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Deuteron breakup pd → { pp}sn with forward emission of a fast 1 S0 diproton
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The deuteron breakup reaction pd → {pp}sn, where {pp}s is a fast proton pair emitted in forward direction
with small excitation energy Epp < 3 MeV, has been studied at proton beam energies of 0.5–2.0 GeV using the
ANKE spectrometer at COSY-Jülich. The differential c.m. cross sections are measured in complete kinematics
and provide angular distributions of the neutron emission angle in the range θn = 168◦–180◦, the dependence
on beam energy at θn = 180◦, angular distributions of the direction of the proton in the pp rest frame, and
distributions of the excitation energy Epp of the proton pair. The obtained data are analyzed on the basis of
theoretical models previously developed for the pd → dp process in a similar kinematics and properly modified
for the diproton channel in pd → {pp}sn. It is shown that the measured observables are highly sensitive to the
short-range part of the nucleon-nucleon interaction.

DOI: 10.1103/PhysRevC.81.044001 PACS number(s): 13.75.Cs, 25.10.+s, 25.40.Qa

I. INTRODUCTION

The structure of the lightest nuclei at short distances (rNN <

0.5 fm) or high relative momenta (q > 1/rNN ∼ 0.4 GeV/c)
and the closely related nucleon-nucleon (NN ) interaction
constitute fundamental problems in nuclear physics. Elec-
tromagnetic probes are generally considered the cleanest
approach for these investigations and most of our knowledge
about the short-range structure of the deuteron was obtained
from elastic electron-deuteron scattering [1,2]. With increasing
transferred momentum Q, however, the theoretical interpreta-
tion of electromagnetic processes becomes less clear due to
meson-exchange currents, whose strength, related to the strong
interaction, is not well established. At photon energies above
1 GeV at large angles in the c.m., the meson-exchange picture
fails to explain, e.g., deuteron photodisintegration data on
γ d → pn [1,3], because internal hadronic degrees of freedom
become essential and new physics mechanisms come into play.

Independent information about the short-range structure of
nuclei can be obtained from hadronic processes at large Q.
The existing data in deep-inelastic reactions h + A → p + X

in the so-called cumulative region with a final proton emitted
into the backward hemisphere are often treated in terms of
interactions with density fluctuations of cold nuclear matter

*Now at Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen,
Germany.

[4,5] or short-range NN correlations in nuclei [6], whose
local properties are considered to be largely independent of
the type of nucleus A and the used probe h. Because of the
complicated structure of the involved nuclei and initial- and
final-state interactions in the nuclear medium, the analysis
of such processes presents quite a challenge to theory [7].
It is therefore important to study elementary processes in
few-nucleon systems that probe the short-range NN inter-
action under conditions that make the theoretical interpreta-
tion more transparent by suppressing less well-constrained
contributions.

Investigations of the simplest processes in the GeV region
with high transferred momentum, that is, proton-deuteron
backward elastic scattering pd → dp [8,9] and inclusive
dp → p(0◦)X [10–12] deuteron disintegration turned out to
be inconclusive with respect to the short-range interaction.
Below the pion threshold, differential cross sections, tensor
analyzing powers T20, and spin-transfer coefficients κ in
the pd → dp and dp → p(0◦)X reactions are reasonably
well described by quasifree approximations [13]. These are
based on one-nucleon exchange (ONE) where the external
proton interacts with one nucleon in the deuteron, while the
second nucleon acts as a spectator, whose momentum �q in
the deuteron rest frame is opposite to the momentum of the
incident proton. In the ONE mechanism the unpolarized cross
section is proportional to u2(q) + w2(q), where u(q) and w(q)
denote the S- and D-wave components of the deuteron wave
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function at internal momentum q. T20 and κ are completely
determined by the ratio w/u [13]. Within the ONE mechanism
the aforementioned observables directly measure the nucleon
momentum distribution in the deuteron. At energies above
the �-isobar threshold, where internal momenta inside the
deuteron above 0.3 GeV/c are probed, the quasifree ONE
approximation fails to explain the existing data. Except for
the � region (0.8–1.2 GeV) in dp collisions, the ONE model
calculations with the Paris [14] and Reid soft core (RSC) [15]
wave function of the deuteron are in rough agreement with the
unpolarized cross sections of the dp → p(0◦)X and pd → dp

reactions up to very large nucleon momenta q ∼ 1 GeV/c

in the deuteron. However, experimental values of the tensor
analyzing power T20 [9,16] strongly contradict the ONE model
calculations already at q > 0.3 GeV/c for any realistic NN

potential. This puzzling circumstance has sometimes been
treated as an indication for non-nucleonic degrees of freedom
in the deuteron, but this interpretation is not compatible
with the behavior of the tensor polarization T20 in elastic ed

scattering [1,2].
The previously described disagreement in the theoretical

interpretation of pd reactions can be attributed to contributions
from three-body forces related to the excitation of nucleon
isobars (�, N∗) in the intermediate state, which have been
neglected in the ONE analyses [9–12]. The � mechanism
dominates the large-angle unpolarized pd → dp cross section
at 0.4–0.6 GeV [17–19]. The spin structure of the three-body
forces related to the � isobar is far from being established
[20], and this leads to ambiguities in the explanation of T20

when the � isobar is included in the transition amplitude [17–
19]. Above the �(1232) region the contribution of heavier
baryon resonances is expected to increase and the theoretical
interpretation of this process becomes much more uncertain.

In view of these difficulties it would be highly desirable
to study a process kinematically similar to pd → dp scat-
tering, where contributions from the excitation of � and N∗
resonances are suppressed. For that purpose, it was suggested
[21–23] to study the reaction

p + d → {pp}s + n, (1)

where {pp}s is a proton pair at small excitation energy
(Epp < 3 MeV) emitted in a forward direction. The kinematics
of this reaction is very similar to that of pd backward elastic
scattering. Hence, the same mechanisms can be applied in
the analysis of the deuteron breakup with a diproton in the
final state [Eq. (1)]. The restriction to Epp < 3 MeV at high
transferred momentum Q assures that the diproton is in a
1S0 state, in contrast to the 3S1-3D1 state of the deuteron.
This difference changes the relative contributions of the
involved mechanisms to the reaction amplitude. Due to isospin
invariance, the contribution of the excitation of a � resonance
to the cross section is reduced by a factor of 9 in the pd →
{pp}sn reaction compared to that of pd backward elastic
scattering [24]. The same suppression factor also applies for
other isovector excitations, such as N∗ resonances, whereas the
ONE mechanism does not suffer a similar suppression [24].
Furthermore, compared to dp → p(0◦)X and pd backward
elastic scattering, the ONE mechanism of the pd → {pp}sn

reaction is strongly modified due to the NN repulsive core.
This leads to a node of the NN (1S0) scattering amplitude at
off-shell momenta q ′ ∼ 0.4 GeV/c [21,22]. In the pd → dp

and dp → p(0◦)X reactions, the corresponding node of the
S-wave deuteron wave function is hidden by the large D-wave
contribution. The contribution of the ONE mechanism, highly
sensitive to the NN potential at short distances, should show a
very different energy dependence in the deuteron breakup with
a diproton in the final state compared to pd backward elastic
scattering. Therefore, due to substantial modifications of the
dominant terms in the transition amplitude, the pd → {pp}sn
reaction might allow one to obtain a better understanding
of the relative importance of contributions from ONE and
(�, N∗) excitations.

The first measurements of the unpolarized differential cross
section of the deuteron breakup with a diproton in the final
state was performed at beam energies in the range of 0.6–
1.9 GeV [25]. The theoretical analysis of the data is described
in Ref. [26] using an approach, originally suggested for
pd backward elastic scattering [17], properly modified for
the diproton channel [21] and taking into account initial-
and final-state interactions [23]. When employing a modern
high-accuracy NN potential, for example, CD-Bonn [27], a
reasonable agreement with the data of Ref. [25] is obtained
[26], while harder NN potentials like the Paris or the RSC
potential strongly contradict the data. The interpretation is
that these potentials generate high-momentum components
of the NN -wave function that are too intense and this leads
to large ONE contributions, in particular at energies above
1 GeV. This is the most important finding of the analysis of the
pd → {pp}sn data [26].

The existing data [25] on unpolarized cross sections are
not yet sufficient in regions critical for the aforementioned
theoretical observation. Above 1 GeV only two data points of
the differential cross section in pd → {pp}sn were obtained
(at 1.35 and 1.90 GeV [25]), but this region is most crucial
for the discrimination between soft and hard NN potentials.
Furthermore, the experimental uncertainties at those energies
were rather large due to small statistics. For the same reason,
it was impossible to obtain the angular dependence of the
differential cross section as function of the neutron c.m. angle
θn, which is also sensitive to the reaction mechanism.

The goal of the present work is to remedy these shortcom-
ings. In the present article we report on new high-statistics data
of the unpolarized differential cross section of the deuteron
breakup reaction pd → {pp}sn in the slightly extended en-
ergy range of 0.5–2.0 GeV compared to those discussed in
Ref. [25]. The earlier data at proton beam energies of 0.6, 0.7,
0.8, 0.95, 1.35, and 1.90 GeV [25] are supplemented here by
measurements at energies of 0.5, 0.8, 1.1, 1.4, and 1.97 GeV.
Higher statistics allowed us to measure the dependence of the
cross section on the neutron c.m. scattering angle θn and to
obtain the dependence on Epp, which is important to verify
that the proton pair is in a 1S0 state.

The article is organized as follows. The measurements and
the data processing are described in Sec. II. The results are
presented in Sec. III. A comparison to theory is given in
Sec. IV, while Sec. V summarizes the article. The contribution
of P waves to ONE is discussed in the Appendix.
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II. MEASUREMENTS

A. Experimental setup

The experiment was carried out at the magnet spectrometer
ANKE [28] at the internal beam of the cooler synchrotron
(COSY) [29] in Jülich (Fig. 1).The magnet system of ANKE
comprises three dipole magnets: the spectrometer magnet D2
for momentum analysis of the reaction products, and the
deflection magnets D1 and D3 that guide the circulating beam
onto the target and back to the nominal orbit.

