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The system of equations (3)–(8) of the main part of the article, which describes the interaction of a diffuse superconducting
strip with microwave radiation and a superconducting reservoir, is a nontrivial system of equations, which consists of equations
in finite differences (Eqs. (3)–(6) of the main part of the article), an integral equation (Eq. (7) of the main part of the article),
and an algebraic equation (Eq. (8) of the main part of the article). However, due to conditions Eq. (1) of the main part of
the article, normalized radiation intensity α can be used as a small parameter, and we can use the linear expansion for the
Green’s functions and the order parameter, for example: Ğ0 = Ğ0

0 + δĞ0 = Ğ0
0 + ∂αĞ0α. Linearization of Eqs. (3)–(8) of the

main part of the article makes it possible to simply find their solution, as we show it further.
The first iteration on a small parameter α of the solution of the kinetic equation, together with the collision integrals

(Eqs. (4)–(6) of the main part of the article), immediately leads to linear by α solution for the change of distributon function
δfL, presented by Eq. (10) of the main part of the article.

Linearization of the equation for the spectral functions (Eq. (3) of the main part of the article) leads to the following
relation:
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Linearization of the normalization condition (Eq. (8) of the main part of the article) allows us to link variations of
functions FR

0 and GR
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Substitution of Eq. (2) into Eq. (1) allows us to represent its solution in the form of the full derivative:
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The partial derivatives in Eq. (3) are given by the following expressions:
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Equation (3) expresses the linear change of the anomalous Green’s functions δFR
0 of a superconducting strip under the

influence of the microwave radiation, taking into account relaxation to superconducting reservoir, as a sum of two terms:
the first, proportional to the variation of the order parameter δ∆0, and the second, proportional to the normalized signal
intensity α.

The relation for the small correction of the order parameter δ∆0 of a superconducting strip under the influence of the
microwave radiation, taking into account relaxation to superconducting reservoir, one can find after linearization of the
self-consistency equation (Eq. (7) of the main part of the article):
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and
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The first term in the numerator of Eq. (6) δF∆0 (Eq. (7)) describes the change of the order parameter ∆0 due to the change
of the spectral function FR

0 . The second term in the numerator of Eq. (6) δfL∆0 (Eq. (8)) describes the change of the order
parameter ∆0 due to the change of the distribution function fL. In equation (6) we omit the term with partial derivative
∂fL
∂∆0 |α=0

because this derivative identically equals to zero. Substituting in place of the one in the denominator of Eq. (6)
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, which follows from the self-consistency equation (Eq. (7) of the main

part of the article), one can get the expression for the variation δ∆0 which does not contain the constant of electron-phonon
interaction λep:
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The integrand in Eq. (10) converges rapidly (O(1/E2)), which allows us to extend the upper integral limit up to infinity.
In the considered limit of low temperatures kBT ≪ h̄ω0, f

0
L = 1 at E > 0 in Eq. (10), and the expression for J1 Eq. (10)

coincides with that used in the main text of the article. In the previously considered case of relaxation to a normal reservoir
[12], the analytical calculation of J1 gave us a value very close to 1. In the current case of relaxation to a superconducting
reservoir, the J1 value should be calculated numerically using Eq. (10).

In the same way the change of the order parameter ∆0 due to the change of the spectral functions δF∆0 must be calculated
now numerically using Eqs. (4), (7) with f0

L = 1, which leads to the following expression: δF∆0 = −αJ0, where J0 is defined
in the main text of the article. The analytical result δF∆0 = −πα of the paper [12] is correct in the case of relaxation to a
reservoir from a normal metal only and can not be used now.

To calculate the change of the order parameter ∆0 due to the change of the distribution function δfL∆0, knowledge of
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right hand side of the Eq. (10) of the main part of the article. Numerical calculations based on the Eq. (8) and the Eq. (10)
of the main part of the article give values of δfL∆0 much less than values of δF∆0 for any reasonable set of parameters of
the problem. The explanation for this fact is the same as in the case of relaxation to a normal metal reservoir [12]. In the
low-temperature limit kBT ≪ h̄ω0 the differences f0

L± − f0
L, which enter in the relation for ∂fL
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0

(Eq. (10) of the main

part of the article) are unequal to zero only in the small energy interval −h̄ω0 < E < h̄ω0. The integrand in the expression
for δF∆0 Eq. (7) has no such restrictions. Therefore, by virtue of the second inequality in Eq. (1) of the main part of the
article δfL∆0 ≪ δF∆0 and δfL∆0 can be neglected compare to the δF∆0 in Eq. (9).

Finally, the expression for δ∆0 becomes the following:

δ∆0 = κα, (11)

with κ− J0

J1

.
Substitution of Eqs. (2)–(5), (11) into the expression for corrections to the density of states of a superconducting strip

δN = Re
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]

allows us to obtain Eq. (9) of the main text of the article.
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