Введение

Создание в середине XX века ядерного оружия и последующее развитие ядерной энергетики способствовало появлению в окружающей среде, новых несуществующих в природе изотопов радиоактивных элементов. Их распространение было обусловлено проникновением ядерных взрывов в открытой атмосфере в период с 1954 по 1963 годы и авариями на ряде атомных станций, а также предприятиях военно-промышленного комплекса. В частности, обширные территории Восточной, Центральной и Северной Европы были интенсивно загрязнены после аварии на Чернобыльской АЭС в апреле 1986 года. Одним из наиболее долгоживущих изотопов искусственного происхождения из числа наиболее широко распространенных является изотоп цезия-137 (137Cs), имеющий период полураспада 30,2 года. Его перераспределение в пределах равнин сушей тесным образом связано с развитием эрозионно-аккумулятивных процессов, поскольку он сразу после выпадения из атмосферы прочь сорбируется почвенными частицами и в дальнейшем переносится совместно с ними. Некоторые результаты исследований особенностей перераспределения радиоизотопов искусственного происхождения, проведенных в различных частях европейской территории России, обсуждаются в данной статье.

Особенности начального выпадения радиоизотопов

При взрывах в открытой атмосфере основная масса радиоизотопов попадала в стратосферу и впоследствии переносилась на значительные расстояния в соответствии с циркуляцией воздушных масс. Выбросы искусственных радиоизотопов из наземных источников (атомные станции, ядерные предприятия) поступают в атмосферу, где их распределение зависит от конкретной метеорологической обстановки, сложившейся на момент аварии. Относительно равномерное выпадение радиоизотопов бомбового происхождения продолжалось десятилетия после прекращения ядерных
Изъяты в открытом атмосфере. Радиоизотопы − продукты аварийных выбросов, выпущенных в первую очередь после аварии. Известно (Bashir, 1996), что основная часть радиоизотопов выпадает с осадками. Поэтому их распределение в тканях связано со структурой ложных аномалий, позволяющих определить место и время выпадения осадков на основе схематической модели. Считается (Walling & Quine, 1993), что в случае глобальных выпадений благодаря большой продолжительности поступления искусственных радиоизотопов и их равномерному перемешиванию в газовой фазе, неравномерность выпадения сглаживается во времени. Однако это не совсем справедливо для территории, где основная доля осадков выпадает в виде интенсивных ливней, для которых характерна высокая неравномерность выпадения осадков по площади. Так в соево-кукурузном поясите США в 1963 году, когда был отмечен максимум глобальных выпадений искусственных радиоизотопов в северном полушарии, наблюдалось значительное количество интенсивных ливней (Nicks, 1983). Это привело не только к высокой неравномерности загрязнения территории, вызванной не только различиями в количестве выпавших осадков, но и выносом части радионуклидов с поверхностью почвы и до момента их сорбирования на почвенных частях. В результате использования изотопа 137Cs в качестве маркера для оценки темпов смысла на данной территории приводит к их существенному завышению (Bajracharya et al., 1998). В тоже время влияние рельефа под слой осадков отчетливо проявилось на характере радиоактивного загрязнения после аварии на Чернобыльской АЭС в зоне загрязнения центра Восточно-Европейской равнины после аварии на Чернобыльской АЭС: более интенсивно загрязнены западные отроги Среднерусской, Приволжской и Смоленско-Московской зон загрязнения (Фридман и др., 1997; Atlas, 1998).

Специфика вертикальной и горизонтальной миграции изотопа 137Cs

Большинство искусственных радиоизотопов, выпадавших из атмосферы после проведения ядерных испытаний или вследствие аварий относятся к короткоживущим (период полураспада менее 3 лет), или слабо летучим (стронций-90 и трансурановые радионуклиды). К настоящему времени основным загрязнителем на обширных площадях сухой является изотоп цезия-137. Вертикальная миграция изотопа 137Cs на неизмененных участках наиболее значительна в ту же после его выпадения. Очень быстро он сорбируется почвой и трансформация его вертикального профиля при отсутствии внесенных вмешательств минимальна. Максимум концентрации находится в зависимости от механического состава и влажности почвы на глубине 2-5 см, а более 90% запасов 137Cs − в 10-ти сантиметровом слое (рис. 1А).
Рис. 1. Вертикальные эпюры концентрации 137Cs:
A — плоское нераспаханное междуречье (Центрально-Черноземный заповедник, Курская область); B — днище балки с нераспаханным водосбором (там же, балка Бабкин Лог); C — днище балки с распаханным водосбором (балка Крамской Лог, Курская область).
Fig. 1. Vertical distribution of 137Cs concentration:
A — flat non-cultivated interfluve (Central-Chernozem Reserve, the Kursk Region); B — bottom of a small dry valley with non-cultivated catchment (Babkin Log valley, the Kursk Region); C — bottom of a small dry valley with cultivated catchment (Kramskoy Log valley, the Kursk Region)

