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Abstract
Video-completion methods aim to complete selected regions of a video sequence in a natural looking manner with little to
no additional user interaction. Numerous algorithms were proposed to solve this problem; however, a unified benchmark
to quantify the progress in the field is still lacking. Video-completion results are usually judged by their plausibility and
aren’t expected to adhere to one ground-truth result, which complicates measuring the video-completion performance. In this
paper, we address this problem by proposing a set of full-reference quality metrics that outperform naïve approaches and an
online benchmark for video-completion algorithms. We construct seven test sequences with ground-truth video-completion
results by composing various foreground objects over a set of background videos. Using this dataset, we conduct an extensive
comparative study of video-completion perceptual quality involving six algorithms and over 300 human participants. Finally,
we show that by relaxing the requirement of complete adherence to ground truth and by taking into account temporal
consistency we can increase the correlation of objective quality metrics with perceptual completion quality on the proposed
dataset.

Keywords Video completion · Inpainting · Performance evaluation

1 Introduction

Video completion is a long-standing problem in video pro-
cessing and has a wide variety of real-life applications,
including video restoration, rig removal and occlusion filling
in virtual-view synthesis. Ilan and Shamir [14] identify sub-
types of the general video-completion problem that depends
on the assumed constraints for the input video as well as
additional input data that some methods may require. In this
paper, we assume no particular constraints on the motion of
the camera or objects in a scene, and we assume that no addi-
tional input data is available besides the completion mask
(i.e., we consider the general video-completion problem).
Most proposed methods are far from being able to solve such
a general problem; they also have high computation time and
memory requirements, which become prohibitive in practical
cases of long high-resolution sequences. A notable exception
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appears in [20]; this approach can handle a wide variety of
cases in the same framework and compares favorably with
prior approaches in completion quality and computational
complexity. Themethod proposed byGranados et al. [11] can
also handle many real-world cases while assuming only that
the background is static and that each occluded background
fragment is visible in at least one frame. The authors present
results for high-resolution sequences, but they note that com-
pletion of one sequence could take up to four hours on a
mainframe with 64 processors. In [8], Ebdelli et al. propose
reducing the computation time by restricting the search space
to a limited temporal neighborhood of the current frame.

We believe progress in this field is somewhat impeded by
the absence of a benchmark to quantify advancements. As
Ilan andShamir [14] note, very fewworks go beyondpublish-
ing the output videos. In their survey [14], they only discuss
methods of objective quality assessment for image inpaint-
ing, noting that they foundnoworks that consider quantitative
assessment of video-completion quality. This situation com-
plicates attempts to compare existing approaches and to
identify state-of-the-art methods. One way to overcome this
problem is to establish a standard video-completion bench-
mark that includes a diverse set of challenging real-world
examples and a perceptually motivated metric to evaluate
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the performance of different approaches. Evenwhen ground-
truth results are available, however, objective assessment of
perceptual quality can be very difficult, as video-completion
results are seldom explicitly expected to adhere to ground
truth and are judged only by their plausibility, which is
assessed by a human observer. This problem becomes even
more relevant in cases that require filling of large spatiotem-
poral holes (e.g., removal of objects from the video).

Our main contributions include a challenging data set that
consists of seven video sequences with ground-truth comple-
tion results as well as several full-reference objective quality
metrics, which we selected using a subjective comparison
of video-completion methods by over 300 human subjects.
In addition, we offer an online benchmark that enables both
visual and objective comparison of video-completion meth-
ods using the proposed metrics; this benchmark is available
at http://videocompletion.org.

2 Related work

Most existing digital image and video quality assessment
metrics [22,28] are tailored to distortions that commonly
occur in a typical video acquisition and transmissionpipeline,
including noise, blur, compression artifacts, such as block-
ing and ringing. Some methods consider quality assessment
of computer-generated imagery [5] or try to evaluate image
illumination quality [1]. However, artifacts produced by
video-completion methods can be quite different, so in this
section we specifically focus on existing quality-evaluation
and ground-truth acquisition methods for video completion.

