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ADVANCED MODAL LOGIC

This chapter is a continuation of the preceding one, and we begin it at the
place where the authors of Basic Modal Logic left us about fifteen years
ago. Concluding his historical overview, Krister Segerberg wrote: “Where
we stand today is difficult to say. Is the picture beginning to break up,
or is it just the contemporary observer’s perennial problem of putting his
own time into perspective?” So, where did modal logic of the 1970s stand?
Where does it stand now? Modal logicians working in philosophy, computer
science, artificial intelligence, linguistics or some other fields would probably
give different answers to these questions. Our interpretation of the history
of modal logic and view on its future is based upon understanding it as part
of mathematical logic.

Modal logicians of the First Wave constructed and studied modal systems
trying to formalize a few kinds of necessity-like and possibility-like opera-
tors. The industrialization of the Second Wave began with the discovery
of a deep connection between modal logics on the one hand and relational
and algebraic structures on the other, which opened the door for creating
many new systems of both artificial and natural origin. Other disciplines—
the foundations of mathematics, computer science, artificial intelligence,
etc.—brought (or rediscovered!) more. “This framework has had enormous
influence, not only just on the logic of necessity and possibility, but in other
areas as well. In particular, the ideas in this approach have been applied
to develop formalisms for describing many other kinds of structures and
processes in computer science, giving the subject applications that would
have probably surprised the subject’s founders and early detractors alike”
[Barwise and Moss 1996]. Even two or three mathematical objects may lead
to useful generalizations. It is no wonder then that this huge family of logics
gave rise to an abstract notion (or rather notions) of a modal logic, which
in turn put forward the problem of developing a general theory for it.

Big classes of modal systems were considered already in the 1950s, say
extensions of S5 [Scroggs 1951] or S4 [Dummett and Lemmon 1959]. Com-
pleteness theorems of Lemmon and Scott [1977],% Bull [1966b] and Segerberg
[1971] demonstrated that many logics, formerly investigated “piecewise”,

LOne of the celebrities in modal logic—the Gddel-L&b provability logic GL—was first
introduced by Segerberg [1971] as an “artificial” system under the name K4W.
2This book was written in 1966.
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have in fact very much in common and can be treated by the same meth-
ods. A need for a uniting theory became obvious. “There are two main
lacunae in recent work on modal logic: a lack of general results and a lack
of negative results. This or that logic is shown to have such and such a prop-
erty, but very little is known about the scope or bounds of the property.
Thus there are numerous results on completeness, decidability, finite model
property, compactness, etc., but very few general or negative results”, wrote
Fine [1974c]. The creation of duality theory between relational and algebraic
semantics ([Lemmon 1966a,b], [Goldblatt 1976a,b]), originated actually by
Jénsson and Tarski [1951], the establishment of the connection between
modal logics and varieties of modal algebras ([Kuznetsov 1971], Maksimova
and Rybakov [1974], [Blok 1976]), and between modal and first and higher
order languages ([Fine 1975b], [van Benthem 1983]) added those mathemat-
ical ingredients that were necessary to distinguish modal logic as a separate
branch of mathematical logic.

On the other hand, various particular systems became subjects of more
special disciplines, like provability logic, deontic logic, tense logic, etc., which
has found reflection in the corresponding chapters of this Handbook.

In the 1980s and 1990s modal logic was developing both “in width”
and “in depth”, which made it more difficult for us to select material for
this chapter. The expansion “in width” has brought in sight new interest-
ing types of modal operators, thus demonstrating again the great expres-
sive power of propositional modal languages. They include, for instance,
polyadic operators, graded modalities, the fixed point and difference op-
erators. We hope the corresponding systems will be considered in detail
elsewhere in the Handbook; in this chapter they are briefly discussed in the
appendix, where the reader can find enough references.

Instead of trying to cover the whole variety of existing types of modal
operators, we decided to restrict attention mainly to the classes of normal
(and quasi-normal) uni- and polymodal logics and follow “in depth” the
way taken by Bull and Segerberg in Basic Modal Logic, the more so that
this corresponds to our own scientific interests.

Having gone over from considering individual modal systems to big classes
of them, we are certainly interested in developing general methods suitable
for handling modal logics en masse. This somewhat changes the standard
set, of tools for dealing with logics and gives rise to new directions of research.
First, we are almost completely deprived of proof-theoretic methods like
Gentzen-style systems or natural deduction. Although proof theory has
been developed for a number of important modal logics, it can hardly be
extended to reasonably representative families. (Proof theory is discussed
in the chapter Sequent systems for modal logics; some references to recent
results can be found in the appendix.)
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In fact, modern modal logic is primarily based upon the frame-theoretic
and algebraic approaches. The link connecting syntactical representations
of logics and their semantics is general completeness theory which stems
from the pioneering results of Bull [1966b], Fine [1974c], Sahlqvist [1975],
Goldblatt and Thomason [1974]. Completeness theorems are usually the
first step in understanding various properties of logics, especially those that
have semantic or algebraic equivalents. A classical example is Maksimova’s
[1979] investigation of the interpolation property of normal modal logics
containing S4, or decidability results based on completeness with respect to
“good” classes of frames. Completeness theory provides means for axiom-
atizing logics determined by given frame classes and characterizes those of
them that are modal axiomatic.

Standard families of modal logics are endowed with the lattice structure
induced by the set-theoretic inclusion. This gives rise to another line of
studies in modal logic, addressing questions like “what are co-atoms in the
lattice?” (i.e., what are maximal consistent logics in the family?), “are there
infinite ascending chains?” (i.e., are all logics in the family finitely axioma-
tizable?), etc. From the algebraic standpoint a lattice of logics corresponds
to a lattice of subvarieties of some fixed variety of modal algebras, which
opens a way for a fruitful interface with a well-developed field in universal
algebra.

A striking connection between “geometrical” properties of modal formu-
las, completeness, axiomatizability and ()-prime elements in the lattice of
modal logics was discovered by Jankov [1963, 1969], Blok [1978, 1980b]
and Rautenberg [1979]. These observations gave an impetus to a project
of constructing frame-theoretic languages which are able to characterize
the “geometry” and “topology” of frames for modal logics ([Zakharyaschev
1984, 1992], [Wolter 1996d]) and thereby provide new tools for proving their
properties and clarifying the structure of their lattices.

One more interesting direction of studies, arising only when we deal with
big classes of logics, concerns the algorithmic problem of recognizing prop-
erties of (finitely axiomatizable) logics. Having undecidable finitely axiom-
atizable logics in a given class ([Thomason 1975a], [Shehtman 1978b]), it
is tempting to conjecture that non-trivial properties of logics in this class
are undecidable. However, unlike Rice’s Theorem in recursion theory, some
important properties turn out to be decidable, witness the decidability of
interpolation above S4 ([Maksimova 1979]). The machinery for proving the
undecidability of various properties (e.g. Kripke completeness and decid-
ability) was developed in [Thomason 1982] and [Chagrov 1990b,c].

Thomason [1982] proved the undecidability of Kripke completeness first
in the class of polymodal logics and then transferred it to that of unimodal
ones. In fact, Thomason’s embedding turns out to be an isomorphism from
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the lattice of logics with n necessity operators onto an interval in the lat-
tice of unimodal logics, preserving many standard properties ([Kracht and
Wolter 1997a]). Such embeddings are interesting not only from the theoret-
ical point of view but can also serve as a vehicle for reducing the study of
one class of logics to another. Perhaps the best known example of such a
reduction is the Godel translation of intuitionistic logic and its extensions
into normal modal logics above S4 ([Maksimova and Rybakov 1974], [Blok
1976], [Esakia 1979a,b]). We will take advantage of this translation to give
a brief survey of results in the field of superintuitionistic logics which actu-
ally were always studied in parallel with modal logics (see also Section 5 in
Intuitionistic Logic).

Listed above are the most important general directions in mathemati-
cal modal logic we are going to concentrate on in this chapter. They, of
course, do not cover the whole discipline. Other topics, for instance, modal
systems with quantifiers, the relationship between the propositional modal
language and the first (or higher) order classical language, or proof theory
are considered in other chapters of the Handbook.

It should be emphasized once again that the reader will find no discus-
sions of particular modal systems in this chapter. Modal logic is presented
here as a mathematical theory analyzing big families of logics and thereby
providing us with powerful methods for handling concrete ones. (In some
cases we illustrate technically complex methods by considering concrete log-
ics; for instance Rybakov’s [1994] technique of proving the decidability of
the admissibility problem for inference rules is explained only for GL.)
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1 UNIMODAL LOGICS

We begin by considering normal modal logics with one necessity operator,
which were introduced in Section 6 of Basic Modal Logic. Recall that each
such logic is a set of modal formulas (in the language with the primitive
connectives A, V, —, L, O) containing all classical tautologies, the modal
axiom O(p — ¢) — (Op — Og), and closed under substitution, modus
ponens and necessitation ¢/Ogp.

1.1 The lattice NExtK

First let us have a look at the class of normal modal logics from a purely
syntactic point of view. Given a normal modal logic Ly, we denote by
NExtLo the family of its normal extensions. NExtK is thus the class of all
normal modal logics. Each logic L in NExtLy can be obtained by adding
to Lo a set of modal formulas I' and taking the closure under the inference
rules mentioned above; in symbols this is denoted by

L=LyaT.

Formulas in I are called additional (or extra) axioms of L over Lo. Formulas
o and 1 are said to be deductively equivalent in NExtLg if Lo ® p = Lo ® 1.
For instance, Op — p and p — Op are deductively equivalent in NExtK,
both axiomatizing T, however (Op — p) < (p — ©Op) € K. (For more in-
formation on the relation between these formulas see [Chellas and Segerberg
1994] and [Williamson 1994].)

We distinguish between two kinds of derivations from assumptions in a
logic L € NExtK. For a formula ¢ and a set of formulas I', we write I' -, ¢
if there is a derivation of ¢ from formulas in L and I' with the help of only
modus ponens. In this case the standard deduction theorem—TI", ) b1, ¢ iff
' F ¥ — ¢p—holds. The fact of derivability of ¢ from I' in L using both
modus ponens and necessitation is denoted by I' F} ¢; in such a case we
say that ¢ is globally derivable® from I' in L. For this kind of derivation
we have the following variant of the deduction theorem which is proved by
induction on the length of derivations in the same manner as for classical
logic.

THEOREM 1.1 (Deduction) For every logic L € NExtK, all formulas ¢
and v, and all sets of formulas T,

F,¢FE¢iﬁ3mZOFF2DSm¢—>@,

where OS™p = 0% A ... AO™ and O™ is ¢ prefived by n bozes.

