired-pulse ratio of eIPSC₅ [90 \pm 3% (*P*<0.05, *n*=10) and 72 \pm 8% of control (P < 0.01, n=8) in the presence of 100 nM and 2 μ M zolpidem, respectively], but not of eIPSC_F [98 \pm 11% (P>0.9, n=9) and $98\pm7\%$ (P>0.87, n=9) in the presence of 100 nM and 2 μ M zolpidem, respectively, Fig. 2b and d].

Discussion

Neocortical CR cells have been shown to receive two GABAergic inputs, which generate IPSC_F and IPSC_S. IPSC_F projections have lower release probability and are capable to transfer information at high frequency, whereas IPSC_S connections already become ineffective at 1 Hz [8]. In this study, we investigated if these synapses differ postsynaptically. As postnatal CR cells express only γ -containing GABA_ARs [9], the benzodiazepine agonist zolpidem has been used. Zolpidem increases the affinity of $\alpha_1\gamma_2$ -, $\alpha_{2/3}\gamma_2$ -, and $\alpha_5\gamma_2$ -containing GABA_ARs for GABA with K_i values of 20, 450, and 15000 nM [10]. Therefore, to unravel an

Fig. 2 Zolpidem (Zol) effects on eIPSCs. (a, c). Traces show eIPSC_F (a) and eIPSC_S (c) elicited by paired-pulse protocol in control and in the presence of 2 μ M Zol. Traces are an average of 40 trials. Insets: eIPSCs in control and in the presence of Zol were scaled to demonstrate the effects of Zol on eIPSC kinetics and PPR. (b, d). Statistical data demonstrating the effects of Zol (0.1 μ M – open bars, 2 μ M – grey bars) on eIPSC_F (b) and eIPSC_S (d). *P < 0.05, **P < 0.01, ***P < 0.001. Con., control; eIPSC, evoked inhibitory postsynaptic current; eIPSC_F, fast rising evoked inhibitory postsynaptic current; eIPSC_S, slowly rising evoked inhibitory postsynaptic current; PPR, paired-pulse ratio.

Vol 19 No 12 6 August 2008 1215 Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. involvement of $\alpha_1\gamma_2$ -subunits, we applied 100 nM zolpidem. One-hundred nanomolar zolpidem prolonged selectively IPSC_S suggesting that $\alpha_1\gamma_2$ -containing GABA_ARs contribute to IPSC_S, but not IPSC_F generation. As 2 µM zolpidem increased the duration of both IPSC_F and IPSC_S to a similar extent (170% of control), $\alpha_{2/3}\gamma_2$ -containing GABA_ARs seem to mediate both types of IPSCs.

The zolpidem-induced increase in GABAAR affinity allows assessing the degree of GABA_AR occupancy. If GABA_ARs are saturated by the synaptically released GABA, zolpidem should minimally influence mIPSC amplitude. Indeed, the median mIPSC_S amplitude was not changed by zolpidem. In contrast to mIPSC_S, mIPSC_F amplitudes increased to 126% of control in the presence of $2 \mu M$ zolpidem. As $\alpha_1 \gamma_2$ -containing GABAARs contribute only to IPSCs, distinct GABAAR affinities for GABA at IPSC_F and IPSC_S synapses may underlie the observed effects. Lower affinity receptors should, however, produce more rapidly decaying mIPSCs [13], but this was not observed. mIPSC_F and mIPSC_S demonstrated similar half-decay times (10.5 and 10.8 ms) in control and were prolonged to a similar extent (170% of control) by 2µM zolpidem. Thus, it is unlikely that GABA_AR affinity is the major determinant of the degree of GABA_AR occupancy.

Two other possibilities are difficult to separate. First, different numbers of postsynaptic GABAARs may be located at IPSC_F and IPSC_S synapses. Correlation between mIPSC amplitude and postsynaptic receptor number has been directly demonstrated in cerebellar stellate cells. Moreover, the benzodiazepine agonist flurazepam prolonged all mIPSCs, but selectively increased the amplitude of large events [14]. In CR cells the median amplitude of mIPSC_F (\sim 55 pA) is about twice that of mIPSC_S ($\sim 25 \text{ pA}$) suggesting that a larger GABA_AR number at IPSC_F synapses may underlie their incomplete occupancy by synaptically released GABA. Second, [GABA] or the duration of GABA transients in the synaptic cleft may determine the degree of GABAAR occupancy [15]. If postsynaptic GABAARs are not saturated by GABA and the variance of mIPSC amplitudes solely results from fluctuations of [GABA] in the synaptic cleft, an increase in GABA_AR affinity should reduce quantal variance. The CVs of mIPSC_F (0.62 vs. 0.63) as well as $eIPSC_F$ (0.69 vs. 0.68 in controls and in the presence of 2 µM zolpidem, respectively) were not significantly changed by zolpidem. Thus, incomplete GABA_AR occupancy is probably due to a larger number of postsynaptic receptors located at these synapses.