Распашка земель способствует относительно равномерному перемешиванию запасов 137Cs в пределах пахотного слоя и одновременно активизирует его горизонтальной миграции ввиду развития процессов водной и ветровой эрозии, механического смещения почвы орудиями вспашки и потерь при уборке корнеплодов. В результате постоянно происходит изменение начального поля загрязнения: сокращение суммарных запасов в зонах сноса и накопления — в зонах аккумуляции. Часть радионуклидов, сорбированных на почвенных частицах, достигает тальвегов эрозионной сети и постоянных водотоков. В днищах балок, где постоянно происходит аккумуляция смеси с пашни наносов, эпюра 137Cs отражает изменение интенсивности его выпадения во времени. Практически всегда на некоторой глубине (5–15 см) имеется пик накопления, связанный с его выпадением после Чернобыльской аварии (1986 г.), несколько реже —
второй, более глубокий пик, относящийся к периоду ядерных испытаний в начале 1960-х гг. (~ис. 1С).
Перераспределение 137Cs может способствовать возникновению очагов с повышенными уровнями радиоактивного загрязнения на значительном удалении от зоны первоначального загрязнения. Например, благоприятные условия для формирования таких очагов возникают в водохранилищах. Тем самым, количественная оценка перераспределения радионуклидов в пределах речных бассейнов и их отдельных элементов приобретает важное экологическое значение.

ТРАНСФОРМАЦИЯ ПОЛЯ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ В ЭРОЗИОННО-АККУМУЛЯТИВНЫХ СИСТЕМАХ ВОСТОЧНО-ЕВРОПЕЙСКОЙ РАВНИНЫ

Исследования горизонтальной миграции радионуклидов проводились в различных ландшафтных зонах южной половины Восточно-Европейской равнины.

Исследования, проведённые в лесной зоне в области распространения вторично-моренного рельефа на склоновом водосборе в среднем течении р. Протвы, заключались в сопоставлении результатов почвенно-эрозионной съёмки, позволившей выявить эрозионные и аккумулятивные элементы рельефа, и среднего содержания изотопа цезия в пределах данных элементов. В результате исследований выявлена тесная взаимосвязь степени трансформации почвенного покрова в пределах различных элементов рельефа и содержания изотопа 137Cs (табл. 1). Учитывая, что пло-

Таблица 1. Изменение поля начального радиоактивного загрязнения (глобального) в пределах склонового водосбора Егоров овраг (вторично-моренный рельеф)

<table>
<thead>
<tr>
<th>Элемент рельефа</th>
<th>Среднее содержание изотопа 137Cs, кБк/м2</th>
<th>Коэффициент вариации</th>
<th>Стандартное отклонение</th>
<th>Разница с эталоном, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ненарушенный участок, плоский водораздел</td>
<td>38.4</td>
<td>0.25</td>
<td>9.6</td>
<td>0</td>
</tr>
<tr>
<td>Undisturbed location, flat interfluve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Слоны эродированные</td>
<td>16.8</td>
<td>0.13</td>
<td>2.3</td>
<td>-56</td>
</tr>
<tr>
<td>Eroded slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Слоны незародированные</td>
<td>42.0</td>
<td>0.06</td>
<td>2.7</td>
<td>+9</td>
</tr>
<tr>
<td>Non-eroded slopes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Днища ложбин эродированные</td>
<td>26.4</td>
<td>0.19</td>
<td>4.9</td>
<td>-31</td>
</tr>
<tr>
<td>Eroded hollow bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Днища ложбин с аккумуляцией</td>
<td>57.2</td>
<td>0.31</td>
<td>18.1</td>
<td>+49</td>
</tr>
</tbody>
</table>

Table 1. Transformation of initial 137Cs distribution in the Egorov Ovrag catchment (moraine relief, the Moscow Region)
щадь эродированных склонов и днища ложбин примерно на порядок превышает площадь днища ложбин с аккумуляцией, можно говорить о доминировании процесса выноса радионуклидов в речную сеть в пределах данного водосбора, так как поверхностный сток со склона поступает непосредственно в вершину оврага, базисом эрозии которого является русло реки Протвы. Подобная ситуация не характерна для зоны вторично-ледникового рельефа Восточно-Европейской равнины. Основная часть пахотных склонов и склоновых водосборов данной зоны оправляет на нераспаиваемые подножия склонов междуречий или нераспаиваемые днища ложбин, ледникового происхождения (Голосов, 1988), что содействует преимущественному перераспределению радионуклидов внутри междуречий.

