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A B S T R A C T

Application of the exchange-striction model for the calculation of the magnetic properties of antiferro (AFM) -
and ferromagnetic (FM) phases of the iron-rhodium alloy is proposed. The following properties of the anti-
ferromagnetic phase have been calculated and compared with the experimental data: the temperature de-
pendences of the sublattice magnetization, the relative change in volume and entropy, and the pressure de-
pendence of the Néel temperature. For the ferromagnetic phase, the temperature dependence of the
magnetization, the dependence of the volume and entropy on temperature, and the dependence of the Curie
temperature on pressure were calculated. A satisfactory agreement between the results of calculations and ex-
periment has been obtained. The reasons for the AFM-FM phase transition in the iron-rhodium alloy are dis-
cussed.

1. Introduction

With increasing temperature, the ordered Fe50Rh50 alloy undergoes
a first-order phase transition from the antiferromagnetic (AFM) to the
ferromagnetic (FM) phase [1,2]. This transition occurs at a temperature
TN in the temperature range from RT to ∼400 K. The transition tem-
perature depends strongly on the specific composition and the presence
of defects in the crystal structure [3,4]. The transition is accompanied
by an increase in volume of about 1%, while the crystal structure of B2
(bcc, CsCl type) does not change [5–7]. Moreover, some theoretical
calculations show [8,9] that an orthorhombic structure in the AFM
phase can be stable with the energy that is by several meV/atom less
than the energy of the cubic B2 structure.

The maximal magnetocaloric effect (MCE) is observed in equiatomic
FeRh alloys [4,10–13]. The values of the isothermal variation of the
magnetic part of the entropy ΔSM and the adiabatic temperature change
ΔT reach values of up to 20 J kg−1K−1 and 13 K [10], in magnetic fields
of 2 T, which is 3 times larger than the values of MCE in pure gadoli-
nium. The value of MCE in FeRh alloys is 1.5 times greater than in other
alloys with giant MCE known today: Gd5Si4-xGex [14], La (FexSi1-x)
[15], MnFeP (As, Ge) [16].

To clarify the reasons of the giant MCE in FeRh alloys, it is necessary
to carry out complex experimental and theoretical studies of the first-
order magnetic phase transition. The theory of phase transitions of the
first order was proposed by Kittel [17] (transitions with the inversion of
the exchange interaction), and also by Bean and Rodbell [18].

Within the framework of these theories, it is shown that the cause of
a first-order phase transition is a strong change in the exchange inter-
actions and elastic energy with a change in the crystal lattice para-
meter. The model considering this mechanism of the magnetic phase
transition is called the exchange-striction model and proposed by Bean
and Rodbell [18]. In this paper, we consider the application of the
exchange-striction model (ESM) [18] to explain the magnetic properties
of the iron-rhodium compound.

2. Theoretical model

Due to the large values of magneto-volume effects (the dependence
of the volume on the magnitude of the magnetization) and the strong
dependence of the Néel and Curie temperatures on pressure in FeeRh
alloys [7,19] it is possible to develop the ESM of a ferromagnet taking
into account the dependence of Curie temperature on the volume
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[20–23]. We used a version of the model developed earlier by the au-
thors [24–26]. The main considerations for AFM and FM phases are
presented in the subsections below.

2.1. Calculation of the AFM phase properties

According to the experimental data [27–29] and theoretical calcu-
lations [30,31], the magnetic moment of rhodium atoms in the AFM
phase is zero. Therefore, it is assumed that the AFM ordering is formed
by iron atoms. In the present work, FeRh is considered as an equiatomic
ordered type CsCl alloy with a bcc lattice.

The nonequilibrium thermodynamic potential (model free energy)
of the antiferromagnetic phase can be written as [24,32]:
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In Eq. (1): the first four terms are the contributions of magnetic
(exchange) interactions in the approximation of the theory of the ef-
fective (molecular) field [24,32], the terms 5 and 6 are the contribu-
tions of bulk elastic deformations in the presence of all-round com-
pression [24,25]. The last term is the phonon contribution in the Debye-
Grüneisen approximation. In addition, this term takes into account the
thermal expansion of the lattice through the dependence of the Debye
temperature on volume [25]. In the model used, only the exchange
integral between the sublattices is assumed to depend on volume.