At the beam energies Tp ranging from 0.5 to 2.0 GeV
about 3 × 1010 protons could be stored in the ring. The
beam had a momentum spread of �p/p ∼ 10−3 and the
root mean squared (rms) beam size amounted to 0.8 (1.3)
mm vertically and 1.7 (2.5) mm horizontally for Tp = 2.0
(0.5) GeV. The cluster-jet target [30] produced a vertically
directed deuterium jet with an average target thickness of
2 × 1014 atoms/cm2 and a width of about 10 mm at the
interaction point. For calibration measurements, a hydrogen
jet was used as well. Positively charged secondaries produced
in the target leave the D2 vacuum chamber through a 0.5-mm-
thick aluminum exit window and enter the FD comprising a set
of multiwire proportional chambers (MWPC) and a hodoscope
consisting of two planes of counters with vertically oriented
scintillators. Each MWPC includes vertically and horizontally
oriented wire and inclined strip coordinate planes [31].
The tracking system provides a sufficiently high momentum
resolution �p/p for protons from the deuteron breakup
reaction [Eq. (1)]. The typical detector resolutions are listed in
Table I.

The FD scintillation hodoscope provided triggering of the
data acquisition system, timing for two-particle events, and
energy loss measurements. The energy losses were measured
with an accuracy of 11–17% (FWHM); the resolution σ�t

of the time difference between signals in different counters
was 0.1–0.3 ns. The hodoscope allowed us also to estimate
the vertical hit coordinate with a precision of 1.5–2.2 cm

TABLE I. Typical FD resolutions for protons from the deuteron
breakup reaction [Eq. (1)] for the range of beam energies Tp covered
in the experiment: average momentum of the detected protons 〈p〉,
momentum resolution σ〈p〉

〈p〉 , time resolution σ�t for the detection of
proton pairs, and precision σY of the reconstructed vertical coordinate
at the target position.

Tp ( GeV)

0.5 0.8 1.1 1.4 1.97

〈p〉 ( GeV/c) 0.69 0.9 1.1 1.3 1.61
σ〈p〉
〈p〉 (%) 1.6 1.2 1.1 1.0 0.9
σ�t

(ns) 0.29 0.16 0.13 0.12 0.11
σY (cm) 1.2 0.93 0.77 0.71 0.62

(rms) by comparison of the time difference of signals from
photomultipliers on opposite ends of the counters.

Two types of triggers were applied in parallel. The first
trigger was produced by any charged particle crossing two
planes of the hodoscope (single-particle or FD trigger). The
second trigger (double-particle or DP trigger) employed a
dedicated electronic unit which suppressed a major part of
single-particle events, retaining only events with two charged
particles in the FD [32]. A DP trigger was generated either
when in both scintillator walls two counters were hit or when
the energy loss in a single counter amounted to twice the energy
loss of a single proton. In 99.8% of the FD-trigger events,
a single particle was recorded and only the remainder were
double-particle events. The use of the DP trigger increased the
fraction of double-particle events in the recorded data by about
a factor of 10.

The angular acceptance of the FD is limited to forward
angles close to zero degree. The vertical acceptance covers
angles θyz = ±3.5◦, and the horizontal acceptance, depending
on the particle momentum, is within θxz = ±12◦ (see Fig. 2),
where θxz and θyz are the projections of the particle laboratory

D1
D2

D3COSY
internal
beam

MWPC

Scintillation
counter hodoscope

1st plane

2nd plane

1 m

Exit window
P
P

Deuterium
cluster target

ZX

Y

FIG. 1. Top view of the ANKE setup at COSY, showing the components used in the present experiment. The positions of the dipole magnets
D1, D2, and D3; the cluster target spot; and the forward detector system (FD) are shown. The xyz coordinate system is indicated.
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FIG. 2. Single-particle acceptance of the ANKE forward detector
at Tp = 0.8 GeV, showing the polar angle projection θxz as a function
of particle momentum. The curves show the kinematical loci for
different processes (the detected particles are labeled in boldface).
For the pd → {pp}sn reaction, the dashed box corresponds to Epp <

3 MeV and the solid curve is for Epp = 0.

emission angle onto the xz and yz planes, respectively. The
coordinate frame is indicated in Fig. 1, the x axis is oriented
horizontally outward of the COSY ring, y is vertically up, and
z is along the beam direction.

The smallest momentum accepted by the FD is ∼0.3p0,
where p0 is the beam momentum. As shown in Fig. 2,
proton pairs from the breakup process with Epp < 3 MeV
are accepted at laboratory polar angles up to ∼7◦. The FD
acceptance allows for the detection of particles from other
processes (pd → dp, pp → pp, and pp → dπ+), which
were recorded for calibration purposes.

B. Data taking

To minimize systematic uncertainties, the geometrical
arrangement of the spectrometer was the same in all three
runs and at all energies. The angle of the beam deflection
in D1 was fixed (at 7.4◦) and only the magnetic field in the
dipoles was changed according to the beam energy. The first
run was carried out at energies 0.6, 0.7, 0.8, 0.95, 1.35, and
1.9 GeV; the results are published in Ref. [25]. In the second
run, data were taken at 0.5 GeV beam energy. The main part
of data was collected in a third run at 0.5, 0.8, 1.1, 1.4, and
1.97 GeV. In the last run at 0.5 and 0.8 GeV a polarized beam
was employed and the analyzing powers of the �pd → {pp}sn
reaction are reported in Ref. [33].

The luminosities at the different energies ranged from 4 to
6 × 1029 cm−2 s−1 in the first run, and were increased to 7 to
13 × 1030 cm−2 s−1 in the third one. Measurements with an
H2 target were carried out for calibration purposes in each of
the runs.

C. Event reconstruction

Data processing included procedures of track finding and
ejectile momentum reconstruction. In addition, calibrated
energy losses and time information from the scintillation
hodoscope were obtained [31,34].

Because the distortions of the particle trajectories in the
magnetic fringe field of D2 and multiple scattering in the
detector materials are small, a straight-line approximation was

used to reconstruct the tracks in the MWPC region. Each of the
three MWPCs measured both horizontal and vertical track co-
ordinates, which provided an overdetermination of the straight
line. This allowed us to estimate the efficiency of each chamber
from the experimental data by excluding one of the chambers
from the track search. The same feature allowed us also to
reduce the effect of MWPC inefficiencies in the track search,
since not all planes of the MWPCs are required to reconstruct
the tracks. The MWPC efficiency was obtained prior to the
main event reconstruction and was used to estimate the quality
of the track candidates during the track search procedure.

Special attention was paid in the track finding procedure
to provide a high efficiency for the reconstruction of pairs
of tracks located close to each other in space. The algorithm
provided about 90% reconstruction efficiency for proton pairs
with Epp above 1 MeV, decreasing to 75% at Epp = 0.2 MeV
[31]. The efficiency of the single-track search was 99.5%.

The reconstructed trajectories had to pass various back-
ground rejection criteria, which suppressed ∼40% of the
events taken with the FD trigger. One of the criteria used was
that the track had to pass the exit window of the D2 chamber.
Another criterion made use of the smallness of the nonvertical
components of the D2 magnetic field. Trajectories originating
from the interaction point possess a strong correlation of the
vertical track coordinate with the track angle in the yz plane.
This correlation, after a small correction to the magnetic field,
allowed us to estimate the y coordinate of the track at the target
position. The distribution of this coordinate shows a clean peak
of beam-target interactions. The associated uncertainties σY for
events from the deuteron breakup reaction are listed in Table I.
The background level under the peak amounted to less than
1% for pp elastic scattering and to about 5% for the deuteron
breakup reaction.

The magnetic field of D2 was measured on a three-
dimensional grid. Tracing in the magnetic fields by the
Runge-Kutta method or a polynomial method was used to
reconstruct the ejectile momenta. In the latter method, the
components of the ejectile momenta were expressed as third-
order polynomial functions of the measured track parameters,
where the coefficients of the polynomials were obtained from
a simulation.

The energy losses and the timing information obtained
from the hodoscope [34] were calibrated. The reconstructed
particle momenta were fine tuned [31] by slightly varying
the geometrical parameters of the experimental setup until
the nominal missing masses of processes with only one
undetected particle in the final state were well reproduced
(e.g., pp → pp, pp → dπ+, and pp → pnπ+). After fine
tuning of the geometry, the missing mass for protons from pp

elastic scattering, for instance, differed from its nominal value
by less than 0.4% at all energies. The achieved accuracy of the
alignment guaranteed negligible systematic uncertainties in
the determination of the kinematical parameters of the events
and of the detector acceptance.

D. Resolution, efficiency, and acceptance

The momentum resolution of the experimental setup was
studied by a GEANT-based Monte-Carlo simulation [35]. In
the simulation the particles were traced through the setup
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FIG. 3. Recorded momentum distributions at Tp = 0.8 GeV:
protons with H2 target (thin line), protons with D2 target (thick
line), deuterons with D2 target (filled histogram). (The relative
normalization of the distributions is arbitrary.)

taking into account multiple scattering, nuclear interactions
in the materials, and dispersion of the hits in the MWPC. The
obtained coordinates, together with admixed noise hits, were
analyzed by the track reconstruction algorithm.

In the case of pp elastic scattering, the resolution obtained
from the simulation could be directly compared to the width
of the observed momentum distribution, taken at fixed polar
angles. This comparison exhibits good agreement between
simulated and experimental resolutions [31]. In Fig. 3, the
momentum distributions at Tp = 0.8 GeV recorded with H2

and D2 targets are shown; pp elastic events exhibit a peak in
the (5◦–10◦) scattering angle range.