Quantitative quality assessment is commonly used when
the region that needs filling is relatively small in either tem-
poral or spatial dimensions—which is definitely the case
for errors that result from packet loss in video transmis-
sion [6,15,16]. Traditional quality metrics like PSNR and
SSIM [28] often serve to evaluate the error concealment
result relative to the original undamaged video for differ-
ent packet-loss rates. Ebdelli et al. [8] apply their proposed
inpainting method to a variety of scenarios, but they per-
form objective quality assessment only for the case of error
concealment. Similarly, researchers have applied objective
quality assessment to automatic logo removal [10,31] and
text removal [18] from video. Shiratori et al. [23] assess
root-mean-square (RMS) error when completing spatially
large holes that span 1–5 frames. Entire frames were miss-
ing from some tested sequences, essentially making the task
equivalent to frame interpolation. The authors compared the
proposed algorithm with an alternative approach for 10 short
low-resolution sequences ranging from 35 to 100 frames.
Mosleh et al. in [17,19] perform objective comparison for
a single sequence in which a small patch is removed from
the same location in each frame. They used the PSNR and

MSE metrics to compare the completion result against the
original undamaged sequence. You et al. [32] employ a
straightforward sum of absolute differences (SAD) between
the reconstructed and original undamaged versions of the
sequence to quantitatively demonstrate the accuracy of their
proposed approach. Notably, the damaged regions are rel-
atively large both spatially and temporally, but the authors
provide no justification for their proposed quality assessment
method. Benoit and Paquette [3] compute SSIM values for
one of the test sequences but provide only a qualitative com-
parison with other approaches.

To summarize, prior work has not explicitly addressed the
problem of video-completion quality assessment for larger
spatiotemporal holes. Traditional quality metrics like PSNR
and SSIM are a good fit when the damaged region is small
either temporally or spatially, but they become decreasingly
robust in cases where the hole is large in both spatial and
temporal dimensions, as complete adherence to ground truth
can no longer be expected.

3 Benchmark

3.1 Data set

We employ several guiding principles when constructing
test sequences for the benchmark. First, each sequence
should present at least some kind of challenge for exist-
ing methods; therefore, we avoid trivial examples. We also
attempt to cover as many distinct video-completion cases
as possible, including both static and free-moving cameras,
static/dynamic backgrounds, and stochastic video textures.
Finally, all sequences are in Full HD resolution and range
from 150 to 200 frames in length. It’s important to encour-
agemore-practical approaches, asmany existingmethods are
limited to short and low-resolution sequences owing to the
processing-time and memory requirements.

For this benchmark, we consider object removal. There-
fore, to obtain test sequences with ground-truth completion
results, we compose various foreground objects over a set
of background videos. Some of these background videos
include left-view sequences from the stereoscopic-video data
set RMIT3dv [7]. As foreground objects, we use those
employed in the videomatting benchmark [9] as well as
several 3Dmodels. To seamlessly insert a 3Dmodel in a back-
groundvideo,weuseBlendermotion-tracking tools [4]. Each
video-completionmethod takes the composited sequence and
the corresponding object mask as input. The benchmark then
evaluates the completion results using the original back-
ground video, which serves as ground truth. Figure 1 presents
thumbnails from seven proposed sequences.
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Fig. 1 Thumbnails of the proposed benchmark sequences. The objec-
tive is to remove the objects highlighted in red from each video as
seamlessly and plausibly as possible

3.2 Objectivemetrics

Standard image-qualitymetrics such asMSEandSSIMserve
as a sensible baseline. Becauseworkingwith distancemetrics
is more convenient, we define the following:

DSSIM(V , Vref) = 1

|�|
∑

x∈�

1 − SSIM (P(x), Pref (x)) , (1)

MSE(V , Vref) = 1

|�|
∑

x∈�

MSE (P(x), Pref (x)) . (2)

V andVref are the inpainting result andground-truth video,
respectively. P(x) and Pref(x) are spatial 2D patches, cen-
tered at x , taken, respectively, from the result and ground
truth. To define MSE and SSIM between image patches, we
refer to [28]. We use 9 × 9 × 1 patches of luminance val-
ues throughout the paper (taking into account the failure of
chroma channels to produce noticeable improvement in our
experiments). Here,� = {x |P(x)∩�s �= ∅}—that is,� is a
spatially dilated version of the input spatiotemporal hole�s .