Also, in Eq. (1):
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y1, y2 - the ratio of the energy of the magnetic moment of an atom of
type 1 or 2 in the effective (molecular) field acting on this atom from
the surrounding atoms, to the thermal energy kT, s is a magnetic ion
spin, μ is a Bohr magneton, H is the external magnetic field, e are the
unit vectors of the direction of magnetization of AFM sublattices, σ1 and
σ2 are the reduced magnetizations of the AFM sublattices, J11 > 0 and
J12 < 0 are the intra-sublattice and inter-sublattice exchange integrals
of the antiferromagnet, Θ is the Debye temperature, B is the modulus of
all-round compression, P is pressure, γ and Γ are the constants of the
magnetoelastic interaction and Grüneisen one, respectively, ω is the
relative volume change (V), D (Θ/T) is the Debye function, n is the
number of atoms per the unit volume for one sublattice of the anti-
ferromagnet (half of the iron atoms per the unit volume of FeRh alloy),
N is the total number of atoms per the unit volume of the alloy
(N=4n).

From the condition of the minimum of the thermodynamic potential
(TP) Eq. (1) with respect to σ1, σ2 and ω, the equilibrium state equa-
tions for the magnetizations of the sublattices and the relative change in
volume ω can be obtained. When H=0, ⋅ = −e e( ) 11 2 , σ1= σ2= σ,
y1= y2= y, these equations have the form:
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In Eq. (2) Bs(y) is the Brillouin function for the spin s, and σ is the

reduced magnetization of the AFM sublattice, that is, the magnetiza-
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taking into account the magnetoelastic interaction.
In Eq. (3) N is the total number of atoms per unit volume of the

alloy. The first term in Eq. (3) (for γ > 0) is a negative spontaneous
volume magnetostriction (SVM). The second term is the usual thermal
expansion. The zero value of ω corresponds to the paramagnetic phase
(σ=0) at T=0 and P=0. In the model used, a negative SVM is
adopted, which is due to the fact that only in this case TN increases with
the application of pressure. A negative spontaneous volume magne-
tostriction indicates that the volume in the magnetically ordered (an-
tiferromagnetic) state is smaller than in the paramagnetic state.

By the formulas Eqs. (1)–(3), the following dependences can be
determined: the dependence of σ (T), the dependence of the Néel
temperature on pressure, the temperature dependence of the magnetic
part of the entropy, and ω (T). The equilibrium TP for given T, P, and H
can be obtained using Eqs. (1)–(3). In this case, the numerical values of
the parameters J11, J12, Θ, Γ, γ, B, s, etc. are given on the basis of known
experimental data.

From the equilibrium value of the TP Eq. (1), taking into account
Eqs. (2) and (3), the following relations can be obtained for the mag-
netic part of the entropy of the AFM phase:
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2
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and the entropy of the lattice (phonons) (see also [21]):
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Eq. (2–5) were used in the present work to calculate the magnetic
properties of FeRh alloy.

2.2. Calculation of the FM phase properties

In this paper we consider FeRh with two sublattices of atoms: a
sublattice of Rh atoms with reduced magnetization σRh and a sublattice
of Fe atoms with reduced magnetization σFe. This is an equiatomic or-
dered alloy with magnetic Fe atoms (spin sFe= 3/2) and Rh (spin
sRh= 1/2).

The thermodynamic potential of the FM phase has the form:
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Jij
f are the exchange integrals between an atom of type i (where

i=1 means Rh, i=2 means Fe) and all atoms of type j (where j=1
means Rh, j=2 means Fe) in the FM phase. N1 and N2 are the number
of atoms per unit volume for Rh and Fe sublattices, respectively. N1 =
N2 = N/2. From the condition of the minimum of the TP Eq. (6), the
equilibrium equations of state for the magnetic subsystem and volume
can be obtained from the magnetizations of the sublattices σRh, σFe and
ω:

= =σ B (y ), σ B (y )Rh s 3 Fe s 4Rh Fe (7)
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The appropriate formula can be obtained for the magnetic part of
the entropy of the FM phase:

= − + −S 1
2
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The entropy of the FM phase of FeRh alloy is also contributed by the
lattice entropy described by Eq. (5). However, the numerical values of
SF from Eq. (5) will differ for FM and AFM phases, since these phases
have different dependences ω (T) and Θ (T).