Similar simulations for the pd → {pp}sn reaction allowed
us to determine the resolution of single-particle momenta
(see Table I), as well as the resolution of all kinematical
variables ξ ≡ (θpp, φpp, θk, φk, Epp) necessary to describe the
reaction. θpp and φpp are the polar and azimuthal angles
of the total proton pair momentum Ppp = P1 + P2, where
P1 and P2 denote the proton c.m. momenta (see Fig. 4).
The azimuthal angle φpp is the angle between the direction
of the x axis of the coordinate frame (see Fig. 1) and the
projection of the momentum Ppp onto the xy plane. Polar
and azimuthal angles of the neutron in the pd → {pp}sn
reaction are given by θn = 180◦ − θpp and φn = φpp + 180◦,
respectively. Polar and azimuthal angles θk and φk in the rest
frame of the proton pair are defined in Fig. 4 (lower panel).
The kinetic energy in the rest frame of the proton pair is given
by Epp = 2(m2

p + k2)1/2 − 2mp.
The Epp resolution, shown in Fig. 5, is sufficient not

only to extract pairs with Epp < 3 MeV, but allows also the
measurement of the Epp distribution in this region. In the
angular interval θpp = 15◦–20◦, the rms resolution of θpp is
about 0.2◦; for θpp = 5◦ it amounts to ∼0.1◦.

The FD acceptance was calculated using the same simula-
tion program. Events of the pd interaction were generated
according to the phase-space distribution for the breakup
process taking into account the final-state interaction for the
proton pairs. The ratio of the reconstructed to generated
events was taken as the acceptance factor in each bin of
the ξ space. In most cases it was possible to restrict the
consideration to two-dimensional maps in cos θpp and Epp,

θpp

Ppp

P2

P1

θn

Ppp

θk

φk

<

Pp
k

-k

<

FIG. 4. Upper panel: Kinematics of the pd → {pp}sn reaction in
the pd c.m. system. Lower panel: P̂p and P̂pp denote the directions of
the incoming beam proton and the outgoing proton pair, respectively.
In the rest frame of the proton pair, protons have the momenta k and
−k; polar and azimuthal angles θk and φk are indicated.

since the distribution of other parameters could be taken to
be uniform. An example of such a map is shown in Fig. 6.
The acceptance factor is close to unity at the point (Epp = 0,
cos θpp = 1); it steeply drops with increasing Epp and θpp

due to the geometry of the setup. To check the homogeneity
and to obtain distributions of φpp, θk , and φk , the acceptance
was calculated as a function of each of these variables, that
is, A(θpp, Epp, φpp), A(θpp, Epp, θk), and A(θpp, Epp, φk). It
should be noted that the calculation of the acceptance factors

(MeV)ppE
0 1 2 3

)
(M

eV
)

pp
(E

σ 0.2

0.4

0.6

0.5 GeV

1.97 GeV

FIG. 5. Resolution of the kinetic energy Epp of proton pairs,
obtained from a simulation.
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FIG. 6. Two-dimensional acceptance factor A(θpp, Epp) at
Tp = 0.6 GeV.

takes into account the angular and momentum resolutions of
the setup and thus the migration of events between adjacent
bins of the ξ space. The calculation includes also inefficiencies
of the MWPCs and of the track reconstruction algorithm. The
efficiency of the hodoscope was close to 98% and was taken
into account separately.

E. Identification of the reaction

The main criterion for the identification of proton pairs was
based on the time information from the hodoscope. For events
with two particles hitting different counters in at least one of
the hodoscope planes, the time-of-flight differences from the
target �tmeas can be determined. Using the measured particle
momenta �p1 and �p2 and assuming that the involved particles
are protons, �tmeas can be compared to �tcalc = �t( �p1, �p2). In
Fig. 7, �tmeas is plotted vs �tcalc. While proton pairs populate
the line at �tmeas = �tcalc, pairs of particles with other masses
show different distinct loci. This time-of-flight (�t) criterion
could be applied to about 85% of all two-track events in the
vicinity of the neutron mass (see Fig. 8).

FIG. 7. Distribution of double-particle events showing the mea-
sured �tmeas vs the calculated time differences �tcalc at Tp = 0.5 GeV.

210

410
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FIG. 8. Missing-mass distributions of two-particle events at three
beam energies. The thin line shows all events, the thick line
corresponds to proton pairs selected by the time-difference �t

criterion (Fig. 7), and the filled histograms show proton pairs with
Epp < 3 MeV.

The resolution σ�t of the time differences
(�tmeas − �tcalc)/

√
2 is listed in Table I. A 2σ�t cut

was applied that suppressed the admixture of other particle
pairs among the selected proton pairs to less than 1%.
Accidental events constitute the dominant contribution to the
background (see Table II). The acceptance calculation took
into account the requirement that the two particles must hit
different counters.

The distribution of the missing mass MX from the
pd → ppX process with proton pairs exhibits a distinct peak
near the neutron mass at all beam energies (Fig. 8). The
mean value 〈MX〉 corresponds to neutron masses within the
accuracy provided by the setup. Their values are listed in
Table II. The background-to-total ratio Nbg/Ntot in the interval
〈MX〉 ± 3σ 〈MX〉 amounts to several percent at low energies

TABLE II. Number of all two-track events N2-track; number of
proton pairs N�t , identified using the time-difference �t criterion;
and number of proton pairs N�t

3MeV with Epp < 3 MeV and �t criterion
applied. 〈MX〉 is the average missing mass with resolution σ 〈MX〉 (both
in units of MeV). Nbg/Ntot denotes the ratio of background to total.

Tp ( GeV) 0.5 0.8 1.10 1.40 1.97

N2-track (103) 204 1003 3119 5860 11185
N�t (103) 19.6 133 800 1301 1654
N�t

3MeV 3417 2761 3848 1090 549
〈MX〉 942 942 941 940 943
σ 〈MX〉 16 18 20 20 24
Nbg

Ntot
(%) 2.0 2.7 5.2 16.5 33.6
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FIG. 9. Momentum correlation of two particles detected in the FD at beam energies of 0.5, 1.1, and 1.97 GeV. Loci populated by events
from the following processes are indicated: pd → ppn (A), quasifree pN → ppπ (B), pd → dπ+n (C), pd → 3Hπ+ (D), and quasifree
pp → pnπ+ (E). The upper panels show all pairs of particles, while the lower ones depict proton pairs selected by the time-difference �t

criterion. The distributions were symmetrized with respect to the bisecting line p1 = p2.

and increases to ∼30% at 1.97 GeV. This ratio was calculated
for each bin of the relevant kinematical variables. To obtain the
corresponding differential cross sections, the number of events
in each bin was corrected by the acceptance factor and the
background-to-total ratio for that bin. The numbers listed in
Table II correspond to the most recent measurements where
most of the statistics were collected. The corresponding
numbers for the previous measurements are given in Table I
of Ref. [25].

A different kinematical identification of two-track events is
illustrated in Fig. 9. Due to kinematical restrictions caused
by the narrow angular acceptance of the FD, events from
processes with two or three particles in the final state populate
distinct regions when particle momenta p1 and p2 are plotted
vs each other. Protons from the deuteron breakup reaction
pd → {pp}sn form a narrow band. This method was only used
to identify other processes, that is, B, C, D, and E in Fig. 9.
For the identification of proton pairs from the pd → {pp}sn
reaction the missing-mass technique was applied.

F. Luminosity

Protons from elastic pd scattering and from quasielastic
deuteron disintegration pd → pnp detected at small angles in
the FD allowed us to determine the luminosities over a wide
range of beam energies, 0.6–2.0 GeV.

At all beam energies, the proton momentum spectra exhibit
a peak that is somewhat shifted from the value defined by the
kinematics of elastic pp scattering (Fig. 3). The peak shape is
slightly non-Gaussian on the left side, which is attributed to
quasielastic deuteron disintegration. The available momentum
resolution does not allow one to separate pd elastic scattering

from quasielastic deuteron disintegration. The detected events
are therefore associated with the sum of elastic and inelas-
tic cross sections, (dσ/d	)el and (dσ/d	)inel, respectively.
Glauber-Sitenko diffraction scattering theory [36,37] was used
to calculate (dσ/d	)el, while (dσ/d	)inel was obtained in
closure approximation of diffraction scattering theory [36].
The parameters of pN scattering were taken from Ref. [38] and
the deuteron nuclear density was taken in accordance with the
S-wave component of the RSC deuteron wave function [15].
The calculation shows that the contributions of elastic and in-
elastic scattering are comparable at θlab ≈ 5◦–10◦ in the energy
range Tp = 0.6–2.0 GeV. The precision of the calculation for
(dσ/d	)el was compared to known experimental data on pd

elastic scattering [38–41], while the inelastic part could be only
compared to data at 0.956 GeV [42]. Experimental and theoret-
ical values were found to agree within 7% (rms), and this value
was taken as normalization uncertainty for the luminosity in
the range 0.6–2.0 GeV (see Appendix D of Ref. [43]).

At 0.5 GeV, the luminosity was determined in a different
way. Because the precision of the calculation of (dσ/d	)inel

degrades at energies below 0.6 GeV, only for the data obtained
at 0.5 GeV was a normalization based on pd backward elastic
scattering used. Deuterons detected in the FD are identified
by their energy losses in the hodoscope at momenta below
∼2 GeV/c. As shown in Fig. 3, the selected deuterons produce
a clean peak in the momentum distributions, and the data
were normalized to the available experimental data [38,44–49]
obtained under similar kinematical conditions. Based on the
available data, an interpolation was carried out, using an empir-
ical expression (dσ/d	)(Tp, θ ) = exp[A(Tp) cos θ + B(Tp)]
with a smooth energy dependence of the coefficients A(Tp)
and B(Tp) in the range Tp = 0.4–1.0 GeV. The luminosities
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TABLE III. Differential c.m. cross sections of the pd → {pp}sn reaction at θn = 180◦ and averaged in the interval θn = 172◦–180◦ in units
of µb/sr. Listed also are the statistical and total uncertainties, σ stat and σ tot, and the integrated luminosities, Lint, in units of 1034 cm−2. New
data are indicated by a bullet (•).