3This name is motivated by the semantical characterization of k7 to be given in
Theorem 1.19.
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It is to be noted that in general no upper bound for m can be computed
even for a decidable L (see Theorem 4.2). However, if the formula

tra, = 0<"p — Oy

is in L—such L is called n-transitive—then we can clearly take m = n. In
particular, for every L € NExtK4, I',¢ b3 o iff T+ OF¢y — ¢, where
0%+ = ¢» A 0. Moreover, a sort of conversion of this observation holds.

THEOREM 1.2 The following conditions are equivalent for every logic L in
NExtK:

(i) L is n-transitive, for some n < w;

(i) there exists a formula x(p,q) such that, for any @, ¥ and T,

L, B o iff TR x (¥, 0).

Proof The implication (i) = (ii) is clear. To prove the converse, observe
first that x(p,q) F3 x(p,q) and so x(p,q),p F; ¢. By Theorem 1.1, we
then have x(p,q) F; OS"p — ¢, for some n. Let ¢ = O""'p. Then
x(p,0"*'p) F; O%"p — O"F'p. And since p -}, O™ 'p, x(p, 0" 'p) € L.

Consequently, tra, € L. o

Remark. Note also that (i) is equivalent to the algebraic condition: the
variety of modal algebras for L has equationally definable principal congru-
ences. For more information on this and close results consult [Blok and
Pigozzi 1982].

The sum L; ® Ly and intersection Ly N Lo of logics Ly, Ly € NExtLj are
clearly logics in NExtLg as well. The former can be axiomatized simply by
joining the axioms of L; and Ls. To axiomatize the latter we require the
following definition. Given two formulas ¢(p1,...,pn) and ¥(p1,...,Pm)
(whose variables are in the lists p1,...,p, and pi,...,pm, respectively),
denote by Vi) the formula @(p1, - -, pa) V & (Pasts - > Prbom).

THEOREM 1.3 Let L1 = Lo ® {p; :i € I} and Ly = Lo {¢; : j € J}.
Then

Llr‘lLQ:LO@{Dm%MD”@bj:iEI, JjEJ, m,nZO}

Proof Denote by L the logic in the right-hand side of the equality to be
established and suppose that xy € L;NLs. Then for some m,n > 0 and some
finite I" and J' such that all ; and ¢}, for i € I', j € J', are substitution
instances of some ¢, and ¢, for i’ € I, j' € J, we have

DSm /\(P;_)XEL(), DS” /\ 1/J;_>X€L07
iel’ jeJ’



ADVANCED MODAL LOGIC 7

from which
AN (©FivOv)) - x e L

i€l jeJ’
0<k,I<m+n

and so x € L because Dkg@;VDll/Jg- is a substitution instance of Dkgairyﬂler.

Thus, Ly N L, C L. The converse inclusion is obvious. a

Although the sum of logics differs in general from their union, these two
operations have a few common important properties.

THEOREM 1.4 The operation ® is idempotent, commutative, associative
and distributes over N; the operation N distributes over (infinite) sums, i.e.,

Ln@PrLi=ErnL).

el i€l

It follows that (NExtLg, ®,N) is a complete distributive lattice, with Lg
and the inconsistent logic, i.e., the set For of all modal formulas, being its
zero and unit elements, respectively, and the set-theoretic C its correspond-
ing lattice order. Note, however, that & does not in general distribute over
infinite intersections of logics. For otherwise we would have

Keo-oLe (]| Keo'l)= (| Ko-OLaO0"L),
1<n<w 1<n<w

which is a contradiction, since the logic in the left-hand side is consistent
(D, to be more precise), while that in the right-hand side is not.

If we are interested in finding a simple (in one sense or another) syntactic
representation of a logic L € NExtLg, we can distinguish finite, recursive
and independent azriomatizations of L over Ly. The former two notions
mean that L = Ly @ I', for some finite or, respectively, recursive I', and
a set of axioms I' is independent over Lo if L # Lo & A for any proper
subset A of I'. In the case when Lg is K or any other finitely axiomatizable
over K logic, we may omit mentioning Ly and say simply that L is finitely
(recursively, independently) axiomatizable.

It is fairly easy to see that L is not finitely axiomatizable over Lg iff
there is an infinite sequence of logics Ly C Lo C ... in NExtLq such that
L =&,;., Li- This observation is known as Tarski’s criterion. (It is worth
noting that finite axiomatizability is not preserved under N. For example,
using Tarski’s criterion, one can show that D N (K @ Op V O-p) is not
finitely axiomatizable.) The recursive axiomatizability of a logic L, as was
observed by Craig [1953], is equivalent to the recursive enumerability of L.
As for independent axiomatizability, an interesting necessary condition can
be derived from [Kleyman 1984]. Suppose a normal modal logic L; has an
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independent axiomatization. Then, for every finitely axiomatizable normal
modal logic Ly C Ly, the interval of logics

[LQ,Ll] = {L S NExtK : L2 g L g Ll}

contains an immediate predecessor of L;. Using this condition Chagrov and
Zakharyaschev [1995a] constructed various logics in NExtK4, NExtS4 and
NExtGrz without independent axiomatizations.

To understand the structure of the lattice NExtLg it may be useful to
look for a set I' of formulas which is complete in the sense that its formulas
are able to axiomatize all logics in the class, and independent in the sense
that it contains no complete proper subsets. Such a set (if it exists) may be
called an aziomatic basis of NExtLy. The existence of an axiomatic basis
depends on whether every logic in the class can be represented as the sum
of “indecomposable” logics. A logic L € NExtLy is said to be @—irreducible
in NExt Ly if for any family {L; : i € I} of logics in NExtLg, L = @, L;
implies L = L; for some i € I. L is @-prime if for any family {L; : i € I},
L C ®iel L; only if there is ¢ € I such that L C L;. It is not hard to
see (using Theorem 1.4) that a logic is @—irreducible iff it is @—prime.
This does not hold, however, for the dual notions of [\-irreducible and (-
prime logics. We have only one implication in general: if L is (-prime (i.e.,
(Micr Li € L only if L; C L, for some i € I) then it is ()-irreducible (i.e.,
L = ey Li only if L = L;, for some i € I). A formula ¢ is said to be
prime in NExtLg if Ly ® ¢ is @—prime in NExtLg.

PROPOSITION 1.5 Suppose a set of formulas T is complete for NExtLg
and contains no distinct deductively equivalent in NExtLo formulas. Then
[ is an aziomatic basis for NExtLg iff every formula in U is prime.

Although the definitions above seem to be quite simple, in practice it
is not so easy to understand whether a given logic is @— or ()-prime, at
least at the syntactical level. However, these notions turn out to be closely
related to the following lattice-theoretic concept of splitting for which in the
next section we shall provide a semantic characterization.

A pair (Ly, L2) of logics in NExtLg is called a splitting pair in NExtLg
if it divides the lattice NExtLq into two disjoint parts: the filter NExt Lo
and the ideal [Lg, L1]. In this case we also say that L; splits and Ly cosplits
NExtLyg.

THEOREM 1.6 A logic Ly splits NExtLg iff it is (|—prime in NExtLg, and
Lo cosplits NExtLg iff it is @-prime in NExtLg. Moreover, the following
conditions are equivalent:

(i) (L1, L2) is a splitting pair in NExtLg;

(ii) Ly is (\-prime in NExtLo and Ly = (\{L € NExtLo: L € L,};

(iii) Lo is @-prime in NExtLo and L1 = @{L € NExtLy : L 2 L»}.
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Splittings were first introduced in lattice theory by Whitman [1943] and
McKenzie [1972] (see also [Day 1977], [Jipsen and Rose 1993]). Jankov
[1963, 1968b, 1969], Blok [1976] and Rautenberg [1977] started using split-
tings in non-classical logic.

A few standard normal modal logics are listed in Table 1. Note that
our notations are somewhat different from those used in Basic Modal logic.
(A* was introduced by Artemov; see [Shavrukov 1991]. The formulas B,
bounding depth of frames are defined in Section 15 of Basic Modal Logic.)

1.2 Semantics

The algebraic counterpart of a logic L € NExtK is the variety of modal
algebras validating L (for definitions consult Section 10 of Basic Modal
Logic). Conversely, each variety (equationally definable class) V of modal
algebras determines the normal modal logic LogV = {p : V2 € V A |= ¢}.
Thus we arrive at a dual isomorphism between the lattice NExtK and the
lattice of varieties of modal algebras, which makes it possible to exploit the
apparatus of universal algebra for studying modal logics.

It is often more convenient, however, to deal not with modal algebras
directly but with their relational representations discovered by Jénsson and
Tarski [1951] and now known as general frames. Each general frame § =
(W, R, P) is a hybrid of the usual Kripke frame (W, R) and the modal algebra
ST =(P,0,W,—,N,u,0,0) in which the operations O and < are uniquely
determined by the accessibility relation R: for every X € P C 2V,

OX ={zeW:Vy (zkRy -y € X)}, X =-0-X.

So, using general frames we can take advantage of both relational and alge-
braic semantics. To simplify notation, we denote general frames of the form
S= (W, R, 2W> by § = (W, R). Such frames will be called Kripke frames.
Given a class of frames C, we write LogC to denote the logic determined by
C, i.e., the set of formulas that are valid in all frames in C; it is called the
logic of C. If C consists of a single frame §, we write simply Logg.

Basic facts about duality between frames and algebras can be found in the
chapters Basic Modal Logic and Correspondence Theory. Here we remind
the reader of the definitions that will be important in what follows.