3. Application of the model for numerical calculation

By Eqs. (1)–(5) and Eqs. (6)–(9), numerical calculations of the fol-
lowing properties of FeRh alloy for the AFM and FM phases were car-
ried out: the temperature dependence of the reduced magnetization σ
(T), the temperature dependence of the relative change in volume and
magnetic entropy, and the dependence of the Néel temperature on
pressure.

In numerical calculations, the experimental results from the fol-
lowing papers [3,29–31,33] were used. From these papers, we have: а
≈ 3⋅10−8cm, N=2/а3= 7.4⋅1022 cm−3, В=2⋅1012 erg/cm3,
Θ0= 400 К, Γ=800 К, s= 3/2. In Ref. [3] it was theoretically shown
that for an ideal defect-free structure of stoichiometric, completely B2-
ordered FeRh, the AFM-FM transition point is observed at 495 K. When
additionally considering the effect of Fe “anti-site” defects of 2% value
transition temperature decreases to 415 K. The value of 400 K was used
as some conditional average value between the theoretical results of [3]
and the experimental results obtained on real samples. The constant Γ is
related to the dimensionless Grüneisen constant γ/by the relation γ/=
Γ/Θ0. According to Ref. [34], γ/≈ 2. In numerical calculations, the
following values of the parameters entering into Eqs. (1)–(3) are also
accepted: = × −J 2.35 1011

0 14 erg, = − × −J 2.98 1012
0 14 erg, = × −γ 1 10 12

erg.
The exchange integrals with index 0 in the AFM phase (J110 and

J120) are the exchange integrals J11 и J12 in the AFM phase at zero value
of the relative volume change ω. J110, J120 и J220 are the exchange
integrals in the ferromagnetic phase J11f, J12f and J22f at a zero value of
ω. The constant of magnetoelastic interaction determines the depen-
dence of the exchange integral J12 in the AFM phase on the volume. The
constants γ11, γ12 and γ22 determine the dependence of the exchange
integrals J11f, J12f and J22f, on volume, respectively.

In addition, for the FM phase we have: = × −J 7 10110
14 erg,

= × −J 3 10220
14 erg, = × −J 10.3 10120

14 erg, = ×B 2 1012 dyn/cm2,
Θ0= 400 К, Γ=800 К. Here, the elastic and thermal properties of the
paramagnetic AFM and FM phases are assumed to be the same (В, Θ0

and Γ are the same for these phases).
The parameters of the magnetoelastic interaction are chosen in such

a way as to have suitable (close to experiment) values of the volume
magnetostriction and the dependences of the ТС and ТN on the pressure:

= × −γ 1 1011
12 erg, = × −γ 0.4 1012

12 erg, = × −γ 0.1 1022
12 erg.

It should be noted that the choice of the numerical values of the
above-mentioned exchange integrals and constants of the magnetoe-
lastic interaction is ambiguous. Since there are no data from in-
dependent sources about their values, they were chosen in such a way
as to obtain the Neel and Curie temperatures close to those observed in
the experiment. The numerical values of the constants γ11, γ12, γ22 and γ
are chosen so as to obtain close to the experimentally observed values
of ω ∼10−2.

4. Results and discussion

Numerical calculations begin with the solution of the transcendental
equation Eq. (2) and the system of equations Eq. (7). Thus, the tem-
perature dependences of the reduced magnetization of one sublattice of
Fe atoms in the AFM phase of σ (T) from Eq. (2) are determined as well
as the dependences σRh (T) and σFe (T) from Eq. (7) for the FM phase.
The Néel temperature TN is determined from the condition σ (ТN)= 0,
and ТС is determined from the equalities σRh (ТС)= σFe (ТС)= 0. The
result of solving Eq. (2) and Eq. (7) is shown in Fig. 1. For a phase
transition at the Néel point (TN= 405 K), a first-order phase transition
is obtained, which is a consequence of the strong magnetoelastic in-
teraction in the AFM phase. For the FM phase, we get a second-order
phase transition at TC=670 K (Fig. 1).