Tp ( GeV) 0.50 0.60 0.70 0.80 0.95 1.10 1.35 1.40 1.90 1.97
Refs. • [25] [25] • [25] [25] • [25] • [25] •
Lint 18.69 1.41 1.93 31.5 1.28 71.9 0.69 126.2 0.74 136.0

σLint
1.80 0.12 0.17 2.4 0.11 5.9 0.06 10.5 0.07 10.9

dσ

d	
(θn = 180◦) 3.36 1.92 0.79 0.73 0.42 0.300 0.088 0.046 0.034 0.034

σ stat 0.21 0.12 0.06 0.05 0.04 0.009 0.029 0.003 0.012 0.002
σ tot 0.38 0.22 0.10 0.08 0.06 0.027 0.032 0.006 0.016 0.004
dσ

d	
(θn = 172◦–180◦) 2.95 1.72 0.72 0.68 0.41 0.303 0.10 0.053 0.03 0.029

σ stat 0.13 0.09 0.05 0.02 0.04 0.006 0.02 0.002 0.01 0.002
σ tot 0.29 0.19 0.09 0.06 0.06 0.027 0.04 0.005 0.014 0.003

obtained this way and from the method described in the
previous paragraph were compared at 0.8 GeV and were found
to be consistent within 20%, which is quite reasonable since the
available data at 0.8 GeV [46,49,50] agree only within 15%.

The previously described determination of the luminosity
was carried out independently for different angular intervals
of protons and deuterons. In all cases, the observed variation
of the luminosities at different angles did not exceed 5%, and
this value, taken as an additional systematic uncertainty, was
included in the total uncertainty of the luminosity.

As an independent test of the luminosity determination,
the quasifree pp → dπ+ reaction was used at all energies
0.5–1.97 GeV (see Fig. 9, label C). Deuterons and pions were
detected in the FD, and the neutron was identified via the
missing-mass technique. The reconstructed momentum of the
neutron was limited to less then 100 MeV/c; thus the neutron
could be considered as a spectator. The cross section for the
free pp → dπ+ process taken at the proper c.m. energy was
used for normalization. The pp → dπ+ cross section was
obtained from the SAID phase shift analysis [51] for beam
energies up to 1.4 GeV, while the data of Ref. [52] were used
for Tp = 1.97 GeV. The resulting luminosities agree within
11% with the ones obtained by the pd → pX and pd → dp

processes.

III. EXPERIMENTAL RESULTS

In this section, the Epp distributions of the binary reaction
pd → {pp}sn are presented to verify the dominance of the 1S0

state in the final pp pairs for Epp < 3 MeV. Thereafter, the
obtained dependencies of the differential cross sections of the
pd → {pp}sn reaction on cos θk , cos θn, and Tp are presented.

A. Excitation energy E pp

The excitation energy distributions have been obtained
in the interval Epp = 0–3 MeV for events with cos θpp =
0.98–1.0. The raw spectra near Epp = 0 are distorted by
the efficiency of the pair reconstruction algorithm and by
migration of events caused by the resolution in Epp. The
two effects act in opposite directions; therefore the resulting
correction in the lowest bin, ranging from 0 to 0.13 MeV, is
only at the level of about 10%. The observed event distribu-
tions N (Epp, cos θpp) were corrected by the two-dimensional
acceptance factor A(Epp, cos θpp). To avoid event losses near
the upper boundary, the acceptance correction was carried out
in a wider Epp interval up to 7.5 MeV.

Using the Migdal-Watson final-state interaction (FSI)
approach [53,54], the Epp distributions were generated in
the form dN/dEpp = k|Mpp(Epp)|2, where the momentum k

comes from the phase-space factor, and the factor |Mpp(Epp)|2
is given by the squared amplitude of pp scattering [55]

Mpp(Epp) = eiδ sin δ

k

1

Ck

. (2)

Here, Ck is the Coulomb penetration factor and δ is the
hadronic phase shift of pp(1S0) scattering, modified by the
Coulomb interaction.

Using the luminosities listed in Table III, the acceptance
corrected distributions were converted into differential cross
sections dσ/dEpp, which are shown in Fig. 10. The ex-
perimental distributions clearly differ from phase space, but
are satisfactorily described within the Migdal-Watson FSI
approach. The data at Tp = 1.97 GeV are of limited accuracy
and contain a substantially larger background contamination.
Neither phase-space distributions nor the Migdal-Watson FSI

TABLE IV. Parameters of the cos θk distributions (shown in Fig. 11) obtained from Legendre polynomial fits using Eq. (3).

Tp ( GeV) 0.5 0.8 1.1 1.4 1.97

C2/C0 (10−2) −2.5 ± 1.0 0.6 ± 0.9 −2.0 ± 0.7 0.2 ± 1.3 0.5 ± 1.6
χ 2/ndf 6.6/8 1.6/8 5.6/8 6.6/8 10.2/8
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FIG. 10. Differential cross section dσ/dEpp as a function of Epp , integrated in the interval cos θpp = 0.98–1 and φpp = 0–2π . The solid
lines correspond to the Migdal-Watson approach, and the dotted lines depict phase-space distributions.

approach describe these data well. It should be noted that
the Migdal-Watson FSI approximation is valid if Epp is
small but the transferred momentum Q is large so that the
short-range part of the S wave of the internal pp motion
dominates the transition amplitude [53,54]. The accuracy of
the Migdal-Watson approach in describing the shape of the
Epp distributions was analyzed in Refs. [56,57] and was
found to be about 10%. The analysis of the Epp distributions
in the pd → {pp}sn reaction beyond the Migdal-Watson
approximation is discussed in Sec. IV A.

B. Proton emission angle θk in the rest frame of the proton pair

In the framework of the Migdal-Watson FSI approach, the
distribution of the proton emission angle θk in the c.m. system
of the proton pair (Fig. 4) is determined by the amplitude
of low-energy pp scattering. At energies Epp � 0.2 MeV,
pp scattering is governed by the strong interaction in the
1S0 state [58] and therefore should result in an isotropic
angular distribution, except at very small angles where
effects from Coulomb scattering begin to appear. The cos θk

distributions obtained with the three-dimensional acceptance
factors A(Epp, cos θpp, cos θk) and integrated in the intervals
Epp = 0–3 MeV and cos θpp = 0.98–1 are almost isotropic,
as shown in Fig. 11. The anisotropy in the pp system was
estimated by fitting the distributions in even terms of Legendre
polynomials up to order l = 2,

dσ

d	
(θk) =

∑
l=0,2

Cl(2l + 1)Pl(cos θk)

= C0

[
1 + C2

C0
5

(3 cos2 θk − 1)

2

]
. (3)

Only even Legendre polynomials Pl are included, because
the differential cross section should be symmetric with respect

to the exchange of the two protons,

dσ

d	
(θk) ≡ dσ

d	
(π − θk).

The fit parameters in Table IV indicate that within statistics,
negligibly small anisotropies are observed. Possible P -wave
contributions to ONE are discussed in the Appendix.
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FIG. 11. Dependence of the differential c.m. cross section on
cos θk . The curves show Legendre polynomial fits using Eq. (3); their
parameters are listed in Table IV.
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FIG. 12. Dependence of the differential c.m. cross section of the
pd → {pp}sn reaction on the neutron emission angle θn in the c.m.
system for the interval Epp = 0–3 MeV. The lines represent linear
fits in the interval cos θn = −0.985 to −1.00.

C. Neutron emission angle cos θn

For the interval of neutron emission angles in the c.m.,
θn = 168.5◦–180◦, the differential cross sections, integrated
over Epp from 0 to 3 MeV, are shown in Fig.12. The acceptance
of the setup includes θn = 180◦; therefore the data allow one
to obtain the differential cross section (dσ/d	)(θn) exactly in
a backward direction. The data were fitted by a linear function
in the interval cos θn = −0.985 to −1.00, where the cross
sections vary smoothly.

In pd elastic scattering many measurements were per-
formed at backward proton angles θp � 170◦ [38,44–48,50].
The measured cross sections drop monotonously with de-
creasing proton scattering angles, exhibiting a wide backward
peak. Very close to scattering angles θp = 180◦ experimental
data are absent. The only comparable measurement in the
angular range up to about 179◦ was carried out at 0.794 GeV
in nd → dn scattering [49]. The observed angular dependence
in the range 171.8◦–178.57◦ is flat, quite similar to our
measurement at 0.8 GeV (see Fig. 12).

D. Differential cross section at θn = 180◦

The differential cross sections at θn = 180◦ of the new
data obtained here, of the previously published ones from
Ref. [25], and of the data obtained during the measurement
with polarized beam [33], for which differential cross sections
were not yet published, are given in Table III. The new data
and the data obained with the polarized beam allowed a direct

determination of the differential cross sections at θn = 180◦
using the measured angular distributions. Because of the
limited statistics, this was not possible for the previously pub-
lished ones [25], for which only the differential cross sections
averaged in the interval θn = 172◦–180◦ were obtained. Using
the new data, the ratios of the differential cross sections at
θn = 180◦ to the ones averaged over that interval were deter-
mined individually at Tp = 0.5, 0.8, 1.1, 1.4, and 1.97 GeV. By
interpolation, the corresponding ratios for the published data
were determined, and by multiplying the previously obtained
averaged cross sections with this ratio, the differential cross
sections at θn = 180◦ could also be determined for these
data. Differential cross sections measured during different
runs at the same energies (0.5 and 0.8 GeV) agreed within
errors and were weighted averaged. Data obtained with a
polarized beam [33] at 0.5 and 0.8 GeV were spin averaged
and otherwise treated in the same way as the new data at
1.1, 1.4, and 1.97 GeV.