A frame 6 = (V,S,Q) is said to be a generated subframe of a frame
§=(W,R,P)if V C W is upward closed in §, i.e., z € V and xRy imply
yeV,S=R[Vand Q@ ={XNV :X € P}. The smallest generated
subframe & of § containing a set X C W is called the subframe generated
by X. A frame § is rooted if there is x € W—a root of §—such that the
subframe of § generated by {z} is § itself.
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KB =
K4 =
K5 =
Alt, =
D4 =
S4 =
GL =
Grz =
K4.1 =
K4.2 =
K4.3 =
S4.1 =
S4.2 =
S4.3 =
Triv =
Verum =
S5 =
K4B =
A~ =
Dum =
K4BW, =
K4BD, =
K4, =

KeOp—Op

Kobp—p

Kop—OO0p

Ko Op— O0p

Ko odp — Op

Ka®Op, VO(p = p2) V...VO(p A
K4pOT

K4pdp —p

K4 O(Op — p) — Op

Ko O(O(p—Op) —>p) —>p
K4 o O0p —» &Op
Ka4oO(pAOg) — O(pV <Oq)
K46 00O p —¢) vO(O%q — p)
S4 ¢ O00p — <0p

S4 ¢ <oOp — OOp

S4® O(0Op — ¢q) vV O(Og — p)
KapOp <« p

K4 o Op

S4dp— 0O0p

K4dp—OOCp

.- ADn = Pnt1)

GL ®0O0p — O(OFp — ¢) vO(Otq — p)
S4 ® O(O(p — Op) — p) — (¢Op — p)
K48 N\ Opi = Vocizj<n O0i A0 V ©p;)))

K4 o B,
KaeO"p — Omp,forl<m<n

Table 1. A list of standard normal modal logics.
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A map f from W onto V is a reduction (or p-morphism) of a frame
§=(W,R,P) to® = (V,S,Q) if the following three conditions are satisfied
for all z,y € W and X € @

(R1) xRy implies f(z)Sf(y);
(R2)  f(2)Sf(y) implies 3z € W (zRz A f(z) = f(y));
(R3) f1(X)eP.

The operations of reduction and generating subframes are relational coun-
terparts of the algebraic operations of forming subalgebras and homomor-
phic images, respectively, and so preserve validity.

A frame § = (W, R, P) is differentiated if, for any xz,y € W,

r=yiff VX eP (zeX & yeX).

§ is tight if
zRy iff VX € P (zx € OX — y € X).

Those frames that are both differentiated and tight are called refined. A
frame § is said to be compact if every subset X of P with the finite in-
tersection property (i.e., with (| X’ # @ for any finite subset X’ of X) has
non-empty intersection. Finally, refined and compact frames are called de-
scriptive. A characteristic property of a descriptive § is that it is isomorphic
to its bidual (F1),. The classes of all differentiated, tight, refined and de-
scriptive frames will be denoted by DF, T, R and D, respectively.

When representing frames in the form of diagrams, we denote by e ir-
reflexive points, by o reflexive ones, and by two-point clusters. An arrow
from z to y means that y is accessible from x. If the accessibility relation
is transitive, we draw arrows only to the immediate successors of z.

EXAMPLE 1.7 (Van Benthem 1979) Let § = (W, R, P) be the frame whose
underlying Kripke frame is shown in Fig. 1 (w + 1 sees only w and the
subframe generated by w is transitive) and X C W is in P iff either X is
finite and w ¢ X or X is cofinite in W and w € X. It is easy to see that
P is closed under N, — and <. Clearly, § is refined. Suppose X is a subset
of P with the finite intersection property. If X' contains a finite set then
obviously (X # 0. And if X consists of only infinite sets then w € (| X.
Thus, § is descriptive.

A frame § is said to be s-generated, > a cardinal, if its dual Zt is
a s-generated algebra.* Each modal logic L is determined by the free
finitely generated algebras in the corresponding variety, i.e., by the Tarski—
Lindenbaum (or canonical) algebras 2z (n) for L in the language with n <

4An algebra is said to be ¢-generated if it contains a set X of cardinality < 3¢ such
that the closure of X under the algebra’s operations coincides with its universe.
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nontransitive

: transitive:
w+lw 2 1 0.
e— 0 - e—>0—>0 !

w variables. Their duals are denoted by Fr(n) = (Wr(n), Rr(n), Pr(n))
and called the universal frames of rank n for L. Analogous notation and
terminology will be used for the free algebras 21 (3) with s generators.
Note that (Wg (), Rr()) is (isomorphic to) the canonical Kripke frame
for L with s variables (defined in Section 11 of Basic Modal Logic) and
Py, (5) is the collection of the truth-sets of formulas in the corresponding
canonical model. Unless otherwise stated, we will assume in what follows
that the language of the logics under consideration contains w variables.

An important property of the universal frame of rank s for L is that
every descriptive »/-generated frame for L, s’ < s, is a generated subframe
of §,(5). Thus, the more information about universal frames for L we have,
the deeper our knowledge about the structure of arbitrary frames for L and
thereby about L itself.

Although in general universal frames for modal logics are very compli-
cated, considerable progress was made in clarifying the structure of the
upper part (points of finite depth) of the universal frames of finite rank
for logics in NExtK4. The studies in this direction were started actually
by Segerberg [1971]. Shehtman [1978a] presented a general method of con-
structing the universal frames of finite rank for logics in NExtS4 with the
finite model property. Later similar results were obtained by other authors;
see e.g. [Bellissima 1985]. The structure of free finitely generated algebras
for S4 was investigated by Blok [1976].

Let us try to understand first the constitution of an arbitrary transitive
refined frame § = (W, R, P) with n generators G1,...,G,, € P. Define U
to be the valuation of the set of variables ¥ = {p1,...,p,} in § such that
xz | p; iff £ € G;. Say that points x and y are X-equivalent, x ~y y in
symbols, if the same variables in ¥ are true at them; for X, Y C W we
write X ~y Y if every point in X is ¥-equivalent to some point in Y and
vice versa. Let d(F) denote the depth® of §; if § is of infinite depth, we
write d(g) = oo. For d < d(§), W= and W>? are the sets of all points in §
of depth d and > d, respectively; W<¢, W<=9 etc. are defined analogously.
§=? is the subframe of § generated by W<=¢. The set of all successors
(predecessors) of points in a set X C W is denoted by X1 (respectively,

5Tn Section 15 of Basic Modal Logic d(§) was called the rank of .
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X|); in the transitive case X1 = X1 U X and X] = X] UX are then the
upward and downward closure operations. A set X is said to be a cover for
aset Y in Fif Y C X]. A point z is called an atom in § if {z} € P.

THEOREM 1.8 Suppose § = (W, R, P) is a transitive refined n-generated
frame, for some n < w. Then

(i) each cluster in § contains < 2™ points;

(ii) for every finite d < d(F), W=< is a cover for W2 and contains at
most ¢, (d) distinct clusters, where

(1) =27+ 2" — 1, cu(m+ 1) = cp(1) - 200 (M Fen(m),
(iii) every point of finite depth in § is an atom.

Proof (i) follows from the differentiatedness of § and the obvious fact that
precisely the same formulas (in py,...,p,) are true under ¥ at X-equivalent
points in the same cluster.

The proof of (ii) proceeds by induction on d. Let z € W>?. Since § is
transitive and W=¢ is finite (by the induction hypothesis), there exists a
non-empty upward closed in W>? set X (i.e., X = X1 N W>%) such that

x € X, points in X see exactly the same points of depth < d and either
Vuve XJweutNX w~yv (1)

or
Yu,v € X (u ~x v A "uRv). (2)

Such a set X is called d-cyclic; it is nondegenerate if (1) holds and degenerate
otherwise. One can readily show that the same formulas are true at X-
equivalent points in X. Since § is refined, X is then a cluster of depth
d+1. Thus, W>% C W=91] The upper bound for the number of distinct
clusters of depth d + 1 follows from the differentiatedness of § and the
definition of d-cyclic sets.

To establish (iii), for every point z of depth d + 1 one can construct
by induction on d a formula (expressing the definition of the d-cyclic set
containing z) which is true in § under U only at . For details consult
[Chagrov and Zakharyaschev 1997]. a

It is fairly easy now to construct the (generated) subframe Fg3 (n) of the
universal frame of rank n for K4 consisting of finite depth points. Indeed,
Ska(n) is n-generated, refined and so has the form as described in Theo-
rem 1.8. On the other hand, it is universal and contains any n-generated
descriptive frame as a generated subframe, which means roughly that it con-
tains all possible points of finite depth that can exist in n-generated refined
frames.
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Figure 2.

More precisely, assuming that each point is assigned the set of variables
in ¥ that are true at it, we begin constructing a frame ®xk4(n) by putting
at depth 1 in it 2" non-Y-equivalent degenerate clusters and 22° — 1 non-
Y-equivalent non-degenerate clusters with < 2" non-Y-equivalent points.
Suppose that 61%11 (n) is already constructed. Then for every antichain a of
clusters in B5%(n) containing at least one cluster of depth d and different
from a singleton with a non-degenerate cluster, we add to GSIS(‘i (n) copies
of all 2" 4+ 22" — 1 clusters of depth 1 so that they would be inaccessible
from each other and could see only the clusters in a and their successors.
And for every singleton a = {C'} with a non-degenerate cluster C, we add
to leg(i(n) copies of those clusters of depth 1 which are not X-equivalent to
any subset of C' (otherwise the frame will not be refined) so that again they
would be mutually inaccessible and could see only C' and its successors in
i ().

Let Mka(n) = (BGra(n),Uka(n)) be the resulting model (the relational
component of &k4(n) is completely determined by the construction and its
set of possible values is the collection of the truth-sets of formulas in Gx4(n)
under Uk 4(n)). It is not hard to show that Bk4(n) is atomic. Moreover, for
every point z in this frame one can construct a formula ¢(py,...,p,) such
that = £ ¢ and, for any frame §, § £ ¢ iff there is a generated subframe of §
reducible to the subframe of &x4(n) generated by z. It follows in particular
that ®x4(n) is refined. Thus, every QSIS(i(n) is a generated subframe of
Ska(n). On the other hand, by Theorem 1.8, Fka4(n) contains no clusters
of depth < d different from those in &% (n) and so Fg(n) is isomorphic to
®k4(n). It worth noting also that, since K4 has the finite model property,
it is characterized by §g3 (n), and so Fka(n) is isomorphic to the bidual of
By (n).

The universal frame §,(n) for an arbitrary consistent logic L in NExtK4
is a generated subframe of Fka(n). It can be constructed by removing
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from Fxa(n) those points at which some formulas in L are refuted (under
Vka(n)). For example, FS°(n) is obtained by removing from Fgy (n)
all irreflexive points and their predecessors. In other words, §55°(n) can
be constructed in the same way as Fgy (n) but using only non-degenerate
clusters. 3542(1) (the corresponding model, to be more exact) is shown in
Fig. 2, where © denotes the cluster with two points at one of which p; is
true. To construct F&o (n) and F&3°(n), we take only simple clusters and
degenerate clusters, respectively.

In general, this method of constructing universal frames does not work
for logics with nontransitive frames. However, using the fact that K is
characterized by the class of finite intransitive irreflexive trees (see Section
13 of Basic Modal Logic), in the same manner as above one can construct
an intransitive irreflexive model characterizing K and such that Fx(n) is
isomorphic to the bidual of the frame associated with this model.