In general, however, the traditional metrics (1) and (2)
are poorly suited to assessing video-completion quality,
owing to a number of limitations (see Fig. 2). But several
approaches can overcome these limitations. First, the com-
pletion result need not be well aligned with ground truth to

Fig. 2 Illustration of theMSEmetric’s limitations in the context of full-
reference video-inpainting quality assessment. The lower result clearly
has higher perceptual quality, but it’s worse according to MSE. a Com-
pletion result using [25]. b Completion result using [20]

have high perceptual quality, whereas bothMSE and DSSIM
are highly sensitive to shifts. Probably the simplest way to
address this issue is to use multiscale metrics, i.e., metrics
that integrate results from several scales within a Gaussian
pyramid:

MS − #(V , Vref) =
M−1∑

i=0

w#
i · #(V i , V i

ref),

# = DSSIM,MSE (3)

We use # as a placeholder for the name of the underlying
metric (e.g., DSSIM or MSE in this case) throughout the
paper to make the notation more concise. The superscript i
denotes the level of the Gaussian pyramid—that is, V 0

ref is the
original ground-truth video, and V 1

ref is the video blurred and
subsampled by a factor of two in both spatial dimensions. M
is a constant that determines the total number of levels in the
pyramid;w#

i are the weights of the respective pyramid levels
(or scales). By assigning higher weights to higher levels,
the metric becomes more shift invariant and therefore more
robust to fine-scale misalignments between the completion
result and ground truth. The exact values of these weights are
based on the subjective-evaluation data (see Sect. 4).

Human vision may exhibit more or less sensitivity to tem-
poral incoherence than to temporally stable spatial errors.
The baseline metrics, however, are unable to distinguish
between these types of errors. To overcome this problem,
we propose the following metrics that explicitly capture the
temporal instability:
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#dt(V , Vref) = 1

|�|
∑

x∈�

max
(
# (P(x), P(x + sx ))

− #
(
Pref(x), Pre f (x + sx )

)
, 0

)
(4)

MS − #dt(V , Vref) =
M−1∑

i=0

w#dt
i · #dt(V i , V i

ref),

# = DSSIM,MSE (5)

Here, sx = (vx, vy,−1) is the optical-flow vector from
the current frame to the previous one in the ground-truth
sequence. Metric (5) captures the consistency of the inpaint-
ing results along ground-truth motion vectors. It assumes
that completion with high perceptual quality should exhibit
motion very similar to ground-truth motion, although this
assumptionmay be too strong in some cases.We tried several
optical-flow algorithms, but PatchMatch [2] with a limited
search radius tends to perform best (we use 1/20th of the
frame width as the search radius and use the same patch size
as the metric).

The tolerance of metrics (3) and (5) to shift between
the completion result and ground truth remains fairly low,
however, despite the use of a multiscale scheme. To make
the metrics more shift invariant, we consider a commonly
used coherence measure, which some image- and video-
completion algorithms [12,20,30] explicitly optimize for. It’s
based on finding the most similar patch in the known region
for each patch of the inpainting result, assuming the plausible
completion is the one that is locally similar to known image or
video regions. For video completion, this measure typically
uses 3D spatiotemporal patches to also take motion consis-
tency into account [20,30]. The coherence measure is easily
adaptable to the full-reference setting. For each patch of the
completion result, we find the most similar patch from the
whole ground-truth video and sum all the distances between
them:

C3D
# (V , Vref) = 1

|�′ |
∑

x∈�
′
min
y

# (Q(x), Qref(y)) (6)

C#(V , Vref) = 1

|�|
∑

x∈�

min
y

# (P(x), Pref (y)) (7)

The only difference between these two measures is that
C3D
# employs 3D spatiotemporal patches, denoted as Q(x)

(we use 5× 5× 5 RGB patches as [20] suggests), as opposed
to 2D patches, denoted as P(x). Also, �

′
is the spatiotem-

poral hole dilated in all three dimensions by three pixels. #
denotes ametric that computes the distance between patches.