The energy dependence of the cross section at θn = 180◦
is shown in Fig. 13 together with the data for pd backward
elastic scattering. It should be noted that the pd → dp data are
extrapolated to 180◦ due to the absence of direct measurements
at this angle. In the energy range of Tp = 0.5–1.4 GeV,
the differential cross section of the pd → {pp}sn reaction
drops almost exponentially with increasing energy, while in
the region above ∼1.4 GeV the energy dependence is much
flatter.

The ratio of the differential cross sections of the pd →
{pp}sn reaction and pd backward elastic scattering amounts
to ∼1/115, as shown in Fig. 13. This ratio remains constant
in the energy range of 0.5–2.0 GeV. Very similar results were
obtained in Ref. [59] for the ratio of the differential cross
sections of the pd → {pn}sp and dp → dp reactions at 585
and 800 MeV for proton c.m. scattering angles ranging from
θ = 70◦ to 120◦. As discussed in Ref. [60], the ratio of the

Beam energy (GeV)
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b/
sr
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FIG. 13. Energy dependence of the differential c.m. cross sections
of the deuteron breakup pd → {pp}sn at θn = 180◦ and of backward
pd elastic scattering ( [38,44–47,50] and Refs. therein). The previ-
ously obtained data of Ref. [25] are shown by open circles (◦), and the
new data are shown by bullets (•). The solid line represents a quadratic
fit to log(dσ/d	) of the pd → dp data, the dashed line is obtained by
scaling the solid line by a factor r = 8.8 × 10−3, introduced in Eq. (4).
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differential cross sections can be written as

r =
dσ
d	

(pd → {pp}sn)

dσ
d	

(pd → dp)
= 2RZζ, (4)

where ζ is the ratio |As |2/|At |2 of the squared reduced matrix
elements of the pd → p(pn)s,t reaction with an np pair in
the spin-singlet (s) and triplet (t) states, as defined in Ref. [60]
within the Migdal-Watson approximation. The factors R and Z

are determined in Ref. [60] by the on-shell NN -scattering data
at low energies. Using the values Z = 0.101 and R = 2.29,
one obtains the singlet-to-triplet ratio ζ = (2.3 ± 0.5) × 10−2,
(1.6 ± 0.3) × 10−2, and (2.1 ± 1.2) × 10−2 for 0.6, 0.7, and
1.9 GeV, respectively. The results for ζ , obtained here (Fig. 13),
can be explained by the dominance of the �-isobar or the N∗
excitation mechanism. The spin statistical factor contributes a
factor of 1/3 to this ratio. The remaining difference given by a
factor ∼6 × 10−2 is determined by the reaction mechanism and
the difference in the diproton and deuteron wave functions. As-
suming the �-isobar excitation mechanism or, in the more gen-
eral case, the isovector meson-nucleon exchange [24], one ob-
tains the isotopic factor 1/9 [24]. With this additional factor the
ratio in Eq. (4) is in agreement with the data up to a factor of ∼2.

IV. COMPARISON TO THEORY

The theoretical analysis of hard pd collisions at energies
around 1 GeV appears to be rather complicated. At high
transferred momenta, corresponding to internal momenta in
excess of 0.4 GeV/c, non-nucleonic degrees of freedom such
as NN∗, N∗N∗, N�, and �� components, and possibly
also multiquark components, are expected to contribute in
the deuteron and diproton. These contributions are strongly
model dependent. Choosing a particular reaction such as
pd → {pp}sn simplifies the theoretical analysis considerably.
In collinear kinematics the internal momenta probed in this
reaction are only moderately large (q < 0.6 GeV/c), and it is
therefore appropriate to perform a theoretical analysis using
a meson-baryon picture. The kinematics of the pd → {pp}sn
reaction is actually very similar to that of pd backward elastic
scattering; hence it is reasonable to apply as a first step of the
theoretical analysis the same reaction mechanisms [17–19].

A. ONE + SS + � approach

The analysis of the Epp excitation energy distribution and
of the energy and angular dependence of the differential
cross section has been performed within a ONE + SS + �

approximation [21,23]. The approach is based on the multistep
scattering theory (Watson series). The involved Feynman
diagrams are depicted in Fig. 14. Only the first terms up to two-
loop diagrams were kept in the series, assuming that the contri-
bution of higher-order terms is small at high energies. For the
ONE mechanisms, plane-wave and distorted-wave Born ap-
proximations were used (abbreviated here by ONE(PWBA) ≡
ONE, and ONE(DWBA). In the latter case, the rescatterings in
the initial and final states were taken into account as described
for the pd → dp reaction in Ref. [61]. Unlike the original
Watson series, which includes only nucleons in the intermedi-
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FIG. 14. Mechanisms included in the ONE + SS + � model of
the pd → {pp}sn reaction: (a) one-nucleon exchange within the
plane-wave Born approximation (ONE), (b) single scattering (SS),
and (c) double pN -scattering with excitation of the � or N∗ isobar
(�). Rescatterings within the distorted-wave Born approximation
(DWBA) are shown for ONE in the initial (d), final (e), and initial
plus final (f) states.

ate states, possible nucleon isobars can be taken into account
as well. The �(1232) isobar is considered explicitly. All
necessary phenomenological parameters for the �-excitation
amplitude in πN and ρN elastic scattering were determined
from the data of the pp → pnπ+ reaction at 800 MeV [62] and
were described within the �-isobar model [63]. This allowed
us to determine cut-off parameters of the monopole form
factors entering at the πN� and ρN� vertices, where the
coupling constants were taken from Ref. [64]. The d → np

and pp → {pp}s vertices were determined on the basis of
the Lippmann-Schwinger equation using phenomenological
NN potentials. Finally, small-angle rescatterings in the initial
and final states involve on-shell pN -scattering amplitudes,
which were also taken from the world experimental data via
a parametrization used in the Glauber theory [65]. Therefore,
the ONE + SS + � approach used in the analysis presented
here has no additional free parameters.

1. Excitation energy E pp

The Migdal-Watson method, used in Sec. III A to describe
the distribution of Epp, was developed by making certain
approximations when evaluating loop integrals, which usually
appear when accounting for FSI in the reaction amplitude.
An obvious advantage of the Migdal-Watson approximation is
that the final result does not depend on the reaction mechanism
and the type of NN interaction potential. However, if those
integrals are calculated exactly for a given model of the NN

interaction, this should lead to a more appropriate shape
of the Epp distribution as compared to the Migdal-Watson
approximation for the same NN model. The only condition
needed to obtain the shape of the Epp dependence is that
the production mechanism has to be short-ranged. In this
way the precision of the Migdal-Watson approximation was
tested for the case of the pp → NNπ reaction, assuming
a one-loop mechanism with virtual pion exchange [56,57].
An accounting for the FSI can be carried out also within the
approach used here for the pd → {pp}sn reaction. Thus, for
the ONE mechanism, the Epp dependence is determined by
the t matrix of the half-off-shell pp scattering in the 1S0 state.
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FIG. 15. (Color online) Excitation energy Epp of proton pairs
from the pd → {pp}sn reaction. The data were summed in the
interval Tp = 0.5–1.4 GeV. The curves show fits with the ONE +
SS + � approximation (solid line) and the Migdal-Watson approach
(dashed line).

The t matrix is given by the integral in configuration space,

t(q, k) = −4π

∫ ∞

0

F0(qr)

qr
V (r)ψ (−)

k

∗
(r)r2dr, (5)

where ψ
(−)
k (r) is the pp scattering wave function with on-

shell momentum k, F0(qr) is the regular Coulomb function
for zero orbital momentum, q is the off-shell pp momentum,
and V (r) is the strong interaction potential in the 1S0 state.
The k dependence of the wave function ψ

(−)
k (r) determines

also the Epp dependence of the reaction amplitude for all other
mechanisms. We found numerically that the shape of the Epp

distribution calculated within this approach depends very little
on the reaction mechanism itself. Furthermore, the theoretical
result is almost independent of energy in the range 0.5–2 GeV.

To increase the statistics, the data of Fig. 10 were combined
by adding the acceptance corrected number of proton pairs
per Epp bin in the energy interval Tp = 0.5–1.4 GeV. The
experimental data, shown in Fig. 15, agree with the Migdal-
Watson and the ONE + SS + � descriptions. Although the
discrepancies are small, the distributions differ systematically
from the Migdal-Watson ones. For the Migdal-Watson approx-
imation, χ2/ndf = 15.2/13 (confidence level CL = 0.29) was
obtained, and χ2/ndf = 8.6/13 (CL = 0.80) was obtained for
the ONE + SS + � approximation.

2. Dependence on cos θk

Another way to test the dominance of the S wave in the
internal state of the diproton is to study the angular dependence
of the direction of the proton momentum in the c.m. system
of the proton pair with respect to the total momentum of
the diproton (see Fig. 4). For the 1S0 state of the pp pair,
this dependence is isotropic. A possible anisotropy could be
produced by the admixture of states with nonzero orbital
momentum l = 0 in the internal pp motion. The expected
contribution of P waves to the ONE mechanism is estimated
in Appendix V. The 3P0, 3P1, and 3P2 final pp states were taken
into account in addition to the 1S0 state. Numerical results were
obtained for the CD-Bonn NN potential. The ratio of P - to

S-wave contributions in the differential cross section is found
to be ≈1% in the range 0.5–2.0 GeV at Epp = 3 MeV. The
only exception is the vicinity of the node at 0.8 GeV, where
the S-wave contribution vanishes due to the node in the half-
off-shell amplitude [Eq. (5)] at q ∼ 0.4 GeV/c, but the P -wave
contribution does not. In view of the large transferred momenta
in this reaction, a P -wave contribution of a few percent is
expected for the SS and � mechanisms. Higher partial waves
yield smaller contributions due to the centrifugal barrier.