Fig. 2 shows the results of calculating the temperature dependence
of one sublattice magnetization in the AFM phase
( = − =M M μs σ2 Fe

N
1 2 4 ) and the magnetization of the FM phase

( = +M μs σ μs σ2 2Rh Rh
N

Fe Fe
N

2 2 ). The result of the calculation (curve 2 in
Fig. 2) is in good agreement with the experimental data (Fig. 1 of [7]).
Our calculation of magnetization is performed at zero magnetic field.
Such a calculation represents the spontaneous magnetization of the
sample, since in our theory it is assumed that the sample is single-do-
main and there is no magnetic anisotropy. Such a calculation should be

Fig. 1. Temperature dependence of the reduced magnetization. 1 – reduced
magnetization of AFM phase σ(Т). 2 and 3 – numerical curves of σFe(Т) and
σRh(Т), respectively.

Fig. 2. Temperature dependence of magnetization. 1 – magnetization of Fe
atoms sublattice in the AFM phase ( = − =M M μs σN2 /4Fe1 2 ). 2 – magnetiza-
tion in the FM phase ( = +M μs σ μs σ2 2Rh Rh

N
Fe Fe

N
2 2 ).
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compared with the experiment, which allows one to exclude the in-
fluence of the domain structure and magnetic anisotropy. Approxi-
mately, these conditions can be obtained in larger magnetic fields.
Thus, we make a comparison with M (T) for a field of 14,500 Oe, shown
in Fig. 1 in Ref. [7]. A good agreement is observed both qualitatively
(according to the nature of the dependence) and according to the
maximum magnitude of the magnetization (after reduction to the same
units).

Using the known values of σ (T), σRh (T) and σFe (T), it is possible to
calculate the equilibrium values of different thermodynamic quantities.
Fig. 3 shows the temperature dependence of the relative change in
volume for the AFM, FM, and PM phases of the FeRh alloy calculated by
Eq. (3) and Eq. (8). With the above numerical values of the constants of
the magnetoelastic interaction, we obtained ≈ − × −ω K(0 ) 2 10AF

2 and
≈ × −ω K(0 ) 1 10F

2. At the same time, it should be noted that in tra-
ditional antiferromagnetic materials, such as terbium, there is a sharp
increase in the volume magnetostriction in the region of the FM-AFM
and AFM-PM transitions [35].

In the model used, negative SVM for the AMF phase and positive
SVM for the FM phase are adopted. This choice provides agreement
with the experimental results of [36] for the dependence of the Néel
and Curie temperatures (an increase in TN and a decrease in TC with
increasing pressure). Fig. 4 shows the result of calculating the depen-
dence of TN and TC on pressure.

The calculated values of the magnetic and total entropies of the AFM and FM phases of the FeRh alloy are shown in Fig. 5 and Fig. 6.
The calculation is performed using Eqs. (4) and (5) and Eq. (9). The
total entropy is the sum of the magnetic and lattice contributions. The
difference − ≈ ×S S 1.2 10F AF

6 erg/cm3 K for magnetic entropy, and
the difference − ≈ ×S S 2 10F AF

6 erg/cm3 K for the full entropy are
calculated for the temperature of 1st order magnetic phase transition
T= 350 K. One should note that the general character of the magnetic
part of entropy dependence on temperature is typical for anti-
ferromagnetic materials e.g. in single-crystalline Dy (see Fig. 4 of [37]).

In typical rare-earth antiferromagnets, thermodynamic potentials
include the free energy of the exchange interaction between the layers,
the magnetoelastic and the exchange energy. The heat released in the
magnetic field during the AFM-FM transition is released due to positive
contributions from changes in the exchange energy, magnetoelastic
energy and anisotropy energy, as well as a negative contribution due to
overcoming the energy barrier during the transition. Mainly, heat re-
lease is caused by a change in exchange and magnetoelastic energy (e.g.
in single-crystalline Dy (see Table 2 of [38]). Thus, it was also inter-
esting to calculate the thermodynamic potential as a function of tem-
perature within this model. The temperature dependence of the ther-
modynamic potentials of the AFM (Eq. (1)) and the FM phase (Eq. (6))

Fig. 3. Temperature dependence of the relative volume change: AFM (1), PM
(2), FM (3).

Fig. 4. Pressure dependences of the Néel and Curie temperatures.

Fig. 5. Temperature dependence of the magnetic entropy change for the AFM
(1) and FM (2) phases.