Let us consider now the semantical meaning of splittings. In view of the
following observation we focus attention only on splittings by the logics of
finite rooted frames.

THEOREM 1.9 If Ly splits NExtLy and Ly has the finite model property
then Ly = Logg, for some finite rooted frame § validating Lg.

Proof Since Ls in the splitting pair (L1, Lo) is a proper extension of Lo,
there is a finite frame & such that ® = Ly and & [~ Ly. It follows that
Log® C L;. As we shall see later (Corollary 1.86), every extension of a
tabular logic is also tabular. So L; = Logg for some finite § = Lo. And

since L; is [-prime, § must be rooted. o

We say that a frame § splits NExt Lg if LogF splits NExtLy. The logic Lo
of the splitting pair (LogF, L2) is denoted by Lo/F and called the splitting
of NExtLg by §. This notation reflects the fact that Lo is the smallest logic
in NExtLy which is not validated by §.

EXAMPLE 1.10 We show that D = K/e. Recall that D = K ® T is
characterized by the class of serial frames (in which every point has a suc-
cessor). So if @ = L then L C Loge; otherwise no frame for L has a dead
end, which means that ¢T € L and D C L. The inconsistent logic For can
be represented as D/o.

To illustrate some applications of splittings we require a few definitions.
Given L € NExtLg, we say that the axiomatization problem for L above
Lg is decidable if the set {¢ : Lo @ ¢ = L} is recursive. L is strictly
Kripke complete above Ly if no other logic in NExtLg has exactly the same
Kripke frames as L. If all frames in a set F split NExtLg, we call the logic
P{Lo/F : § € F} the union-splitting of NExtLg and denote it by Lo/F.
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EXAMPLE 1.11 Grz is not a splitting of NExtS4. However, it is a union-
[e]

splitting: Grz = S4/{,}. S4.1 = S4/. A frame may split the
lattice NExtLo/F but not NExtLg: e.g. o splits NExtK/e but does not
split NExtK.

THEOREM 1.12 Suppose L € NExtLg and L = (... (Lo/F1)/ ...) ] Fn, for
a sequence JF1,...,Fy of sets of finite rooted frames.

(i) If F = U, Fi is finite and L is decidable then the aziomatization
problem for L above Ly is decidable. More precisely,

{p:Lowp=L}={peL:VFeF F#¥ ¢}

(ii) If L is Kripke complete then L is strictly Kripke complete above Ly.

(iii) The immediate predecessors of L in NExtLg are precisely the logics
LNLogs, for § € F such that § is not a reduct of a generated subframe of
another frame in F.

Proof (i) is left to the reader as an easy exercise.

(ii) Let L' be a logic in NExtLy with the same Kripke frames as L. Then
obviously L' C L. On the other hand, the frames in F do not validate L'
andso L C L'

(iii) If L' is an immediate predecessor of L in NExtLg then § | L', for
some § € F. Therefore, L' C LNLog§ C L and so L' = LN Logg. Suppose
now that § is not a reduct of a generated subframe of another frame in F
and LN LogE C L' € L. Then L' C Logd for some § € F, and hence
§ =3, L' = LN LogZ. a

As follows from Theorem 1.12 and Example 1.10, For has exactly two
immediate predecessors Verum = Loge and Triv = Logo (and each consis-
tent normal modal logic is contained in one of them). This result is known
as Makinson’s [1971] Theorem. Moreover, the axiomatization problem for
For is decidable, i.e., there is an algorithm which decides, given a formula
¢ whether K & ¢ is consistent. Likewise, since D = K @ < T is decidable,
there is an algorithm recognizing, given , whether D = K & ¢. We shall
see later in Section 4.4 that in fact not so many properties of logics are
decidable (e.g. the axiomatization problem for K @& =< T is undecidable;
see Theorem 4.15) and that Theorem 1.12 (i) provides the main method for
proving decidability results of this type.

To determine whether a finite rooted frame § = (W, R) splits NExt Ly,
we need the formulas defined below:

Ay = {ps = Cpy:z,ye W, zRy}U
{pz = =Opy 1z, y € W, ~zRy} U
{pe = —pyiz,y €W, z £y},
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U@:/\A@, 53203/\\/{pI2Z’EW}.

The meaning of 3z is explained by the following lemma, in which
O<¥p ={0"p:n < w}.

LEMMA 1.13 For any finite § with root r, the set of formulas {p,}UO<%§z
is satisfiable in a frame & iff there is a generated subframe $ of & reducible
to §. Moreover, if § is cycle free (i.e., contains no path from a point to
itself) then w can be replaced by n = d(§) + 1.

Proof (=) Suppose {p,} UO<¥dz is satisfied at a point w in &. It is not
hard to check that the map f defined by f(v) = z iff v |= p, is a reduction of
the subframe § of & generated by u to §. If § is cycle free and {p, }UO<¥dz
is satisfied at u then d($) = d(F). For otherwise an ascending chain of n+ 1
points starts from » and so § must contain a cycle.

(<) Let f be a reduction of $ to §. Define a valuation in & so that
v |E ps iff v € f7'(z). The reader can readily verify that under this

valuation {p,} U O<%dz is true at any point in f=1(r). a

LEMMA 1.14 For every logic L € NExtK and every finite rooted frame §,
SELiffvn <w OS"6z — —p, ¢ L.

Proof The implication (=) follows from Lemma 1.13. Suppose now that
Oz — —p, € L, for every n < w. Then the set {p,} UO<“d5 is L-
consistent and so it is satisfied in a frame & for L. By Lemma 1.13, a
generated subframe of & is reducible to §, and hence § = L. o

We are now in a position to characterize finite frames that split NExtLg
and to axiomatize splittings.

THEOREM 1.15 Suppose § is a finite frame with root r and Ly € NExtK.
Then § splits NExtLg iff there is n < w such that, for every frame & |= Lo,
OS<"6z Ap, is satisfiable in & only if OS™6z Ap,. is satisfiable in & for every
m > n. In this case Lo/F = Lo ® DS”(SS — Py

Proof (=) Suppose otherwise and consider a sequence {&,, : n < w} of
frames for Lo such that OS"63 A p, is satisfiable in &,, but OS5 A p,. is
not satisfied, for some m > n. By Lemma 1.14, the former condition implies
MNp<o Log®,, C Log§, while the latter means that § % Log®,,, for every
n < w, contrary to LogF being [\—prime.

(<) We show that Lo/§ = Lo @ OS"53 — —p,. Suppose L Z LogF.
Then, by Lemma 1.14, there is m < w such that OS™§3 — —p,. € L. It
follows that O<"§z — —p, € L and so Ly ® O<"65 — —p, C L. a



18 M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

For more general versions of this criterion consult [Kracht 1990] and
[Wolter 1993].

COROLLARY 1.16 (Rautenberg 1980) Suppose that Ly € NExt(Kdtra,,),
for some n < w. Then every finite rooted frame § for Lq splits NExtLg and
Lo/g = Lo (2] DS”(S@ — .

In particular, every transitive finite rooted frame splits NExtK4. This
result may also be obtained using the fact that all finite subdirectly irre-
ducible algebras split the lattice of subvarieties of a variety with equationally
definable principal congruences (see [Blok and Pigozzi 1982]). However, not
every frame splits NExtK.

THEOREM 1.17 (Blok 1978) A finite rooted frame § splits NExtK iff it is
cycle free. In this case K/ = K @ OS5z — —p,., where n = d(J).

Proof That frames with cycles do not split NExtK follows from the fact
that K is characterized by cycle free finite rooted frames. And the converse
is an immediate consequence of Lemma 1.13 and Theorem 1.15. o

An element x # 0 of a complete lattice £ is called an atom in £ if the zero
element 0 in £ is the immediate predecessor of z, i.e., there is no y such that
0 < y < x. Splittings turn out to be closely related to the existence of atoms
in finitely generated free algebras; see [Blok 1976], [Bellissima 1984, 1991]
and [Wolter 1997c]. We demonstrate the use of splittings by the following

THEOREM 1.18 (Blok 1980a) The lattice NExtK has no atoms.

Proof If alogic L is an atom in NExtK, it is @-prime. It follows that
L cosplits NExtK and the logic L' = LogF in the splitting pair (L', L)
has no proper predecessor that splits NExtK. Add a new irreflexive root
to §. By Theorem 1.17, the resulting frame & splits NExtK, and clearly
Log® C Logg, which is a contradiction. a

A logic is linked with its semantics via completeness theorems. The most
general completeness theorem states that every consistent normal modal
logic is characterized by the class of (descriptive) frames validating it. Or,
if we want to characterize the consequence relations -7, and 7, we can use
the following

THEOREM 1.19 (i) For L € NExtK, T' by, ¢ iff for any model 9 based on
a frame for L and any point x in M, « =T implies = |= .

(ii) For L € NExtK, I' F} ¢ iff for any model 9 based on a frame for
L, M =T implies M = .
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However, usually more specific completeness results are required. What
is the “geometry” of frames for a given logic? Are Kripke or even finite
frames enough to characterize it? Questions of this sort will be addressed
in the next several sections.

1.3 Persistence

The structure of Kripke frames for many standard modal logics can be
described by rather simple conditions on the accessibility relation which
are expressed in the first order language with equality and a binary (ac-
cessibility) predicate R. (This observation was actually the starting point
of investigations in Correspondence Theory studying the relation between
modal and first (or higher) order languages; see Chapter 4 of this volume.)
Moreover, in many cases it turns out that the universal frame §,(w) for such
alogic L also satisfies the corresponding first order condition ¢. Since ¢ says
nothing about sets of possible values in Pr,(w), it follows immediately that
the canonical (Kripke) frame kg (w) also satisfies ¢ and so characterizes
L. Thus we obtain a completeness theorem of the form:

v € Liff § |= ¢ for every Kripke frame § satisfying ¢.

This method of establishing Kripke completeness, known as the method
of canonical models, is based essentially upon two facts: first, that L is
characterized by its universal frame §,(w) and second, that L is “persistent”
under the transition from §r,(w) to its underlying Kripke frame. Of course,
instead of Fr(w) we can take any other class of frames C with respect to
which L is complete and try to show that L is C—persistent in the sense
that, for every § = (W, R, P) in C, if § E L then k§ = (W, R) validates L
as well.

PROPOSITION 1.20 If a logic is both C—complete and C—persistent, then it
is complete with respect to the class {kF : § € C} of Kripke frames.