Newson et al. [20] have proposed an improved distance
metric for 3D spatiotemporal patches that yields better com-
pletion quality, especially in the case of stochastic textures
(waves, fire, etc.). We use it as an additional metric in (6)

alongsideMSE, as it should naturally perform better on qual-
ity assessment too. We define it as follows:

T − MSE (Q(x), Qref(y)) = 1

N

(||Q(x) − Qref(y)||22
+ λ||T (x) − Tref(y)||22

)
(8)

T (x) and Tref(y) are 3D patches of texture features (as
defined in [20]) from the inpainting result and ground truth,
respectively. N is the number of pixels in a patch. This patch-
distance metric extends to different levels of the Gaussian
pyramid in accordance with [20]. We keep the multiscale
scheme, as it allows us to separately capture distortions on
different scales, to which the human visual system typically
has different sensitivity [29]. MS-C3D

MSE, MS-C3D
T−MSE, MS-

CDSSIM andMS-CMSE are defined on the basis of (6) and (7),
similarly to (3).

Although MS-C3D
# can capture motion inconsistencies

owing to the use of 3D patches, MS-C# detect only spa-
tial errors. To overcome this problem, we propose measuring
how the distance to themost similar patch in the ground-truth
video changes from frame to frame. More precisely, we find
for a given patch the most similar patch from the previous
frame within a certain window, compute the distances from
these patches to the most similar ground-truth patches and
then compare the respective distances. Formally,

C#dt (V , Vref) = 1

|�|
∑

x∈�

∣∣∣∣min
y

(
# (P(x), Pref (y))

)

−min
y

(
#

(
P(xprev), Pref(y)

) )∣∣∣∣,

xprev = argminy∈�w×w
prev (x)#(P(x), P(y)), #

= DSSIM,MSE (9)

�w×w
prev (x) is a square window of w × w pixels (we use w

equal to 1/10th of the frame width) spatially centered at x
and located in the previous frame. Multiscale variants MS-
CMSEdt and MS-CDSSIMdt are defined similarly to (5). These
metrics essentially capture the changes in patch appearance
from frame to frame, as opposed to evaluating consistency
with ground-truth optical flow using MS-MSEdt and MS-
DSSIMdt (5).

Exact computation of coherence-based metrics quickly
becomes impractical for larger spatiotemporal holes, so we
resort to approximate solutions based on PatchMatch [2].
For metrics that use 3D patches, we generally follow [20].
In the case of metrics that search for the most similar 2D
patch, we apply PatchMatch frame by frame—that is, we
perform several propagation and random-search iterations
to find the nearest-neighbor field (NNF) between the current
inpainted frame and thewhole ground-truth video before pro-
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ceeding to the next frame. At that point, the previous frame
result serves as the NNF initialization. In our experiments,
PatchMatch converged fairly quickly; we used four spatial-
propagation and random-search iterations for all metrics and
test sequences. Also, we always use a sum of squared differ-
ences (SSD) in the RGB color space when computing NNFs.
Explicit optimization of the SSIM metric tends not to be
worth the greater computation time.

3.3 Assessingmetric performance

Very few works in this field have gone so far as to publish
source code, so few video-completion methods are avail-
able for evaluation and for assessing metric performance.
To increase the amount of data, we included several com-
mercial tools and image-inpainting algorithms. In particular,
we evaluated six methods:

– Video Inpainting of Complex Scenes [20]
– Nuke F_RigRemoval tool [26]
– YUVsoft Background Reconstruction tool (BGR) [33]
– PFClean Remove Rig tool [21]
– A simple image-inpainting method by Telea [25]
– An image-inpainting method by Huang et al. [13]

To extend the data set even further we added synthetic
results obtained by direct joint optimization of MS-CMSE

andMS-CMSEdt. Themotivation for this approach is twofold.