Fig. 6. Temperature dependence of the full entropy change for the AFM (1) and
FM (2) phases. The Néel temperature is marked with an arrow.
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(at H=0, P=0) is shown in Fig. 7.
The absence of an intersection of the temperature dependences of

thermodynamic potentials (Fig. 7) is due to the fact that the model does
not take into account the influence of the sublattice of Rh atoms in the
AFM phase. This in turn indicates that within the framework of this
model, the cause of the AFM - FM phase transition in FeRh is the ap-
pearance of a nonzero magnetic moment on Rh atoms with an increase
in the lattice volume in combination with a decrease in the absolute
value of the exchange integral J12.

The presented model satisfactorily describes some of the magnetic
and thermal properties of the FeRh alloy. The AFM - FM transition point
in FeRh alloys is extremely sensitive to the alloy composition and the
presence of defects in the alloy [3,4]. For example, ab initio calculations
[3] show the transition temperature value close to 495 К for stoichio-
metric completely B2-ordered FeRh alloy with an ideal structure
without any defects. “Anti-site” defects’ addings to the model used in
Ref. [3] leads to the decrease of transition temperature in FeRh. Thus,
the transition temperatures in real alloys turn out to be lower than
theoretical calculations show for ideal compositions. Experimental re-
sults show that the phase transition temperature in FeRh alloys ranges
from RT to 400 K. Such a large difference in transition points is due to
the strong dependence of TN on many factors, such as alloy composi-
tion, alloy preparation procedures, heat treatment, and the presence of
defects etc. In case of FeRh films, the transition temperature also de-
pends on the film thickness and the presence of lattice strain [39,40].
When applying our model to FeRh alloys at the end of the article, we
used a transition temperature of 350 K as the average of the range of
transition temperatures obtained experimentally on real alloys. The
estimates made are in good agreement with the experimental results
obtained for real FeRh alloys. The 1st order magnetic phase transition
(AFM-FM transition) occurs at∼ T=350 K. Then, according to our
estimates, at the transition point: ΔS= SF – SAF≈ 2×106 erg/cm3К,
ΔМ ≈ 130 emu/g= 1300G, ΔV/V≈ 1.7×10−2.

With these values from the Clausius-Clapeyron relations:

∂
∂

= = ∂
∂

= −T
P

V
V S

ω
S

H
T

S
M

Δ 1
Δ

Δ
Δ

, Δ
Δ

,AF C
(10)

where, HC is the critical magnetic field causing the AFM-FM transition,
one can obtain ≈ ×∂

∂
−8 10T

P
3AF K/atm, ≈ − ×∂

∂ 1.5 10H
T

3C Oe/K, which is
in good agreement with the experimental results [29].

5. Conclusions

The application of the exchange-striction model for calculation of

the magnetic properties (temperature dependence of the relative vo-
lume change, the dependence of TN and TC on pressure) of the AFM and
FM phases in FeeRh alloy is proposed. It is demonstrated that the as-
sumption of negative spontaneous volume magnetostriction in the AFM
state and positive spontaneous volume magnetostriction in the FM
phase leads to a good agreement between the theory and the experi-
mental data. The model is planned to be expanded taking into account
the contribution of the collectivized electrons of Rh and Fe atoms in the
AFM phase.

Acknowledgements

This work was supported in part IMP Neutron Material Complex
within state assignment of FASO of Russia (theme “Flux” no. AAAA-
A18-118020190112-8). Work in Advanced Magnetic TechnolC is sup-
ported bogies and Consulting, LLy Skolkovo Foundation, Russia.

References

[1] M. Fallot, Ann. Phys. (Paris) 10 (1938) 291.
[2] M. Fallot, R. Horcart, Rev. Sci. 77 (1939) 498.
[3] J.B. Staunton, R. Banerjee, M. dos S. Dias, A. Deak, L. Szunyogh, Fluctuating local

moments, itinerant electrons, and the magnetocaloric effect: compositional hy-
persensitivity of FeRh, Phys. Rev. B 89 (2014) 054427, , https://doi.org/10.1103/
PhysRevB.89.054427.

[4] V.I. Zverev, A.M. Saletsky, R.R. Gimaev, A.M. Tishin, T. Miyanaga, J.B. Staunton,
Influence of structural defects on the magnetocaloric effect in the vicinity of the first
order magnetic transition in Fe50.4Rh49.6, Appl. Phys. Lett. 108 (2016) 192405,
https://doi.org/10.1063/1.4949355.