Interestingly, the CV of mIPSC_S decreased in the presence of $2\mu M$ zolpidem (0.47 and 0.41 in control and in $2\mu M$ zolpidem, respectively). Zolpidem-induced increase in the open probability of GABAARs may result in the reduction of mIPSCs CV even when GABAARs are fully occupied by synaptically released GABA. Indeed, eIPSC_S amplitude was augmented by zolpidem. The CV of eIPSC_S was, however, not decreased by zolpidem arguing against the suggestion. The zolpidem-induced increase of eIPSC_S amplitude could be mediated by presynaptic GABA_ARs. This is, however, unlikely because zolpidem (i) failed to increase mIPSC frequency and (ii) did not affect the failure rate of $eIPSC_{S}$. Alternatively, GABA diffusion from the synaptic cleft and activation of extrasynaptic $\alpha_{2/3}\gamma_2$ -containing GABA_ARs can underlie the observation. GABA diffusion is definitely not affected by zolpidem. Therefore, zolpidem-induced increase in GABAAR affinity, that is, an increase in the number of GABA_ARs activated by GABA in response to the first stimulus, should decrease the number of receptors available for the second release. Indeed, zolpidem decreased paired-pulse ratio of eIPSC_S. We suggest that IPSC_S synapses (presumably subplate-layer I projections [8]) are characterized by smaller number of GABA_ARs and weaker GABA clearance as compared with IPSC_F contacts (presumably GABAergic thalamocortical projections [16]). Thus, the information transfer at IPSC_S connections is limited both presynaptically (high-release probability) and postsynaptically (saturation of GABA_ARs), whereas low-release probability and incomplete occupancy of GABA_ARs at IPSC_F projections make them capable to operate at higher rate.

Acknowledgements

The technical assistance of Mrs Kerstin Rückwardt is highly appreciated. This study was supported by Deutsche Forschungsgemeinschaft (KI1093/1-1) and Charité Persönliche Forschungsförderung grants to S.K.

References

- Marin-Padilla M. Cajal–Retzius cells and the development of the neocortex. *Trends Neurosci* 1998; 21:64–71.
- Soriano E, del Rio JA. The cells of Cajal–Retzius: still a mystery one century after. *Neuron* 2005; 46:389–394.
- 3. Frotscher M. Cajal-Retzius cells, Reelin, and the formation of layers. *Curr Opin Neurobiol* 1998; 8:570–575.
- Caviness VS Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. *Brain Res* 1982; 256:293–302.
- Kilb W, Luhmann HJ. Spontaneous GABAergic postsynaptic currents in Cajal–Retzius cells in neonatal rat cerebral cortex. *Eur J Neurosci* 2001; 13:1387–1390.
- Radnikow G, Feldmeyer D, Lubke J. Axonal projection, input and output synapses, and synaptic physiology of Cajal–Retzius cells in the developing rat neocortex. J Neurosci 2002; 22:6908–6919.
- Aguilo A, Schwartz TH, Kumar VS, Peterlin ZA, Tsiola A, Soriano E et al. Involvement of Cajal–Retzius neurons in spontaneous correlated activity of embryonic and postnatal layer 1 from wild-type and reeler mice. *J Neurosci* 1999; 19:10856–10868.
- Kirmse K, Dvorzhak A, Henneberger C, Grantyn R, Kirischuk S. Cajal–Retzius cells in the mouse neocortex receive two types of preand postsynaptically distinct GABAergic inputs. J Physiol 2007; 585: 881–895.
- 9. Cheng Q, Yeh PW, Yeh HH. Cajal–Retzius cells switch from expressing gamma-less to gamma-containing GABA receptors during corticogenesis. *Eur J Neurosci* 2006; **24**:2145–2151.
- Pritchett DB, Seeburg PH. Gamma-aminobutyric acidA receptor alpha 5-subunit creates novel type II benzodiazepine receptor pharmacology. *J Neurochem* 1990; 54:1802–1804.
- Hajos N, Nusser Z, Rancz EA, Freund TF, Mody I. Cell type- and synapsespecific variability in synaptic GABAA receptor occupancy. *Eur J Neurosci* 2000; 12:810–818.
- Kirmse K, Kirischuk S. N-ethylmaleimide increases release probability at GABAergic synapses in layer I of the mouse visual cortex. *Eur J Neurosci* 2006; 24:2741–2748.
- Jones MV, Sahara Y, Dzubay JA, Westbrook GL. Defining affinity with the GABAA receptor. J Neurosci 1998; 18:8590–8604.
- Nusser Z, Cull Candy S, Farrant M. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude. *Neuron* 1997; 19:697–709.
- Frerking M, Borges S, Wilson M. Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. *Neuron* 1995; 15:885–895.
- Lin CS, Nicolelis MA, Schneider JS, Chapin JK. A major direct GABAergic pathway from zona incerta to neocortex. *Science* 1990; 248:1553–1556.