First, as opposed to metrics based on 3D patches (6), none of
the tested methods explicitly optimizes the 2D-patch-based
measures on which MS-CMSE and MS-CMSEdt are based.
Second, we wanted to verify that lower MS-CMSE and MS-
CMSEdt values correspond to higher perceptual quality. This
relationship isn’t obvious, as these metrics do not explicitly
take into account any motion similarity. For optimization,
we employed a multiscale reconstruction framework that is
very similar to the one in [20], with one important distinc-
tion: it employs ground truth for reconstruction. Figure 3
illustrates the procedure. To achieve joint metric optimiza-
tion, we slightly modify the reconstruction step to employ
both the interframe nearest-neighbor field NNFt→(t−1) and
the nearest-neighbor field NNFt→GT that connects each 2D
patch in the current frame of the completion result to themost
similar patch from the whole ground-truth video:

V [x] = (1 − τ)
∑

y∈P(x) ws(y)Vref
[
x + NNFt→GT[y]] + τ

∑
y∈P(x) wt (y)V

[
x + NNFt→(t−1)[y]

]

(1 − τ)
∑

y∈P(x) ws(y) + τ
∑

y∈P(x) wt (y)
(10)

Here x denotes the currently reconstructed pixel, and τ is
the weight of the temporal component, which employs the
previously reconstructed frame to reconstruct the current one
(we use τ = 0.4). The functionsws(y) andwt (y) give higher
weights to NNF offsets with lower patch distance. We use an
exponential weighting function, as in [20]. This approach
enables us to find a local optimum that can depend on the
initial guess. We used results from six methods as the initial
guesses, achieving in all cases a substantial decrease in both
metric values (see Fig. 4). Inclusion of these synthetic results
doubles the size of our data set.

Fig. 3 Block diagram of a simple greedy algorithm that we use to
jointly optimize theMS-CMSE andMS-CMSEdt metrics, given the initial
completion guess. We iteratively compute interframe nearest-neighbor
fields (NNFs) as well as NNFs from the current frame to the whole
ground-truth video and then use them for per-frame reconstruction. We

compute NNFs using the PatchMatch algorithm [2]. After convergence,
we upscale the NNFs and perform the same process for the next pyra-
mid level. Section 3.3 provides more details about the reconstruction
step
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Fig. 4 MS-CMSE and MS-CMSEdt values averaged over all sequences
before and after the optimization described in Sect. 3.3. We determined
the scale weights as Sect. 4 describes

To evaluate the metrics’ performance, we have conducted
a study with over 300 paid participants using Subjec-
tify.us web service [24]. Participants were presented with
a sequence of video pairs shown side-by-side in a web appli-
cation; for each pair we asked to select a video with better
quality or mark them as equal. For this study, we divided the
original dataset of seven sequences into a total of 19 shorter
cropped fragments of 70 to 100 frames and 960 × 540 res-
olution to highlight differences in quality for various parts
of the inpainted region. Each of these fragments was used
to compare the results of 6 original methods, as well as 6
respective optimized variants and ground truth, resulting in
2964 video pairs that required comparison. In total, we have
collected 8,533 pairwise comparisons from 341 participants,
distributed uniformly among all methods and test sequences.
In particular, each participant viewed 28 video pairs, three
of which were hidden verification questions that asked to
compare ground-truth result with a very low-quality video
completion; only the results of those who correctly answered
all three verification questions were used in the study. We
offered $0.05 to each participant who had successfully com-
pleted the test. Collected pairwise method comparisons were
transformed into subjective ranks using Thurstone’s Case V
Model [27]—both for each test sequence individually and
for all sequences at once (Fig. 5). We assess performance of
different quality metrics in terms of correlation with these
perceptual ranks.