[5] J.S. Kouvel, Unusual nature of the abrupt magnetic transition in FeRh and its
pseudobinary variants, J. Appl. Phys. 37 (1966) 1257–1258, https://doi.org/10.
1063/1.1708424.

[6] L. Muldawer, F. deBergevin, Antiferromagnetic‐ferromagnetic transformation in
FeRh, J. Chem. Phys. 35 (1961) 1904–1905, https://doi.org/10.1063/1.1732175.

[7] A.I. Zakharov, A.M. Kadomtseva, R.Z. Levitin, E.G. Ponyatovskii, Sov. Phys. JETP
19 (1964) 1348.

[8] N.A. Zarkevich, D.D. Johnson, FeRh ground state and martensitic transformation,
Phys. Rev. B 97 (2018) 014202, , https://doi.org/10.1103/PhysRevB.97.014202.

[9] N.A. Zarkevich, D.D. Johnson, Predicted Martensitic and Quantified Metamagnetic
Transformations in FeRh, ArXiv170203042 Cond-Mat Physicsphysics, (2017)
http://arxiv.org/abs/1702.03042 , Accessed date: 18 March 2017.

[10] M.P. Annaorazov, K.A. Asatryan, G. Myalikgulyev, S.A. Nikitin, A.M. Tishin,
A.L. Tyurin, Alloys of the Fe-Rh system as a new class of working material for
magnetic refrigerators, Cryogenics 32 (1992) 867–872, https://doi.org/10.1016/
0011-2275(92)90352-B.

[11] S.A. Nikitin, M.P. Annaorazov, V.Y. Bodriakov, A.L. Tyurin, Giant anomalies of the
Young's modulus and internal friction of FeRh alloy above the AFM-FM transition
point, Phys. Lett. 176 (1993) 275–278, https://doi.org/10.1016/0375-9601(93)
91050-F.

[12] S.A. Nikitin, G. Myalikgulyev, M.P. Annaorazov, A.L. Tyurin, R.W. Myndyev,
S.A. Akopyan, Giant elastocaloric effect in FeRh alloy, Phys. Lett. 171 (1992)
234–236, https://doi.org/10.1016/0375-9601(92)90432-L.

[13] S.A. Nikitin, G. Myalikgulyev, A.M. Tishin, M.P. Annaorazov, K.A. Asatryan,
A.L. Tyurin, The magnetocaloric effect in Fe49Rh51 compound, Phys. Lett. Sect.
Gen. At. Solid State Phys. 148 (1990) 363–366.

[14] V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in Gd5Si2Ge2,
Phys. Rev. Lett. 78 (1997) 4494–4497, https://doi.org/10.1103/PhysRevLett.78.
4494.

[15] S. Fujieda, A. Fujita, K. Fukamichi, Large magnetocaloric effect in La(FexSi1−x)13
itinerant-electron metamagnetic compounds, Appl. Phys. Lett. 81 (2002)
1276–1278, https://doi.org/10.1063/1.1498148.

[16] O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic
refrigerants for room-temperature applications, Nature 415 (2002) 150–152,
https://doi.org/10.1038/415150a.

[17] C. Kittel, Model of exchange-inversion magnetization, Phys. Rev. 120 (1960)
335–342, https://doi.org/10.1103/PhysRev.120.335.

[18] C.P. Bean, D.S. Rodbell, Magnetic disorder as a first-order phase transformation,
Phys. Rev. 126 (1962) 104–115, https://doi.org/10.1103/PhysRev.126.104.

[19] J.S. Kouvel, C.C. Hartelius, Anomalous magnetic moments and transformations in
the ordered alloy FeRh, J. Appl. Phys. 33 (1962) 1343–1344, https://doi.org/10.
1063/1.1728721.

[20] N.A. de Oliveira, P.J. von Ranke, Theoretical aspects of the magnetocaloric effect,
Phys. Rep. 489 (2010) 89–159, https://doi.org/10.1016/j.physrep.2009.12.006.

[21] N.P. Grazhdankina, Magnetic first order phase transitions, Phys.-Uspekhi. 11 (1969)
727–745.