The anisotropic cos θk dependence in the vicinity of the
ONE node for the 1S0 state of the diproton, if it were observed,
would directly indicate that the ONE mechanism dominates
the reaction amplitude. According to the numerical calculation
for the ONE mechanism alone, given in the Appendix, the
anisotropic part makes up about 37% at 0.8 GeV; therefore the
θk dependence would be strongly anisotropic. Since this is not
the case, as shown in Fig. 11, the ONE mechanism clearly
does not dominate at this energy.

3. Energy dependence of the differential cross section

The differential cross section of the pd → {pp}sn reaction,
averaged over the angular interval 172◦–180◦, is shown in
Fig. 16 as a function of beam energy together with the results
of calculations performed within the ONE(DWBA) + SS + �

approach. The new data reported in this article are indicated
by bullets (•). The ONE mechanism alone completely fails
to describe the data in the 0.5–1.5 GeV region. On the
contrary, the � mechanism dominates in this region and its
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→pd     {pp}s(0
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FIG. 16. Differential c.m. cross section averaged over the angular
interval 172◦–180◦ vs beam energy [26]. The curves are the result of
calculations using the CD-Bonn NN potential with the ONE (dashed
line) and � mechanisms (solid thin line), both without distortions
and Coulomb effects. The ONE(DWBA) + SS + � is the dotted
line, and the ONE(DWBA) + � (solid thick line) contributions
are obtained with a Coulomb suppression factor of 0.83 [26]. The
previously obtained data of Ref. [25] are shown by open circles (◦),
and the new data are shown by bullets (•). The upper scale shows
the internal momentum q of the nucleons in the deuteron for ONE at
θn = 180◦.
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contribution alone is sufficient to explain the gross structure
of the data at 0.6–1.4 GeV. However, outside of this interval,
the ONE contribution is sizable. Thus, the inclusion of the
ONE mechanism below 0.6 GeV improves the agreement with
the data as compared to the � mechanism alone. Above
1.3 GeV the � contribution drops quickly with increasing
energy, while the ONE contribution produces a plateau in
the 1.3–2.0 GeV region, smoothly decreasing with increasing
energy. At these energies the ONE(DWBA) contribution also
improves the agreement compared to the � mechanism alone,
but the agreement is not as good as that at 0.5 GeV.

The sensitivity of the ONE mechanism to high-momentum
components of the NN wave functions is very high, because
the momenta probed in the deuteron (q) and diproton (q ′)
for the ONE range from q ≈ q ′ = 0.45 to 0.55 GeV/c for
beam energies 1.4–2.0 GeV. Because of the high sensitivity,
as shown in Ref. [26], those interaction potentials that are too
repulsive at short NN distances (rNN < 0.6 fm), like RSC [15]
and Paris [14], strongly overestimate the cross sections of
Ref. [25] at these energies within the ONE(DWBA) + SS + �

approach. However, the results with the CD-Bonn potential
were found to be in agreement with the data. The new data
reported here are in agreement with this interpretation of the
pd → {pp}sn reaction, although overall only a qualitative
agreement is achieved. In this region, heavier nucleon isobars
are expected to be of minor importance; for a more detailed
discussion, see Sec. IV B.

4. Angular dependence of θn

The results of the calculations of the angular dependence
of the differential cross section are presented in Fig. 17 for
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FIG. 17. Angular dependence of the differential c.m. cross section
at 0.5 GeV. The curves show the results of calculations within the
ONE(DWBA) + SS + � approach using the CD-Bonn NN potential
without Coulomb interaction: ONE (dashed line), ONE(DWBA)
(dashed-dotted line), � (solid thin line), ONE(DWBA) + SS + �

(dotted line), and ONE(DWBA) + � (solid thick line). The Coulomb
repulsion in the pp system, which would scale all the curves by a
factor of 0.83, is not introduced here.
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FIG. 18. Angular dependence of the differential c.m. cross section
for different beam energies. The curves are for the ONE(DWBA) +
SS + � description. The results of the calculations are scaled at 1.4
and 1.97 GeV by factors of 0.5 and 0.7, respectively. The Coulomb
repulsion in the pp system, which would scale all the curves by a
factor of 0.83, is not introduced here.

0.5 GeV and in Fig. 18 for the energy interval 0.5–2.0 GeV.
The ONE(DWBA) yields smaller cross sections as compared
to ONE. Although at 0.5 GeV this difference is rather small
in magnitude, one can show that the corresponding distortion
factor originating from the rescatterings in the initial and final
state within the ONE(DWBA) is larger by about a factor of 2–3
at energies Tp > 1 GeV. Very similar results were found in pd

elastic scattering within the ONE mechanism in Ref. [61]. This
behavior is related to the fact that with increasing beam energy
at fixed angle θn ≈ 180◦ shorter distances are probed by the
ONE mechanism in the deuteron (or diproton) and, therefore,
this implies that rescatterings on the spectator proton become
more important. Furthermore, since the elastic pN -scattering
amplitudes are mainly absorptive (i.e., having large imaginary
parts) at these energies, the rescatterings lead to a decrease of
the reaction cross section.

At 0.5 GeV, the agreement between the ONE(DWBA) + �

approximation and the experimental data is quite good. One
should note that neither the � mechanism nor the ONE mecha-
nism alone suffices to reproduce the data, underestimating the
measured cross section by factors of 3 to 5, respectively. Only
their coherent sum provides good agreement at this energy.

At higher energies, the theoretical description of the angular
dependencies becomes worse (see Fig. 18). In general the
model confirms the experimentally observed weak dependence
on θn, but the slope and its magnitude for some energies are not
well reproduced by the considered mechanisms [66]. Indeed,
one can see that within the ONE(DWBA) + SS + � approach,
the cross section smoothly increases with increasing cos θn and
the shape of the angular dependence changes very little in the
energy range of 0.5–2.0 GeV for −1 � cos θn � −0.98.

The disagreement between theory and experiment at
higher energies can be attributed in part to the following
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factors. First, when the energy is increasing, the contribu-
tions of high-momentum components (q > 0.3 GeV/c) of the
two-nucleon wave function are growing, but these are not well
known and depend on the choice of the NN potential used.
Second, the role of absorptive rescatterings increases. In this
connection, we note that in the present work (see also Ref. [26])
rescatterings in the initial and final states are taken into account
within the approximation employing only the on-shell part of
the singular integrals, whereas the principal value integrals
(off-shell parts) are neglected. Furthermore, it is assumed in
these calculations that the internal state of the diproton is
not altered by rescatterings in the intermediate state. When
accounting for these effects, also including a contribution from
heavier nucleon resonances, one may expect to obtain a better
agreement with the data in the range of 1–2 GeV.

B. OPE model

The ONE + SS + � approach accounts for the excitation of
only one nucleon resonance, for example, the �(1232) isobar,
because for other heavier isobars the necessary information
is much more uncertain. Recently, for the description of the
pd → {pp}sn reaction, a one-pion exchange (OPE) model
(Fig. 19) was applied [67], which takes into account the
�(1232) contribution in pd collision in a different way
compared to the ONE + � + SS approach. This model allows
one to take into account the contribution of heavier isobars.

In one version of the OPE model, called OPE-II [67]
[see Figs. 19(c) and 19(d)], the cross sections of the pd →
dp and pN → {pp}sπ reactions are proportional to the
pion absorption cross section on the deuteron, πd → NN .
For the unpolarized pd elastic cross section, this model
is equivalent to the one previously suggested in Ref. [68].
For the pd → {pp}sn reaction, the OPE-I model, shown in
Fig. 19, includes the unknown coherent sum of the amplitudes
of the pp → {pp}sπ0 and pn → {pp}sπ− subprocesses. In
contrast to that, the OPE-II model involves only the known
subprocess π0d → pn and, therefore, its predictions are
unambiguous. The OPE-II model reasonably well reproduces
the differential cross sections of both reactions between 0.6
and 0.8 GeV at θn = 180◦ (see Fig. 5 of Ref. [67]). Since
the NN → dπ cross section at these energies is dominated
by the �(1232) isobar, the obtained result, to a large extent,
confirms independently the conclusion about the dominance
of the �(1232) isobar in the pd → {pp}sn reaction, found

π π

ππ

{pp}s

{pp}s

( )a ( )b

( )c ( )d

FIG. 19. Mechanisms of the pd → dp (a, c) and pd → {pp}sn

(b, d) processes for the OPE-I (a, b) and OPE-II (c, d) models.

within the ONE + SS + � approach. The OPE-II model yields
for the ratio of the pd → {pp}sn and pd → dp cross sections
[Eq. (4)] r th = 0.016–0.013. This is in qualitative agreement
with the experimental value of rexp = 0.009–0.011, found
for the pd → dp and pd → {pp}sn data [38,44–47,50]. The
larger probability for the formation of a deuteron compared to
the {pp}s diproton is naturally explained within this model.
It is a consequence of several reasons, including spin-isospin,
combinatorial, and phase-space factors; the ratio of the relevant
nuclear form factors enters as well.

At higher energies, the role of heavier nucleon isobars in
the subprocesses π+d → pp and πd → pn increases [69,70].
As a result, the OPE model shows a decrease of the slope in
the energy dependence of the cross sections of the pd → dp

and pd → {pp}sn reactions at about 1.5 GeV. This tendency
is in qualitative agreement with pd elastic data and the new
data on pd → {pp}sn obtained in this work. However, the
OPE model underestimates sizeably the absolute value of
the cross section above 1 GeV for both the pd → dp and
pd → {pp}sn reactions, indicating that contributions from
other mechanisms are also relevant in this region. According
to Ref. [67], agreement with the data on pd → {pp}sn can
be improved by taking into account the ONE mechanism in
addition to OPE, although one should note that this procedure
is problematic due to double counting.