It follows in particular that L is Kripke complete whenever it is DF—,
or R—, or D—persistent. Since every descriptive frame for L is a generated
subframe of a suitable universal frame for L, L is D—persistent iff it is
persistent with respect to the class of its universal frames. It is an open
problem, however, whether canonicity, i.e., §1(w)—persistence, implies D—
persistence. Here are two simple examples.

THEOREM 1.21 (van Benthem 1983) A logic is persistent with respect to
the class of all general frames iff it is aziomatizable by a set of variable free
formulas.
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It is easily checked that a Kripke frame validates Alt,, iff no point in it
has more than n distinct successors (see [Segerberg 1971]).

THEOREM 1.22 (Bellissima 1988) Every L € NExtAlt,, is DF —persistent,
for any n < w.

Proof The proof is based on the fact that, for any differentiated frame
§ = (W,R, P), any finite X C W, and any y € X, there is Y € P such
that X NY = {y}. It follows that at most n distinct points are accessible
from every point in a differentiated frame for L; in particular, Alt,, is DF—
persistent. Suppose now that a formula ¢ € L is refuted at a point x under a
valuation U in k§, § a differentiated frame for L. Let X be the set of points
accessible from z in < md(yp) steps.® Since X is finite, there is a valuation
$Lin F such that U(p) N X = B(p), for every variable p. Consequently, ¢ is
false in § at x under U, which is a contradiction. o

The proof of Fine’s [1974c] Theorem that all logics of finite width, i.e.,
logics in NExtK4BW,,, for n < w, are Kripke complete (a sketch can be
found in Section 18 of Basic Modal Logic) may also be regarded as a proof
of persistence. Recall that a point z in a transitive frame § = (W, R, P)
is called non-eliminable (relative to R) if there is X € P such that x € X
but no proper successor of z is in X (in other words, x is mazimal in
X); in this case we write © € maxg X. Denote by W, the set of all non-
eliminable points in § and put §, = (W,, R., P,), where R, = R | W,,
P.={XNW,:X € P}. (Fine called the frame §, reduced.)

THEOREM 1.23 (Fine 1985) Let § = (W, R, P) be a transitive descriptive
frame and x € X € P. Then (i) there exists a point y € maxg X Nz1 and
(ii) Fr is a refined frame whose dual F} is isomorphic to FT.

Proof (i) Suppose otherwise, i.e., there is no maximal point in X N z1.
Let Y be a maximal chain of points in X N7 (that it exists follows from
Zorn’s Lemma) and X = {Z € P: 3y € Y yt NY C Z}. Clearly, X is
non-empty and has the finite intersection property (because X N1 has no
maximal point). By compactness, we then have a point z in (] X which, by
tightness, is maximal in Y, contrary to X N z1 having no maximal point.

(ii) is a consequence of (i). a

It follows that to establish the Kripke completeness of a logic L € NExtK4
it is enough to show that it is persistent with respect to the class

RE = {3, : T a finitely generated descriptive frame}.
That is what Fine [1974c] actually did for logics of finite width.

6Here md(yp), the modal degree of ¢, is the length of the longest chain of nested modal
operators in ¢.
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THEOREM 1.24 (Fine 1974c) All logics of finite width are RE—persistent
and so Kripke complete.

Let us return, however, to the method of canonical models. Having tried
it for a number of standard systems, Lemmon and Scott [1977] found a
rather general sufficient condition for its applicability and put forward a
conjecture concerning a further extension (which was proved by Goldblatt
[1976b]). This direction of completeness (and correspondence) theory culmi-
nated in the theorem of Sahlqvist [1975] who proved an optimal (in a sense)
generalization of the condition of [Lemmon and Scott 1977]. To formulate it
we require the following definition. Say that a formula is positive (negative)
if it is constructed from variables (negated variables) and the constants T,
1 using A, Vv, & and O.

THEOREM 1.25 (Sahlqvist 1975) Suppose @ is a formula which is equiva-
lent in K to a formula of the form TOF(yp — x), where k > 0, x is positive
and 1 is constructed from variables and their negations, L and T with the
help of A, V, O and < in such a way that no ’s subformula of the form
1 Vha or O1hy, containing an occurrence of a variable without —, is in the
scope of some 0. Then one can effectively construct a first order formula
¢(x) in R and = having © as its only free variable and such that, for every
descriptive or Kripke frame § and every point a in §,

(8,0) = ¢ if § = ¢(x)]al.
(Here (§,a) = ¢ means that ¢ is true at a in § under any valuation.)

Proof We present a sketch of the proof found by Sambin and Vaccaro
[1989]. Given a formula ¢(pi,...,p,), a frame § = (W, R, P) and sets
X1,...,X, € P, denote by ¢(Xi,...,X,) the set of points in § at which ¢
is true under the valuation U defined by U(p;) = X;, i.e., o(X1,...,X,) =
B(p). Using this notation, we can say that

(3,37) |: (p(pl,...,pn) IHVXl,,Xn eEPzce (,O(Xl,,Xn)

EXAMPLE 1.26 Let us consider the formula Op — p and try to extract
a first order equivalent for it in the class of tight frames directly from the
equivalence above and the condition of tightness. For every tight frame
§ = (W, R, P) we have:

(Fez)Edp—-p ff VXePzxe (OX — X)
iff VXeP (zxelOX —sze€X)
iff VXeP (@tCX —ozeX).
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To eliminate the variable X ranging over P, we can use two simple obser-
vations. The first one is purely set-theoretic:

VXeP(YCX—ozeX)iffee[|{XeP:V CX} (3)

And the second one is just a reformulation of the characteristic property of
tight frames:

({XeP:atC X} =at (4)

With the help of (3) and (4) we can continue the chain of equivalences above
with two more lines:

@) EOp—p iff ...
iff ceN{XeP:a1CX}
iff et

Thus, § = Op — p iff Vo © € ot iff Vo zR=x.

The proof of Sahlqvist’s Theorem is a (by no means trivial) generalization
of this argument. Define by induction #1°= {z}, 2t"*!= (21")t, and notice
that in (4) we can replace 21 by any term of the form x;1"* U...U zx1"*,
thus obtaining the equality

X EP: o™ U Ugt™C X} =mit™ U Uzit™  (5)

which holds for every tight frame § = (W, R, P), all x1, ...,z € W and all
ni,...,ng > 0.

A frame-theoretic term z11™ U...Uz1"™* with (not necessarily distinct)
world variables z1,...,z; will be called an R-term. It is not hard to see
that for any R-term T, the relation z € T on § = (W, R, P) is first order
expressible in R and =. Consequently, we obtain

LEMMA 1.27 Suppose ©(p1,...,pn) is a modal formula and Ty, ..., T, are
R-terms. Then the relation x € (T4, ...,Ty) is expressible by a first order
formula (in R and =) having x as its only free variable.

Syntactically, R-terms with a single world variable correspond to modal
formulas of the form O™p; A ... A O™k p;, with not necessarily distinct
propositional variables py, ..., pr. Such formulas are called strongly positive.
By induction on the construction of ¢, one can prove the following

LEMMA 1.28 Suppose ©(p1,...,pn) 5 a strongly positive formula contain-
ing all the variables p1,...,pn and § = (W, R, P) is a frame. Then one
can effectively construct R-terms Ty, ..., T, (of one variable x) such that
for any x € W and any X4,...,X,, € P,

Z’E(,O(Xl,...,Xn) ZﬁTnglAATnan
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Now, trying to extend the method of Example 1.26 to a wider class of
formulas, we see that it still works if we replace the antecedent Opin Op — p
with an arbitrary strongly positive formula . As to generalizations of the
consequent, let us take first an arbitrary formula y instead of p and see
what properties it should satisfy to be handled by our method.

Thus, for a modal formula (¢» — x)(p1,...,p,) with strongly positive ¢
and a tight frame § = (W, R, P), we have:

(Fz) B - x it VXy,..., X, € P (z € p(Xy,...,X,) =
z € x(X1,...,Xn))
iftvx,,..., X, e P (Iy C AN AT, CX, —

X EX(Xl,...,Xn))
iHVXl,...,Xn_l €P (T1 CXiAN..ANTp_1 CXp1 —
VXp,€P (T, CXp—zex(Xe,...,Xn)))

(3) does not help us here, but we can readily generalize it to
VXeP(YCX ozex(...,X,..))iff
ze({x(....X,...): YCXeP} (6)
So
Fx)Ev > xiffVXy,..., X P CXiN... AT, 1 C Xy —
v e Mx(X1,...,Xn): T C X, € P}).

But now (4) and (5) are useless. In fact, what we need is the equality

ix(.- ):TCXeP}=
L {XeP:TCX},..) (7)

which, with the help of (5), would give us

X ):TCXePy=x(..,T,...). (8)

Of course, (7) is too good to hold for an arbitrary y, but suppose for a
moment that our y satisfies it. Then we can eliminate step by step all the
variables X7, ..., X, like this:

(S,Z’) |:’I/J—>XiﬁAVX1,...,Xn,1 eP (Tl CXiN..ANT, 1CX, 1 —
€T EX(le---;anlyTn))

iff ... (by the same argument)
ifft v € x(T,...,Ty).
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And the last relation can be effectively rewritten in the form of a first order
formula ¢(z) in R and = having x as its only free variable. So, finally we
shall have § = ¢ — x iff Vo ¢(z).

Now, to satisfy (7), x should have the property that all its operators
distribute over intersections. Clearly, — and — are not suitable for this goal.
But all the other operators turn out to be good enough at least in descriptive
and Kripke frames. So we can take as x any positive modal formula. The
main property of a positive formula (..., p,...) is its monotonicity in every
variable p which means that, for all sets X, Y of worlds in a frame, X C Y
implies (..., X,...) Cep(...,Y,...).

To prove that all positive formulas satisfy (7) in Kripke frames and de-
scriptive frames, recall that O distributes over arbitrary intersections in
any frame. As to ¢, we have the following lemma in which a family A" of
non-empty subsets of some space W is called downward directed if for all
X,Y € X thereis Z € X such that ZC X NY.

LEMMA 1.29 (Esakia 1974) Suppose § = (W, R, P) is a descriptive frame.
Then for every downward directed family X C P,

o X=[)ox.

Xex Xex

Using Esakia’s Lemma, by induction on the construction of ¢ one can
prove

LEMMA 1.30 Suppose that § = (W, R, P) is a Kripke or descriptive frame
and o(p,.-.,q,-..,r) is a positive formula. Then for every Y C W and all
Uu,. bVeP,

Nte,....X,...V): YCX € P} =
p(U,...,({XeP: Y CX},...,V). 9)

It follows from this lemma and considerations above that Sahlqvist’s The-
orem holds for formulas ¢ = ¥ — x with strongly positive ¢ and positive
x- The remaining part of the proof is purely syntactic manipulations with
modal and first order formulas.