4 Results

To obtain optimal scale weights for multiscale metrics (we
use a Gaussian pyramid with five levels), we optimize the
correlation with subjective ranks, constrain the sum of the
weights to one and impose L2 regularization:

w = argmaxw=[w0,...,w4]∑
wi=1

#sequences∑

s=0

corr
( − log(wMs), rs

) − α||w||22
(11)

0.0 0.2 0.4 0.6 0.8 1.0

Subjective rank

Image Completion using Planar Structure Guidance
Telea Inpainting
Image Completion using Planar Structure Guidance (optimized)
YUVSoft BGR
PFClean Remove Rig
Video Inpainting of Complex Scenes
Telea Inpainting (optimized)
Nuke RigRemoval
Video Inpainting of Complex Scenes (optimized)
Nuke RigRemoval (optimized)
PFClean Remove Rig (optimized)
YUVSoft BGR (optimized)
Ground Truth

Fig. 5 Overall ranking of different methods computed using pair-
wise subjective comparisons. We obtained the optimized versions by
applying the procedure described in Sect. 3.3, using the results of the
respective methods as initial guesses
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Fig. 6 Illustration of how regularization in (11) affects scale-weight
distribution and correlation with subjective ranks. We use α = 0.1
in all metrics. a Correlation of MS-DSSIM with subjective ranks. b
Distribution of weights between scales in MS-DSSIM metric
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Fig. 7 Correlation of resulting metrics and subjective ranks computed for two different data sets: a full one, including synthetic results obtained by
metric optimization using each method’s result as the initial guess, and a partial one that includes only the results of six original methods

HereMs = {
ms

i j

}
, where ms

i j is a metric value for the i th
scale, j th algorithm and sth sequence; rs contains the corre-
sponding subjective ranks. Figure 6 illustrates the effect of
regularization, whichmakes the metrics more robust by forc-
ing them to cover more scales at the cost of slightly smaller
correlation values. The weights can be selected more accu-
rately by synthesizing examples exhibiting a certain type of
distortion on different scales, as MSSSIM does [29]. This
approach, however, is too labor intensive for our purposes, so
we obtain weights for all metrics by simply optimizing (11)
withα = 0.1. Figure 7 shows the resulting correlation values.
First, note that practically all metrics exhibit worse perfor-
mance when measuring correlation for the data set of six
original methods—especially metrics that directly estimate
adherence to ground truth (MSE, DSSIM and their multi-
scale variants). This behavior occurs because the proposed
optimization procedure brings the results closer to ground
truth (which is not that surprising, as it uses the ground-
truth results directly) and improves the subjective rankings
at the same time (see Fig. 5). As a result, the performance of
such straightforward metrics receives a boost on the full data
set. Regardless of the data set, we observe that SSIM-based
metrics consistently show higher correlation with subjective
ranks than do theirMSE-based counterparts. Also, temporal-
based metrics typically perform better than metrics that
simply measure spatial error, which is to be expected. On
the other hand, MS-CDSSIMdt and MS-CMSEdt perform sur-
prisingly well, given that they only capture changes in patch
appearance over time and don’t explicitly assess motion
similarity. Metrics based on 3D patches also show high
correlation with perceptual data, but they are more compu-
tation and memory intensive than approaches based on 2D
patches. Therefore, we chose the following metrics for the
benchmark:

– MS-CDSSIMdt, [wi ] = [0.00, 0.08, 0.25, 0.30, 0.37]
– MS-CDSSIM, [wi ] = [0.04, 0.11, 0.21, 0.29, 0.35]
– MS-DSSIMdt, [wi ] = [0.00, 0.00, 0.30, 0.32, 0.38]
– MS-DSSIM, [wi ] = [0.05, 0.12, 0.23, 0.30, 0.30]

MS-CDSSIMdt and MS-CDSSIM are significantly more
computationally complex than conventional metrics (several
seconds per 1920 × 1080 frame in our experiments), but
they provide better correlation with subjective ranks. Met-
ric values for all tested methods and sequences, as well
as an extensive set of comparative charts, are available at
http://videocompletion.org. We also publish all of our test
sequences and the results of the tested methods for visual
comparison.

5 Conclusion

We have presented an online video-completion benchmark
available at http://videocompletion.org. We introduced four
objective quality metrics that outperform naïve approaches
according to subjective video-completion-method evalua-
tions involving more than 300 participants. Our proposed
benchmark metrics have varying levels of correlation with
perceptual data, but each has its own intuitive interpretation.
We believe that presented benchmark can help rank exist-
ing video-completion methods and assist in developing new
approaches.
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