[22] L.H. Lewis, C.H. Marrows, S. Langridge, Coupled magnetic, structural, and elec-
tronic phase transitions in FeRh, J. Phys. Appl. Phys. 49 (2016) 323002, https://
doi.org/10.1088/0022-3727/49/32/323002.

[23] E.A. Zavadskii, V.I. Valkov, Magnitnye Fazovie Perekhody (In Russian), Naukova
Dumka, Kiev, 1980.

Fig. 7. Temperature dependence of the thermodynamic potentials of the AFM
(1) and the FM phase (2).

E. Valiev, et al. Intermetallics 108 (2019) 81–86

85

http://refhub.elsevier.com/S0966-9795(18)30588-0/sref1
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref2
https://doi.org/10.1103/PhysRevB.89.054427
https://doi.org/10.1103/PhysRevB.89.054427
https://doi.org/10.1063/1.4949355
https://doi.org/10.1063/1.1708424
https://doi.org/10.1063/1.1708424
https://doi.org/10.1063/1.1732175
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref7
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref7
https://doi.org/10.1103/PhysRevB.97.014202
http://arxiv.org/abs/1702.03042
https://doi.org/10.1016/0011-2275(92)90352-B
https://doi.org/10.1016/0011-2275(92)90352-B
https://doi.org/10.1016/0375-9601(93)91050-F
https://doi.org/10.1016/0375-9601(93)91050-F
https://doi.org/10.1016/0375-9601(92)90432-L
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref13
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref13
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref13
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1103/PhysRevLett.78.4494
https://doi.org/10.1063/1.1498148
https://doi.org/10.1038/415150a
https://doi.org/10.1103/PhysRev.120.335
https://doi.org/10.1103/PhysRev.126.104
https://doi.org/10.1063/1.1728721
https://doi.org/10.1063/1.1728721
https://doi.org/10.1016/j.physrep.2009.12.006
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref21
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref21
https://doi.org/10.1088/0022-3727/49/32/323002
https://doi.org/10.1088/0022-3727/49/32/323002
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref23
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref23


[24] E.Z. Valiev, Isotropic magnetoelastic interaction in two-sublattice ferri- and anti-
ferromagnets: mean-field approximation for the Heisenberg model, Phys. Met.
Metallogr. 96 (2003) 121–127.

[25] E.Z. Valiev, V.A. Kazantsev, Magnetocaloric effect in La(FexS1 −x)13 ferro-
magnets, J. Exp. Theor. Phys. 113 (2011) 1000–1005, https://doi.org/10.1134/
S1063776111150118.

[26] E.Z. Valiev, A.Z. Menshikov, Linear and nonlinear magnetoelastic interactions in
the molecular field theory and invar anomalies, J. Magn. Magn Mater. 46 (1984)
199–206, https://doi.org/10.1016/0304-8853(84)90357-3.

[27] C. Hargitai, On the aligned magnetic moment of the Rh atoms in the FeRh alloy,
Phys. Lett. 17 (1965) 178–179, https://doi.org/10.1016/0031-9163(65)90467-1.

[28] N. Kunitomi, M. Kohgi, Y. Nakai, Diffuse scattering of neutrons in the anti-
ferromagnetic phase of FeRh, Phys. Lett. 37 (1971) 333–334, https://doi.org/10.
1016/0375-9601(71)90695-5.

[29] G. Shirane, C.W. Chen, P.A. Flinn, R. Nathans, Hyperfine fields and magnetic mo-
ments in the Fe–Rh system, J. Appl. Phys. 34 (1963) 1044–1045, https://doi.org/
10.1063/1.1729362.

[30] V.L. Moruzzi, P.M. Marcus, Structural effects on the magnetic properties of FePd
and FeRh, Phys. Rev. B 48 (1993) 16106–16108, https://doi.org/10.1103/
PhysRevB.48.16106.

[31] V.L. Moruzzi, P.M. Marcus, Antiferromagnetic-ferromagnetic transition in FeRh,
Phys. Rev. B 46 (1992) 2864–2873, https://doi.org/10.1103/PhysRevB.46.2864.

[32] S.V. Tyablikov, Methods in the Quantum Theory of Magnetism, Springer US,
Boston, MA, 1967, https://doi.org/10.1007/978-1-4899-7182-1.