Иная картина трансформации поля начального радиоактивного загрязнения выявилась в процессе исследований на севере лесостепной зоны в бассейне р. Локны, расположенном в зоне сильно расчленённого эрозионно-денудационного рельефа на главном водоразделе бассейнов Оки и Верхнего Дона. Здесь расположено Плавское целиковое пятно, возникшее ввиду выпадения радиоизотопов непосредственно после аварии на Чернобыльской АЭС. Уровни радиоактивного загрязнения данной территории превышают 500 кБк/м², что многократно превышает средние уровни глобального загрязнения. Исследования на водосборе балки Лапки, правобережного притока р. Локны, позволили количественно оценить соотношение сноса и аккумуляции изотопа 137Cs в пределах различных элементов эрозионно-аккумулятивного рельефа и его суммарный вынос в русло р. Локны за 11 лет после выпадения из атмосферы (Panin et al., 2001; Golosov & Ivanova, 2002). Выяснилось, что зона сокращения запасов изотопа на эрозионных элементах рельефа составила менее 3%, причём около 20% 137Cs переносилось в пределах пашни у подножия склона. Однако основной зоной прироста запасов 137Cs явилось днище балки, в котором задержалось более 55% суммарного со склонов изотопа 137Cs. В русло реки Локны было вынесено около 20% 137Cs. Остальная часть аккумулировалась на задернованных бортах балки. В более крупных балочных долинах бассейна реки Локны задерживается в общей сложности до 90–95% изотопа, смывающего с пашни, причём на долю аккумуляции в днище основной долины и её более мелких притоков приходится более 75–90%. Таким образом, именно днища сухих долин являются основными коллекторами радионуклидов в эрозионно-аккумулятивных системах области эрозионно-денудационного рельефа. Только за 11 лет после аварии на Чернобыльской АЭС суммарные запасы в днищах сухих долин Плавского целикового пятна возросли в среднем на 50% от начального уровня радиоактивного загрязнения с учётом естественного распада радионуклидов (рис. 2А).

В квазиестественных ландшафтах темпы перераспределения радиоактивного загрязнения на порядки величины меньше. В 2001 г. были проведены специальные исследования на территории Центрально-Черноземного заповедника (Курская область) на степных участках, где распашка не производилась по крайней мере в течение последних 250 лет. Различия между активностью 137Cs на разных геоморфологических элементах оказались статистически незначимыми (рис. 2Б). Вертикальное распределение радиоизотопов в днищах балок обнаруживает максимум в верхних 1–2 см, что характерно для эталонных междуречных позиций (рис. 1В). Однако в балках вертикальный профиль 137Cs значительно растянут по глубине вследствие интенсивного вертикального промывания почвы в днищах балок, концентрирующих водный сток.

Приведенные данные показывают, что в районах сельскохозяйственного освоения происходит интенсивное перераспределение радиоактивных загрязнителей, в результате которого на общем фоне умеренного или слабого загрязнения появляются пятна повышенной радиоактивности, приуроченные к отрицательным элементам...
там рельефа. Это необходимо иметь в виду при территориальном планировании хозяйственної активности.

Благодарности. Исследования проводятся при поддержке Российского фонда фундаментальных исследований (проекты 00-05-64514, 01-05-64503).

Рис. 2. Средние значения и стандартное отклонение удельной активности 137Cs на разных элементах рельефа:
A – на распаханных территориях (водосбор балки Лапки, Тульская область); B – в квазиестественных условиях (территория Центрально-Черноземного заповедника, Курская область):
1 – плоские междуречья, 2 – пологие междуречные склоны, 3 – дно балок.
Fig. 2. 137Cs activity (mean values and standard deviation) (A) on arable lands (Lapki catchment, the Tula Region) and (B) under natural vegetation cover (Central-Chernozem Reserve, the Kursk Region) with respect to position in relief: 1 – flat interfluves, 2 – gentle watershed slopes, 3 – bottom of small dry valleys

ЛИТЕРАТУРА

RADIONUCLIDE REDISTRIBUTION IN EROSION AND SEDIMENTATION PROCESSES

Summary

Article discusses initial fallout pattern and further transport of 137Cs – the most important radioactive contaminant. Data on three key sites from European Russia are shown. In moraine relief of the Moscow Region 137Cs redistribution is localized mostly within watersheds. In mature erosion relief of forested steppes a great part of eroded sediments with associated radionuclides reaches the erosion net. Only 11 years after the Chernobyl accident 137Cs activity in the bottom of small dry valleys had become 40-50% higher than on watersheds. Under natural vegetation radionuclide redistribution is negligible. The data illustrates that in agricultural regions erosion and sedimentation processes lead to dangerous concentrations of radionuclide contaminants in the bottom of erosion net.