At last, a successful description of the data on the
unpolarized cross section, tensor analyzing power T20, and
polarization transfer κ0 in pd backward elastic scattering in the
energy range from 0.5 to 2.7 GeV was obtained recently [71]
within the OPE model plus ONE mechanism considered within
a covariant form of relativistic dynamics [72]. It would be very
instructive to further develop and to apply this approach [71]
to the analysis of the pd → {pp}sn reaction.

C. Other approaches

Here we consider other approaches to the pd → {pp}sn
reaction that were stimulated by the ANKE data.

1. Bethe-Salpeter approach

With increasing beam energy, relativistic effects become
more important in the pd → {pp}sn reaction. In the ONE +
SS + � approach, these effects have been taken into account
within a relativistic Hamiltonian dynamics, developed for
systems with a fixed number of particles [73]. A fully covariant
approach based on the spinor-spinor Bethe-Salpeter equation
with a realistic one-boson-exchange kernel in the ladder
approximation was applied in Ref. [74] to the analysis of
the pd → {pp}sn reaction, and a rather good agreement with
the data of Ref. [25] was achieved. The FSI effects have
been taken into account in the pp pair by treating it as a
relativistic 1S0 scattering state. A rather important contribution
of the Lorentz-boost effects and relativistic P waves in the
pp system has been found. This results in the shifting of the
minimum and removal of the dip in the ONE cross section
caused by the repulsion in the 1S0 pp interaction. The inclu-
sion of P -wave components corresponds to the involvement
of intermediate NNNNN states, which can be compared
with the effects of pair meson-exchange currents and isobar
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contributions in nonrelativistic calculations. The N�N con-
figurations taken into account within the ONE + SS + �

approach in Refs. [26,67] were found to dominate in the
pd → {pp}sn reaction at about 0.6–1.2 GeV, but were not
considered in Ref. [74].

2. Constituent counting rules

At asymptotically high energies
√

s and transferred mo-
menta t , dimensional analyses [75,76] and perturbative QCD
[77,78] lead to constituent quark counting rules (CCR)
for exclusive binary reactions, dσ/dt ∼ s−nf ( t

s
), where

n + 2 is the total number of point-like objects in the
initial and final states. The s−n dependence was observed
for many reactions with free hadrons at moderate ener-
gies and large fixed scattering angles (see, for example,
Ref. [79]).

For reactions with nuclei, the CCR behavior of the cross
section would be considered as an indication of a transition
region from hadron to quark degrees of freedom. As in the
case of electromagnetic form factors and two-body hadronic
reactions, the scale for the onset of the CCR regime cannot
be predicted theoretically and must be determined experimen-
tally. At SLAC and JLab, the CCR behavior was observed in
the region of 1 GeV in deuteron photodisintegration γ d → pn

(see Ref. [80] and references therein). A recent analysis of
available data on pure hadronic reactions, that is, dd → 3Hp

and dp → dp at large fixed scattering angles θcm ∼ 60◦–90◦
also shows a similar onset of CCR scaling in the GeV region
[81]. The internal nucleon momenta that correspond to the
observed onset of CCR scaling are about 1 GeV/c for the
γ d → pn reaction and ∼0.5 GeV/c in the dd → 3Hp and
dp → dp reactions. These large momenta reflect the hardness
of those reactions and can be considered as a criterion for the
scaling regime.

The pd → {pp}sn and the pd → dp processes are consid-
ered here at energies that are very far from those where CCR
are usually applied. Nevertheless, in the region between the
�(1232) and �(1920) resonances, a test for a possible CCR
scaling behavior is meaningful, because the internal momenta
in the deuteron and the diproton in these reactions reach
large values of q ∼ 0.5 GeV/c. (For the ONE mechanism,
this corresponds to Tp = 1.5 GeV.) In both reactions, the
total number of quarks in the initial and final states is 18;
therefore one should expect an exponent of n = 16. A fit
in the energy range Tp = 1–2 GeV to the pd → dp data and
the previously published pd → {pp}sn data [25] at θcm =
172◦–180◦ gave an exponent of n � 12.9 [67]. The deviation
from the expected asymptotic value n = 16 was attributed to
diquark-cluster configurations in free nucleons of deuteron
and diproton. If the momentum transfer is not large enough
to resolve the intrinsic structure of the diquarks, these would
act as point-like objects, thereby lowering the expected expo-
nent n.

Our fits, shown in Fig. 20, were performed at fixed
angle θcm = 180◦ in the region 0.95–2 GeV and yield expo-
nents of n = 11.88 ± 0.53 (χ2/ndf = 56/4) for the pd →
{pp}sn reaction and n = 11.70 ± 0.32 (χ2/ndf = 18/9) for
the pd → dp process. Since the χ2/ndf are rather large,
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FIG. 20. Differential cross section ln (dσ/dt) as a function of
ln (s) for pd backward elastic scattering and the pd → {pp}sn

reaction. The previously obtained data of Ref. [25] are shown by open
circles (◦), and the new data are shown by bullets (•). The fits in the
range 0.95–2.0 GeV for pd backward elastic scattering and pd →
{pp}sn yield exponents of n = 11.70 ± 0.32 (χ 2/ndf = 18/9) and
n = 11.88 ± 0.53 (χ 2/ndf = 56/4), respectively. The upper scale
indicates the incident proton beam energy.

realistic uncertainties of the two exponents are considerably
larger by factors of 4 and 2, respectively, compared to those
listed previously. The obtained exponents are within errors
the same for both reactions, and are in the CCR ballpark.
Here we recall that CCR experiments for πN , KN , K̄N ,
and NN scattering have been confirmed within 1–1.5 units
[79].

D. Related topics

The study of hard pd interactions in the GeV region
induced in the past several fruitful ideas. When studying
the quasielastic knock-out of fast deuterons from nuclei by
protons at 675 MeV, for instance, a hypothesis about density
fluctuations of nuclear matter was supposed in Ref. [82]. This
idea stimulated an intensive search for fluctons (or, in modern
language, multiquark configurations) in nuclei and led to the
observation of cumulative effects [4] (for a recent review, see
Ref. [5]). The possibility to search for NN∗ components in
the deuteron had been related also to pd backward elastic
scattering [83]. Furthermore, the possible formation of other
exotic objects in the intermediate state, like three-baryon
resonances [17] and color strings [84], was also discussed
in conjunction with pd backward elastic scattering in the GeV
region.

The contribution of these ingredients, however, is strongly
model dependent and, despite the many efforts undertaken,
well-established results were not obtained. However, the
excitation of well-known resonances, like the � isobar, plays
an important role in these collisions. The expected contribution
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of three-baryon resonances, introduced as an attempt to
solve the T20 puzzle in pd backward elastic scattering,
was significantly reduced after a more careful analysis of
the �(1232) isobar contribution was carried out [85]. The
�-isobar excitation, caused by the long- and medium-range
interaction, complicates the study of short-range properties
of few-nucleon systems. Studies of the breakup reaction
with a diproton in the final state, in which the � and N∗
contributions are suppressed by isospin invariance, could
reveal the aforementioned aspects of the short-range dynamics
in pd collisions.

The results of the analysis performed within the conven-
tional meson-baryon picture in this work and in Ref. [26]
show that non-nucleonic degrees of freedom yield rather
small contributions in the GeV region. At moderate energies,
but large enough to test the region of the NN core via the
ONE mechanism, the agreement between theory and data on
unpolarized cross sections can be considered to be almost
quantitative. The �(1232) still dominates at these energies.
This mechanism realizes the contribution of a special type
of three-body force, whose relative contribution at lower
energies is much smaller and rather uncertain [20,86]. One
may conclude that the pd → {pp}sn reaction at 0.5–1.0 GeV
offers a new tool for the study of this type of three-body
force, as discussed in Ref. [87]. At higher energies the
agreement is worse; nevertheless, one observes that better
phenomenological NN potentials lead to a better agreement
with the experimental data on the pd → {pp}sn reaction
[26]. In general, three-body reactions allow one to test
those properties of the interaction between nucleons that are
absent in two-body NN data, for example, high-momentum
components of the NN wave functions and three-body forces.
As suggested in Ref. [26] and confirmed here by the more
precise new data, high-momentum components in the deuteron
and the diproton appear to be rather weak.

Very similar arguments were applied to motivate investi-
gations of other reactions with the formation of a diproton in
the final state [88–90]. These are pp → {pp}sπ0 and pp →
{pp}sγ , investigated at several hundred MeV in kinematics of
pp → dπ+ and pn → dγ , respectively. Like in the present
study, the �-isobar contributions were expected to be signif-
icantly suppressed compared to the corresponding reactions
with a final deuteron due to general symmetry properties. But
the measurements [88–90] show pronounced enhancements of
the cross sections in the � region. Presumably, these results
also indicate that high-momentum components in the NN

wave functions are rather weak [91].
Under the assumption that the ONE mechanism dominates

at energies above the �(1232)-isobar region (Tp > 1.5 GeV)
the observed small ratio r ≈ 10−2, given in Eq. (4), implies
that triplet pn pairs (deuterons) with high internal momenta
q = 0.5–0.6 GeV/c occur much more often than singlet {pp}s
pairs. A similar finding was recently reported with respect
to correlated NN pairs in nuclei [6] in the analysis of
nuclear reactions (p, ppn) in Refs. [92,93] and in the (e, e′pp)
and (e, e′pn) reactions at high transferred momenta [94].
Calculations of two-nucleon momentum distributions for the
ground states of the lightest nuclei are in agreement with this
conjecture [95].