Notice that using the monotonicity of positive formulas, equivalence (6)
can be generalized to the following one: for every § = (W, R, P), every
positive x;(-..,p,...) and every x; € W,

VXeP (Y CX = \/amiexl.. X, ..))if
i<n

Ve xil...X,..): YCXeP} (10)

i<n
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Say that a modal formula ¢ is untied if it can be constructed from negative
formulas and strongly positive ones using only A and <. If v(py,...,pn) is
negative then —w(p,...,p,) is clearly equivalent in K to a positive formula;
we denote it by v* (=1, ..., py).

LEMMA 1.31 Let ¢ (p1,--.,pn) be an untied formula and § = (W, R, P) a
frame. Then for every x € W and all X1,...,X, € P,

zev(Xy,.. ., Xn) iff .- mWA N\ T CXn N 2z € vj(Xa, ..., X0))

i<n j<m

where the formula in the right-hand side, effectively constructed from 1, has
only one free individual variable x, ¥ is a conjunction of formulas of the form
uRwv, T; are suitable R-terms and vj(p1,...,pn) are negative formulas.

We are ready now to prove Sahlqvist’s Theorem. To construct a first order
equivalent for O%(¢) — x) supplied by the formulation of our theorem, we
observe first that one can equivalently reduce v to a disjunction ¢, V...V,
of untied formulas, and hence O () — ) is equivalent in K to the formula
OF (1 = x) A ... AO%@,, — x). So all we need is to find a first order
equivalent for an arbitrary formula 0¥ (1) — ) with untied ¢» and positive x.
Let p1, ... py be all the variables in ¢ and x and § = (W, R, P) a descriptive
or Kripke frame. Then, for any x € W, we have:

(3>x)':Dk(¢_>X)IHVX1)7Xn€Pm€Dk(w_>X)(X17)Xn)
(by Lemma 1.31) iff VX1,..., X, € P Vy (zR*y — Fy1,..., 1 (9 A
ANTiCXin N\ zev(Xy,..., X)) =

i<n j<m

yex(Xi,...,Xn))
i VX1, X € PYy,yr, .m0 A N\ T C XA

i<n

N zi€vi(Xi,...,Xn) 2y ex(X,...,X0))

js<m

where ' = zR¥y A 9. Let 7;(p1,...,pn) = vi(=p1,...,7pn). We continue
this chain of equivalences as follows:

iff Vy,y1,..om (0 VX, X, € P (AT C X -
i<n

\/ zem(Xy,...,Xn)
j<m+1
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(Where Tm+1 (ply v )pn) = X(ply v 7pn) and Zm+1 = y)

iff Vyayla"wyl (19,_) \/ Z]'E,]Tj(le"an)))
j<m+1

as follows from (10), Lemma 1.30 and equality (5). It remains to use
Lemma 1.27. ]

The formulas ¢ defined in the formulation of Theorem 1.25 are called
Sahlquist formulas. It follows from this theorem that if L is a D—persistent
logic and I' a set of Sahlqvist formulas then L & I' is also D—persistent.
Moreover, L @ T is elementary (in the sense that the class of Kripke frames
for it coincides with the class of all models for some set of first order formulas
in R and =) whenever L is so.

Other proofs of Sahlqvist’s Theorem were found by Kracht [1993] and
Jénsson [1994] (the latter is based upon the algebraic technique developed in
[Jonsson and Tarski 1951]). Venema [1991] extended Sahlqvist’s Theorem to
logics with non-standard inference rules, like Gabbay’s [1981a] irreflexivity
rule. In [Chagrov and Zakharyaschev 1995b] it is shown that there is a
continuum of Sahlqvist logics above S4 and that not all of them have the
finite model property (above T such a logic was constructed by Hughes
and Cresswell [1984]). As we shall see later in this chapter, there are even
undecidable finitely axiomatizable Sahlqvist logics in NExtK. It would be
of interest to find out whether such logics exist above K4 or S4.

Kracht [1993] described syntactically the set of first order equivalents of
Sahlqgvist formulas. To formulate his criterion we require the fragment S of
first order logic defined inductively as follows. Formulas of the form zR™y
are in S for all variables z,y and every m < w; besides, if ¢, ¢' are in S then
the formulas

Vo €eyt™ ¢, w € yt™ ¢, A, and ¢V ¢’

are also in §. For simplicity we assume that all occurrences of quantifiers
in a formula bind pairwise distinct variables. Call a variable y in a formula
¢ € S inherently universal if either all occurences of y are free in ¢ or ¢
contains a subformula Vy € 1™ ¢’ which is not in the scope of 3.

THEOREM 1.32 (Kracht 1993) For every first order formula ¢(x) (in R
and =) of one free variable x, the following conditions are equivalent:

(1) ¢(z) is classically equivalent to a formula ¢'(x) € S such that any sub-
formula of the form yR™z of ¢'(x) contains at least one inherently universal
variable;

(i) ¢(z) corresponds to a Sahlquist formula in the sense of Theorem 1.25.
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Condition (i) is satisfied, for example, by the formula
Yu € ot Vv € 1 3z € ut vRz

which corresponds to ¢Op — O<Op. On the other hand,

¢(z) =y € 2t Vz € yt 2R%

does not satisfy (i). In fact, even relative to S4 the condition expressed by
¢(x) does not correspond to any Sahlgvist formula. Notice, however, that
S4 ® OOCp — <&Op is a D-persistent logic whose frames are precisely the
transitive and reflexive frames validating Vz¢(z).

We conclude this section by mentioning two more important results con-
necting persistence and elementarity (the idea of the proof was discussed in
Section 22 of Basic Modal Logic.)

THEOREM 1.33 (i) (Fine 1975b, van Benthem 1980) If a logic L is char-
acterized by a first order definable class of Kripke frames then L is D—
persistent.

(ii) (Fine 1975b) If L is R-persistent then the class of Kripke frames for
L is first order definable.

It is an open problem whether every D—persistent logic is determined by
a first order definable class of Kripke frames; for more information about
this and related problems consult [Goldblatt 1995].

1.4 The degree of Kripke incompleteness

All known logics in NExtK of “natural origin” are complete with respect
to Kripke semantics. On the other hand, there are many examples of “ar-
tificial” logics that cannot be characterized by any class of Kripke frames
(see Sections 19, 20 of Basic Modal Logic or the examples below). To un-
derstand the phenomenon of Kripke incompleteness Fine [1974b] proposed
to investigate how many logics may share the same Kripke frames with a
given logic L. The number of them is called the degree of Kripke incom-
pleteness of L. Of course, this number depends on the lattice of logics under
consideration. The degree of Kripke incompleteness of logics in NExtK was
comprehensively studied by Blok [1978]. In this section we present the main
results of that paper following [Chagrov and Zakharyaschev 1997].

By Theorem 1.12; all Kripke complete union-splittings of NExtK have
degree of incompleteness 1. And it turns out that no other union-splitting
exists.

THEOREM 1.34 (Blok 1978) Ewvery union-splitting of NExtK has the finite
model property.
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Proof Let F be a class of finite rooted cycle free frames. We prove that
L = K/F has the finite model property using a variant of filtration, which
is applied to an m-generated refined frame § = (W, R, P) for L refuting a
formula ¢(p1,...,p,) under a valuation 2.

Since § is differentiated, for every m > 1 there are only finitely many
points z in § such that x = O™ L A =0™~! L; we shall call them points of
type m. Given A C Subg, Subyp the set of all subformulas in ¢, we put
ma = m if m is the minimal number such that a point in § is of type < m
whenever z |= A and the formulas in Suby — A are false at = (under 0); if
no such m exists, we put ma = 0. Let

k = max{ma : A C Subp}, T =Sub(pADT*L).

Now we divide § into two parts: Wj consisting of points of type < k and
Wy =W — W;. For z,y € W, put  ~ y if either z,y € W; and z = y
or z,y € Wy and exactly the same formulas in I" are true at z and y. Let
M = (&, ) be the smallest filtration (see Section 12 of Basic Modal Logic)
of M = (F,V) through T' with respect to ~. Since W; is finite, & is also
finite and, by the Filtration Theorem, (9, z) |= ¢ iff (M, [z]) = ¢, for every
¢ € I'. So it remains to show that & |= L. Notice that [z] in & is of type
m < k iff z has type m in §. Moreover, there is no [z] of type [ > k. For
otherwise = £ OF L and ma = 0 for A = {¢) € Subyp : z | ¢}, which
means that arbitrary long chains (of not necessarily distinct points) start
from [z], contrary to [z] being of type [. Thus & consists of two parts:
points of type < k, which form the generated subframe (Wi, R [ W;) of F,
and points involved in cycles. Since § | L and frames in F are cycle free,

it follows from Lemma 1.13 and Theorem 1.17 that ® = L. ]

THEOREM 1.35 (Blok 1978) If a logic L is inconsistent or a union-splitting
of NExtK, then L is strictly Kripke complete. Otherwise L has degree of
Kripke incompleteness 2%° in NExtK.

Proof That For is strictly complete follows from Example 1.10 and The-
orem 1.12. Suppose now that a consistent L is not a union-splitting and L'
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is the greatest union-splitting contained in L. Since L' has the finite model
property, there is a finite rooted frame § = (W, R) for L' refuting some
¢ € L and such that every proper generated subframe of § validates L.
Clearly, § is not cycle free. Let x1 RzoR ... Rx,Rx1 be the shortest cycle
in § and £ = md(¢) + 1. We construct a new frame §' by extending the
cycle z1,...,%,, 21 as is shown in Fig. 3 ((a) for n = 1 and (b) for n > 1).
More precisely, we add to § copies z},...,z¥ of z; for each i € {1,...,n},
organize them into the nontransitive cycle shown in Fig. 3 and draw an
arrow from z! toy € W —{z1,...,x,} iff z; Ry. Denote the resulting frame
by § = (W', R') and let 2’ = z¥. By the construction, § is a reduct of F'.
Therefore, for every models 9t = (F, ) and M’ = (F', V') such that

V' (p) = BV(p) U{al -z € B(p), j <k}

and for every z € W, 1) € Subyp, we have (I, z) = ¢ iff (MM, x) = 1. So we
can hook some other model on z', and points in W will not feel its presence
by means of ¢’s subformulas. The frame to be hooked on z' depends on
whether o |= L or o = L. We consider only the former alternative.