[33] J.B. McKinnon, D. Melville, E.W. Lee, The antiferromagnetic-ferromagnetic

transition in iron-rhodium alloys, J. Phys. C Solid State Phys. 3 (1970) S46, https://
doi.org/10.1088/0022-3719/3/1S/306.

[34] J.M. Ziman, Principles of the Theory of Solids, Cambridge University Press.,
Cambridge, 1972, https://doi.org/10.1017/CBO9781139644075.

[35] S.A. Nikitin, A.M. Tishin, R.V. Bezdushnyi, Y.I. Spichkin, S.V. Red’ko, Effect of
uniform pressure on magnetization and magnetic phase diagram of terbium single
crystal, J. Magn. Magn Mater. 92 (1991) 397–404, https://doi.org/10.1016/0304-
8853(91)90854-4.

[36] R.C. Wayne, Pressure dependence of the magnetic transitions in Fe-Rh alloys, Phys.
Rev. 170 (1968) 523–527, https://doi.org/10.1103/PhysRev.170.523.

[37] S.A. Nikitin, A.M. Tishin, S.F. Savchenkova, Y.I. Spichkin, O.D. Chistykov,
S.V. Red’ko, Y.A. Nesterov, Magnetic part of specific heat in high-purity Dy single
crystal, J. Magn. Magn Mater. 96 (1991) 26–28, https://doi.org/10.1016/0304-
8853(91)90606-B.

[38] S.A. Nikitin, A.M. Tishin, P.I. Leontiev, Magnetocaloric effect and pressure influ-
ence on dysprosium single crystal magnetization in the range of magnetic phase
transition, J. Magn. Magn Mater. 92 (1991) 405–416, https://doi.org/10.1016/
0304-8853(91)90855-5.

[39] J. Chen, J. Ma, Y. Zhang, S. Bao, L. Wu, C. Liu, C.-W. Nan, Strain modulated fer-
romagnetic to antiferromagnetic transition in FeRh/BaTiO3 (001) heterostructures,
J. Appl. Phys. 121 (2017) 194101, https://doi.org/10.1063/1.4983361.

[40] T.A. Ostler, C. Barton, T. Thomson, G. Hrkac, Modeling the thickness dependence of
the magnetic phase transition temperature in thin FeRh films, Phys. Rev. B 95
(2017) 064415, , https://doi.org/10.1103/PhysRevB.95.064415.

E. Valiev, et al. Intermetallics 108 (2019) 81–86

86

http://refhub.elsevier.com/S0966-9795(18)30588-0/sref24
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref24
http://refhub.elsevier.com/S0966-9795(18)30588-0/sref24
https://doi.org/10.1134/S1063776111150118
https://doi.org/10.1134/S1063776111150118
https://doi.org/10.1016/0304-8853(84)90357-3
https://doi.org/10.1016/0031-9163(65)90467-1
https://doi.org/10.1016/0375-9601(71)90695-5
https://doi.org/10.1016/0375-9601(71)90695-5
https://doi.org/10.1063/1.1729362
https://doi.org/10.1063/1.1729362
https://doi.org/10.1103/PhysRevB.48.16106
https://doi.org/10.1103/PhysRevB.48.16106
https://doi.org/10.1103/PhysRevB.46.2864
https://doi.org/10.1007/978-1-4899-7182-1
https://doi.org/10.1088/0022-3719/3/1S/306
https://doi.org/10.1088/0022-3719/3/1S/306
https://doi.org/10.1017/CBO9781139644075
https://doi.org/10.1016/0304-8853(91)90854-4
https://doi.org/10.1016/0304-8853(91)90854-4
https://doi.org/10.1103/PhysRev.170.523
https://doi.org/10.1016/0304-8853(91)90606-B
https://doi.org/10.1016/0304-8853(91)90606-B
https://doi.org/10.1016/0304-8853(91)90855-5
https://doi.org/10.1016/0304-8853(91)90855-5
https://doi.org/10.1063/1.4983361
https://doi.org/10.1103/PhysRevB.95.064415

	Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties
	Introduction
	Theoretical model
	Calculation of the AFM phase properties
	Calculation of the FM phase properties

	Application of the model for numerical calculation
	Results and discussion
	Conclusions
	Acknowledgements
	References