V. SUMMARY AND CONCLUSIONS

The pd → {pp}sn reaction has been studied in the energy
range 0.5–2.0 GeV in a kinematics similar to that of pd

backward elastic scattering. The cross section of the deuteron
breakup reaction with a diproton in the final state was found
to be about two orders of magnitude smaller than the latter.
The high statistics obtained at beam energies of 0.5, 0.8, 1.1,
1.4, and 1.97 GeV allowed us to determine the dependence of
the differential cross section on the diproton excitation energy
Epp, on the proton emission angle θk in the rest frame of the
proton pair, and on the neutron emission angle θn. For Epp less
than 3 MeV the distributions of Epp (Fig. 10) and θk (Fig. 11)
are caused by the final-state interaction between the protons
and are used here to validate the dominance of the 1S0 pp state.

The shape of the energy dependence of the measured dif-
ferential cross section of the pd → {pp}sn reaction obtained
at θn = 180◦ is similar to the one of pd backward elastic
scattering. Both processes exhibit a decrease of the cross
section in the energy range ∼0.7–1.4 GeV by one order of
magnitude with a smaller decrease at the higher energies. In
the angular range from 168◦ to 180◦ the differential cross
sections change smoothly with θn and exhibit only a small
variation of the slope near θn = 180◦ as a function of energy.

The theoretical analysis shows that the ONE + SS + �

model with rescatterings in the initial and final states allows
one to describe reasonably well the obtained pd → {pp}sn
differential cross section when a rather soft short-distance NN

potential is used, like the CD-Bonn potential. The results of
calculations [26] performed within the same model, but with
harder NN potentials, like the Paris or the RSC potentials, are
clearly contradicting the data. This observation, first described
in Ref. [26] and confirmed here by the new high-statistics
data, constitutes the most important finding of the study of the
pd → {pp}sn reaction.

The excitation of a �(1232) in the intermediate state
represents a contribution of a three-body force to the pd →
{pp}sn reaction. This contribution turned out to become
important at energies of 0.54–1.0 GeV due to the node in
the ONE amplitude (see Fig. 16), located in this reaction
at ≈0.8 GeV, which is caused by the repulsive NN core
in the 1S0 state. One should note, however, that neither
the � mechanism alone nor the separate ONE mechanism
provides an agreement with the experimental data below
1 GeV. Only their coherent sum allows one to describe the
data. An analysis within the OPE model with the subprocess
π0d → pn confirms independently the dominance of the
�(1232) isobar contribution at energies below 1 GeV. Above
1 GeV, the OPE model accounts for the contribution of heavier
nucleon isobars, but underestimates the absolute value of the
measured cross section at ∼1–2 GeV. In accordance with the
results of the ONE + SS + � calculations, this implies that
the ONE contribution cannot be neglected at higher energies
of 1–2 GeV.

In view of high internal momenta q ∼ 0.5–0.6 GeV/c

probed by the ONE mechanism in this energy region, it is
important to gain more insight into the ONE contribution by
independent measurements. The planned measurements of the
tensor analyzing power T20 and spin correlation Cy,y of the
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�p �d → {pp}sn reaction could clarify further the underlying
dynamics of this process and shed light on the role of the ONE
mechanism [96].
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APPENDIX: CONTRIBUTION OF P WAVES TO ONE

We write the deuteron breakup reaction pd → {pp}sn
with the c.m. three-momenta and polarizations indicated in
parentheses,

p(p1, σ1) + d(Pd , λd ) → p(p′
1, σ

′
1) + p(p′

2, σ
′
2) + n(pn, σn).

(A1)

The general expression for the invariant cross section of the
reaction is

dσ = (2π )4δ4(Pi − Pf )
1

4I
|Af i |2

× d3p′
1

2E′
1(2π )3

d3p′
2

2E′
2(2π )3

d3pn

2En(2π )3
. (A2)

|Af i |2 denotes the squared spin-averaged reaction am-
plitude, and Pi and Pf are the total four-momenta of
the initial and final system of particles, respectively. I =√

(E1Ed − p1Pd )2 − m2M2
d , where Md and m are the masses

of the deuteron and the nucleon, Ei = √
p2

i + m2 , E′
i =√

p′2
i + m2, and Ed =

√
P2

d + M2
d . Integrating Eq. (A2) over

the three-momentum p′
2 and the energy En, the differential

cross section reads
dσ

dk2d	kd	n

= pn

p1

k

(4π )5sEk

|Af i |2. (A3)

Here k denotes the relative momentum in the final proton pair,
Ek = k2/m is the kinetic energy in the c.m. system of the pair,
and s is the invariant mass of the p + d system. To obtain
the differential cross section dσ/d	n, one has to integrate
Eq. (A3) over k2 from 0 to the maximum momentum squared
k2

max and over all directions of the momentum k. Due to the
identity of the final protons, when performing integration over
d	k within the full 4π solid angle, the right-hand side of
Eq. (A3) has to be multiplied by a factor of 1

2 .
Only the 1S0 state of the final pp pair was taken into account

in Ref. [26]. In the following, we evaluate the contribution
of P waves in the final state of the two protons under the
assumption that only the ONE mechanism is present in the
pd → {pp}sn reaction. According to Ref. [22] where a general
formalism for this mechanism was developed in the plane wave

approximation, the spin-averaged squared matrix element can
be written as

|Af i |2 = 1

6

∑
λdσ1σ

′
1σ

′
2σn

|Af i |2

= Ed (E2 + E′
n)εp(q)

16πE2
2

[
u2

0(q) + u2
2(q)

]
F (q′, k). (A4)

Here εp(q) =
√

m2 + q2; u0(q) and u2(q) are the S- and
D-wave components of the deuteron wave function; Ed , E2,
and En are the total energies of the deuteron, the intermediate
proton, and the final neutron in the c.m. system of the reaction;
q is the internal momentum in the deuteron; and q ′ is the
off-shell relative momentum in the proton pair and k its on-
shell momentum. The internal momenta q and q ′ are related
to the momenta of initial and final particles according to the
relativistic kinematics. The function F (q′, k) can be written
via the amplitude of elastic pp scattering Tpp(q′, k) in the
form

F (q′, k) =
∑
σ ′

1σ ′
2

σ1σ2

∣∣T σ ′
1σ

′
2

NNσ1σ2
(q′, k)

∣∣2

=
∑

JLL′J̃ L̃L̃′Sl

N 2
pp(L, S)tJS

LL′(q ′, k)
(
t J̃ S

L̃L̃′(q
′, k)

)∗

×CL̃0
L0l0C

L̃′0
L′0l0(2J + 1)(2J̃ + 1)(2l + 1)

×
√

(2L + 1)(2L′ + 1)

{
L̃ L l

J J̃ S

}{
L̃′ L′ l

J J̃ S

}
×Pl(q′k/q ′k), (A5)

where Npp(L, S) = 1 + (−1)L+S is the combinatorial factor
for two protons; the braces stand for the usual notation of 6j

symbols. C
JMJ

LMlm is the Clebsh-Gordan coefficient, and Pl is
the Legendre polynomial of lth order. tJS

LL′(q ′, k) is the partial
t matrix of pp scattering for the transition L → L′ in the
state with spin S and total angular momentum J . The function
F(q’, k) in Eq. (A5) at q ′ = k describes the differential cross
section of pp scattering. As seen from Eq. (A5), the states
with different spins S do not interfere in the cross section. This
is a consequence of the total angular momentum J and parity
conservation. Therefore, it is reasonable to separate transitions
in singlet (S = 0) and triplet (S = 1) channels.

Let us now consider the relative contributions of the spin-
singlet 1S0 and spin-triplet waves 3P0, 3P1, and 3P2 for Emax

pp =
3 MeV. For simplicity, we consider collinear kinematics with
θn = 180◦. In this case, the direction of the vector q′ coincides
with the beam direction; therefore, the angle between q′ and
k is equivalent to θk , which is the angle between k and the
total diproton momentum. Thus, the squared transition matrix
element in Eq. (A4) can be written as

|Af i |2 =
∑

l

Cl(2l + 1)Pl(cos θk), (A6)

where the coefficients Cl can be deduced from Eq. (A5). The
angular momentum l takes the values 0, 1, or 2. One can
find that l = 0 corresponds to the following combinations of
partial t matrices tJS

LL′(q ′, k): 1S0 × 1S0, 3P0 × 3P0,3P1 × 3P1,
and 3P2 × 3P2, each of them leading to an isotropic distribution
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over cos θk . The value l = 1 corresponds to the combinations
3P0 × 3P1, 3P1 × 3P0, 3P1 × 3P1, 3P1 × 3P2, 3P2 × 3P1, and
3P2 × 3P2. At last, l = 2 comes from the combinations 3P1 ×
3P1, 3P1 × 3P2, 3P2 × 3P1, and 3P2 × 3P2. One can see from
Eq. (A4) that for P waves the Clebsh-Gordan coefficients CL̃0

L0l0

and CL̃′0
L′0l0 are reduced to C10

1010 = 0. Therefore, the coefficient
in front of P1(cos θ ) in Eqs. (A4) and (A6) reads C1 = 0. The
only nonisotropic term for the ONE mechanism is given by
l = 2. In a numerical calculations for the 1S0- and P -wave scat-
tering amplitudes, we used separable representations of the t

matrices from Ref. [97] obtained for the CD-Bonn potential. At

Epp = 3 MeV and l = 2, we found the following ratios at the
different beam energies, C2/C0 = 0.0022 (0.5 GeV), 0.0748
(0.8 GeV), 0.0164 (1.1 GeV), 0.0048 (1.4 GeV), and 0.002
(1.97 GeV). The experimentally determined ratios C2/C0 are
listed in Table IV. The P -wave contributions to the isotropic
part of the squared matrix element of Eq. (A6), that is, to the
coefficient C0, are 0.007, 0.229, 0.053, 0.016, and 0.007 at the
same energies. The large increase of the C2/C0 ratio at 0.8 GeV
originates from the vanishing half-off shell t(q, k)(1S0) matrix
at this energy, but does not occur in the other mechanisms,
where such nodes do not exist.
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