Fix some m > |W'|. For each I C w — {0}, let §; = (Wr, Ry, Pr) be the
frame whose diagram is shown in Fig. 4 (dp sees the root of §', all points
e; and e’ and is seen from z'; the subframes in dashed boxes are transitive,
e, € Wriff i € I, and P consists of sets of the form X UY such that X
is a finite or cofinite subset of Wi — {b,a; : i < w} and Y is either a finite
subset of {a; : i < w} or is of the form {b} UY"’, where Y is a cofinite subset
of {a; : i < w}. It is not hard to see that the points a;, ¢, e; and e} are
characterized by the variable free formulas

@) = Q0 AOCBm 1 A . AOT) .. ) A=OX (i AOBm 1 Ao . AOK) ),
air1 = Ca; A —|<>2ai, v = S2ag A =Oag,
€0 = <, €41 = O A _|<>26i, 6;+1 =0 A —|<>+ei+1,
(in the sense that z = «; iff z = a;, etc.), where

§o = OOL, §; = Odg A =g, b3 = Oy A=y A =0T 6y,

6k+1 =0 Ao A _'<>+6k—1 A...A —|<>+50.

Define L to be the logic determined by the class of frames for L and §,
i.e., Ly = LN LogF;. Since =(e; AO™5—p) € Ly — Ly fori e I —J (pis
refuted at the root of §'), [{Lr: I Cw — {0}}] = 2.

Let us show now that L; has the same Kripke frames as L. Since Ly C L,
we must prove that every Kripke frame for L; validates L. Suppose there
is a rooted Kripke frame & such that & |= L; but & [~ ¢, for some ¢ € L.
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Since 1 is in L, it is valid in all frames for L, in particular, e |= ¢. And
since ¢ & Ly, 1 is refuted in §;. Moreover, by the construction of §j, it
is refuted at a point from which the root of § can be reached by a finite
number of steps. Therefore, the following formulas are valid in §; and so
belong to Ly and are valid in &:

l
= \/ o', (11)
l
—¢ = A O°(y = O(@(Top — p) = p)), (12)

i=0
where p does not occur in v and [ is a sufficiently big number so that
any point in §r is accessible by < [ steps from every point in the selected
cycle and every point at which ¥ may be false, and Ogx = O(Cag — X)-
According to (11), & contains a point at which v is true. By the construction
of ~y, this point has a successor y at which, by (12), Oy(Qop — p) — p is
true under any valuation in & and y | Gap. Define a valuation 4 in &
by taking $(p) = yt. Then y | Oy(Oop — p), from which y |= p and so
y € yT. Now define another valuation ${' so that {'(p) = y1 —{y}. Since
y is reflexive, we again have y = Og(dop — p), whence y |= p, which is a
contradiction. a

This construction can be used to obtain one more important result.

THEOREM 1.36 (Blok 1978) Every union-splitting K/F has 3 < Ng im-
mediate predecessors in NExtK, where s is the number of frames in F which
are not reducts of generated subframes of other frames in F. Every consis-
tent logic different from union-splittings has 28° immediate predecessors in
NExtK. (For has 2 immediate predecessors in NExtK.)
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Proof The former claim follows from Theorem 1.12. To establish the
latter, we continue the proof of Theorem 1.35. One can show that L is
finitely axiomatizable over L; (the proof is rather technical, and we omit it
here). Then, by Zorn’s Lemma, NExtL; contains an immediate predecessor
L’ of L. Besides, L & Ly = L whenever I # J. Indeed,

Lo Ly =(LNLog¥r)® (LNLogFs) = LN (LogFr ¢ LogFs)

and if ¢ € I — J then, for every x € L and a sufficiently big [,

l

- \/ OFel - x € Log®r, —€, € Loggy,
k=0

from which x € Logg; @ Loggs and so L C LogF ® LogF ;. It follows that
L} # L', whenever I # J. a

It is worth noting that tabular logics, proper extensions of D and ex-
tensions of K4 are not union-splittings in NExtK. Similar results hold for
the lattices NExtD and NExtT, where every consistent logic has degree of
incompleteness 2% (see [Blok 1978, 1980b]). It would be of interest to de-
scribe the behavior of this function in NExtK4, NExtS4, NExtGrz (where
Theorem 1.34 does not hold and where every tabular logic has finitely many
immediate predecessors) and other lattices of logics to be considered later
in this chapter.

1.5 Stronger forms of Kripke completeness

In the two preceding sections we were considering the problem of charac-
terizing logics L € NExtK by classes of Kripke frames. The same problem
arises in connection with the two consequence relations -7, and 7 as well.
Theorem 1.19 shows the way of introducing the corresponding concepts of
completeness.

With each Kripke frame § let us associate a consequence relation =z by
putting, for any formula ¢ and any set I" of formulas, ' Ez ¢ iff (9, z) ET
implies (M, z) = ¢ for every model M based on § and every point z in §.
Clearly, a modal logic L is Kripke complete iff, for any finite set of formulas
I' and any formula ¢, I' I/, ¢ only if there is a Kripke frame § for L such
that T’ £z . Now, let us call L strongly Kripke complete” if this implication
holds for arbitrary sets I'. In other words, L is strongly complete if every L-
consistent set of formulas holds at some point in a model based on a Kripke
frame for L. Another reformulation: L is strongly complete iff L is Kripke

"Fine [1974c] calls such logics compact, which does not agree with the use of this term
by Thomason [1972].
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complete and the relation ({[=z: & is a Kripke frame for L} is finitary. It
follows from the construction of the canonical models that every canonical
(in particular, D—persistent) logic is strongly complete, which provides us
with many examples of such logics in NExtK.

By Theorem 1.33, all logics characterized by first order definable classes
of Kripke frames are strongly complete. The converse does not hold: there
exist strongly complete logics which are not canonical. The simplest is the
bimodal logic of the frame (R, <, >); see Example 2.39 below. By applying
the Thomason simulation (to be introduced in Section 2.3) to this logic
we obtain a logic in NExtK with the same properties; see Theorem 2.18.
Moreover, in contrast to D—persistence, strong Kripke completeness is not
preserved under finite sums of logics (see [Wolter 1996¢]). It is an open
problem, however, whether such logics exist in NExtK4.

Perhaps the simplest examples of Kripke complete logics which are not
strongly complete are GL and Grz (use Theorem 1.58 and the fact that
these logics are not elementary; see Correspondence Theory). It is much
more difficult to prove that the McKinsey logic K & OCp — <Op is not
strongly complete; the proof can be found in [Wang 1992]. For other ex-
amples of modal logics that are not strongly complete see Section 3.4. It
is worth noting also that, as was shown in [Fine 1974c], every finite width
logic in a finite language turns out to be strongly Kripke complete, though
this is not the case for logics in an infinite language, witness

GL3=GLaO(O"p = q)vO(dOTq— p).

For the consequence relation k7, we should take the “global” version =%
of =z. Namely, we put I' =% ¢ if M |= I' implies M |= ¢ for any model M
based on §. A modal logic L is called globally Kripke complete if for any
finite set of formulas I' and any formula ¢, I' I/] ¢ only if there is a frame
§ for L such that T' [ . L is strongly globally complete if this holds for
arbitrary (not only finite) I'. We also say that L has the global finite model
property if for every finite I' and every ¢, I' I/ ¢ only if there is a finite
frame § for L such that I' [£% ¢.

The global finite model property (FMP, for short) of many standard logics
can be proved by filtration. Say that a logic L strongly admits filtration if for
every generated submodel 90t of the canonical model 9ty and every finite set
of formulas ¥ closed under subformulas, there is a filtration of 9t through
Y based on a frame for L.

PROPOSITION 1.37 (Goranko and Passy 1992) If L strongly admits filtra-
tion then L has global FMP.

Proof Suppose that ' /5 ¢, T finite. Then O<“ AT /L ¢ and so the
set A = O<W AT U {~p} is L-consistent. It remains to filtrate through
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Subl’ U Subyp the submodel of My, generated by a maximal L-consistent
set containing A. a

It follows in particular that K, T, D, KB have global FMP.

PROPOSITION 1.38 Suppose L is globally complete (has global FMP) and
[ is a finite set of variable free formulas. Then L ® ' is globally complete
(has global FMP) as well.

Proof Let L' = L& and A /5, ¢, A finite. Then T' U A I/} ¢ and so
there exists a (finite) Kripke frame § for L such that T U A }£5 ¢. Since T’

contains no variables, § = L'. a

For n-transitive logics L the global consequence relation -7 is reducible to
the “local” F, and so L is Kripke complete (has FMP, is strongly complete)
iff L is globally complete (has global FMP, is strongly globally complete). In
general the global properties are stronger than the “local” ones. Although
L is globally complete (has global FMP) only if L is complete (has FMP),
the converse does not hold (see [Wolter 1994a] and [Kracht 1996]).

EXAMPLE 1.39 Let L = Altz ®p — OOCp® (Op A —p) = =(CgAOg). A
Kripke frame § validates L iff no point in § has more than three successors,
§ is symmetric, and irreflexive points in it have at most one successor. By
Proposition 1.22, L is Kripke complete. The class of Kripke frames for L is
closed under (not necessarily generated) subframes. So, by Proposition 1.59
to be proved below, L has FMP. We show now that it does not have global
FMP. To this end we require the formulas:

ar =q A2 Ags, az = g1 A g2 Ags, ag =g Agz Ags,
p=0pA-pAa, 1/12/\{0@ = Qa1 i =1,2} Aaz = Oag.
Let § = (W, R), where W = w and
R={m,m):m>0tU{{mm+1):m<wU{(mm—1):m >0}

We then have 1 £ —p. In fact, ¢ is true at 0 and ¢ is true everywhere
under the valuation U defined by U(p) = W — {0} and U(¢;) = {3n+i:
n < w}. Clearly, § = L and so ¢ I/5 —p. Suppose now that (M, zo) = ¢
and N = ¢, for a model N based on a Kripke frame & = (V, S) for L. Then
we can find a sequence z;, j < w, such that z;Sz;41 and x3j4; = a;41, for
Jj <wandi=1,2,3. The reader can verify that all points z; are distinct.

Let us consider now the algebraic meaning of the notions introduced
above. A logic L is Kripke complete iff the variety AlgL of modal algebras
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for L is generated by the class KrL = {7 : § is a Kripke frame for L}. By
Birkhoff’s Theorem (see e.g. [Mal’cev 1973]), this means that

AlgL = HSPKrL,

(i.e., AlgL is obtained by taking the closure of KrL under direct prod-
ucts, then the closure of the result under (isomorphic copies of) subalgebras
and finally under homomorphic images). Clearly, L is globally complete iff
precisely the same quasi-identities hold in KrL and AlgL. And since the
quasi-variety generated by a class of algebras C is SPPyC (where Py denotes
the closure under ultraproducts; see [Mal’cev 1973]), L is globally complete
iff
AlgL = SPPyKrL.

Goldblatt [1989] calls the variety AlgL compleaif AlgL, = SKrL, or, equiv-
alently, if Algl, = SPKrL (this follows from the fact that the dual of the
disjoint union of a family of Kripke frames {§; : ¢ € I} is isomorphic to the
product [],c; Sj) We say a logic L is s-complex, » a cardinal, if every
modal algebra for L with < s generators is a subalgebra of §* for some
Kripke frame § = L. As was shown in [Wolter 1993], this notion turns
out to be the algebraic counterpart of both strong completeness and strong
global completeness of logics in infinite languages with 3¢ variables.

THEOREM 1.40 For every normal modal logic L in an infinite language
with s variables the following conditions are equivalent:

(i) L is strongly Kripke complete;

(i1) L is globally strongly complete;

(iii) L is »-complex.

Proof (i) = (iii) Suppose the cardinality of 2l € AlgL does not exceed .
Denote by £ the algebra of modal formulas over ¢ propositional variables
and take some homomorphism h from £ onto 2. For each ultrafilter V in
2, the set h~1(V) is maximal L-consistent. Since L is strongly complete,
there is a model My = (Fv,Vv) with root zy based on a Kripke frame
Fv for L and such that (My,zy) = h~' (V). Without loss of generality we
may assume that the frames §v for distinct V are disjoint. Let § be the
disjoint union of all of them. Define a homomorphism % from £ into F+ by
taking
B(p) = U{‘/Uv (p) : V is an ultrafilter in 2A}.

Then (L) is a subalgebra of " € AlgL isomorphic to 2.
The implication (iii) = (ii) is trivial. To prove (ii) = (i), consider an
L-consistent set of formulas I' of cardinality < s and put

A={ptu{D"(p—¢p):n<w,pel},
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where the variable p does not occur in formulas from I". It is easily checked
that all finite subsets of A are L-consistent, so A is L-consistent too. It
follows that {p = ¢ : ¢ € '} I/ —p. And since L is globally strongly
complete, there exists a model 9 based on a Kripke frame for L such that
ME{p—p:pel}and (M, x) E p, for some z. But then (M, z) = T.

a

1.6 Canonical formulas

The main problem of completeness theory in modal logic is not only to find
a sufficiently simple class of frames with respect to which a given logic L is
complete but also to characterize the constitution of frames for L (in this
class). The first order approach to the characterization problem, discussed
in Section 1.3 in connection with Sahlqvist’s Theorem, comes across two
obstacles. First, there are formulas whose Kripke frames cannot be de-
scribed in the first order language with R and =. The best known example
is probably the Ldb azxiom

la =0(0p — p) — Op.

§ E la iff § is transitive, irreflexive (i.e., a strict partial order) and Noethe-
rian in the sense that it contains no infinite ascending chain of distinct
points. And as is well known, the condition of Noetherianness is not a first
order one. The second obstacle is that this approach deals only with log-
ics that are Kripke complete; it does not take into account sets of possible
values.

There is another, purely frame-theoretic method of characterizing the
structure of frames. For instance, a frame & validates K/§ iff & does
not contain a generated subframe reducible to §. It was shown in [Za-
kharyaschev 1984, 1988, 1992] that in a similar manner one can describe
transitive frames validating an arbitrary modal formula. It is not clear
whether characterizations of this sort can be extended to the class of all
frames (an important step in this direction would be a generalization to
n-transitive frames). That is why all frames in this section are assumed to
be transitive. First we illustrate this method by a simple example.

EXAMPLE 1.41 Suppose a frame § = (W, R, P) refutes la under some
valuation. Then the set V. ={z € W:z £ la}isin Pand V CV]. It
follows from the former that & = (V,RIV,{X NV : X € P}) is a frame—
we call it the subframe of § induced by V. And the latter condition means
that & is reducible to the single reflexive point o which is the simplest
refutation frame for la. Moreover, one can readily check that the converse
also holds: if there is a subframe & of § reducible to o then § [~ la.
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This example motivates the following definitions. Given frames § =
(W,R,P) and & = (V,S,Q), a partial (i.e., not completely defined, in
general) map f from W onto V is called a subreduction of § to & if it
satisfies the reduction conditions (R1)—(R3) for all z and y in the domain
of f and all X € ). The domain of f will be denoted by domf. In other
words, an f-subreduct of § is a reduct of the subframe of § induced by
domf. A frame & = (V, S, Q) is a subframe of § = (W, R, P) it V C W and
the identity map on V is a subreduction of § to &, i.e., if S = R[V and
@ C P. Note that a generated subframe & of § is not in general a subframe
of §, since V may be not in P.

Thus, the result of Example 1.41 can be reformulated like this: § [~ la
iff § is subreducible to o.

A subreduction f of § to & is called cofinal if

domf1 C domf].

This important notion can be motivated by the following observation: F
refutes OT iff § is cofinally subreducible to e (a plain subreduction is not
enough).

THEOREM 1.42 Ewvery refutation frame § = (W, R, P) for ¢(p1,...,pn) is
cofinally subreducible to a finite rooted refutation frame for ¢ containing at
most ¢, = 2" - (¢ (1) + ... + ¢, (2/5UP91)) points.®

Proof Suppose ¢ is refuted in § under a valuation . Without loss
of generality we can assume § to be generated by U(p1),..., 0 (p,). Let
X1,..., X, be all distinct maximal O-cyclic sets in §. Clearly, m < ¢, (1)
but unlike Theorem 1.8, § is not in general refined and so these sets are
not necessarily clusters of depth 1. However, they can be easily reduced
to such clusters. Define an equivalence relation ~ on W by putting  ~ y
iff  =yorazye X, for somei € {1,...,m}, and z ~y y (as before
Y ={p1,...,pn}). Let [z] be the equivalence class under ~ generated by
z and [X] = {[z] : « € X}, for X € P. By the definition of cyclic sets,
xRy iff [z] C [y]4. So the map x — [z] is a reduction of F to the frame
& = (W], R}, P/) which results from § by “folding up” the 0-cyclic sets X;
into clusters of depth 1 and leaving the other points untouched: W{ = [W],
[z) R} [y] iff [z] C [y]} and P = {[X]: X € P}. (Roughly, we refine that
part of § which gives points of depth 1.) Put U (p;) = [U(pi)]- Then by
the Reduction (or P-morphism) Theorem, we have ¢ = ¢ iff [z] |= ¢, for
every ¥ € Subyp.

Let X be the set of all points in §} of depth > 1 having Suby-equivalent
successors of depth 1. It is not hard to see that X € P{. Denote by

8The function ¢, (m) was defined in Section 1.2.
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&1 = (W1, Ry, Py) the subframe of §} induced by W] — X and let U; be the
restriction of 20} to §;. By induction on the construction of ¢ € Subgy one
can readily show that ¢ has the same truth-values at common points in §
and §1 (under U} and Uy, respectively) and so F1 = ¢. The partial map
x + [z], for [z] € W1, is a cofinal subreduction of F to Fi.

Then we take the maximal 1-cyclic sets in §, “fold” them up into clusters
of depth 2 and remove those points of depth > 2 that have Suby-equivalent
successors of depth 2. The resulting frame §, will be a cofinal subreduct of
1 and so of § as well. After that we form clusters of depth 3, and so forth.
In at most 2/5"P¢[ steps of that sort we shall construct a cofinal subreduct
of § refuting ¢ and containing < ¢, points. It remains to select in it a

suitable rooted generated subframe. a

For the majority of standard modal axioms the converse also holds.
However, not for all. The simplest counterexample is the density axiom
den = O0Op — Op. It is refuted by the chain $ of two irreflexive points but
becomes valid if we insert between them a reflexive one. In fact, § [~ den
iff there is a subreduction f of § to $) such that f(z1) = {a}, for no point
z in dom fT —domf, where a is the final point in $.

Loosely, every refutation frame for formulas like la can be constructed by
adding new points to a frame & that is reducible to some finite refutation
frame of fixed size. For formulas like &T we have to take into account the
cofinality condition and do not put new points “above” &. And formulas
like den impose another restriction: some places inside ® may be “closed”
for inserting new points. These “closed domains” can be singled out in the
following way.

Suppose 91 = ($,4) is a model and a an antichain in §). Say that a is
an open domain in N relative to a formula ¢ if there is a pair t, = (I'y, Aq)
such that I'y UA; = Subp, ATy, = VA, ¢ K4 and

e Oy € I'y implies ¢y € Ty,
e Oy el iffal=0%y forall a € a.

Otherwise a is called a closed domain in N relative to . A reflexive singleton
a = {a} is always open: just take t, = ({¢) € Subyp : a =9}, {¢) € Subp :
a = 1}). It is easy to see also that antichains consisting of points from the
same clusters are open or closed simultaneously; we shall not distinguish
between such antichains.

For a frame $) and a (possibly empty) set © of antichains in ), we say a
subreduction f of § to $) satisfies the closed domain condition for ® if

(CDC) -3z € domff—domf o € D f(xf) = 0.

Notice that the cofinal subreduction f of § to the resulting finite rooted
frame $) in the proof of Theorem 1.42 satisfies (CDC) for the set ® of
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closed domains in the corresponding model 9 on § refuting . Indeed,
every ¢ € domf1 — domf has a Suby-equivalent successor y € domf,
and so an antichain © such that f(z1) = 071 is open, since we can take
to = ({¢ € Suby : y |= ¥}, {¢ € Suby : y [~ ¢}). On the other hand, we
have

PROPOSITION 1.43 Suppose Mt = (H,4) is a finite countermodel for ¢
and © the set of all closed domains in M relative to ¢. Then F ¥ ¢
whenever there is a cofinal subreduction [ of § to 9 satisfying (CDC) for
D. Moreover, if ¢ is negation free (i.e., contains no L, =, <) then a plain
subreduction satisfying (CDC) for ® is enough.

Proof If f is cofinal and § = (W, R, P) then we can assume domf1 = W.
Define a valuation 90 in § as follows. If € domf then we take z = p iff
f(z) E p, for every variable p in . If z & domf then f(z1) # 0, since f is
cofinal. Let a be an antichain in $ such that at = f(z1). By (CDC), a is
an open domain in N, and we put y |= p iff p € Ty, for every y & domf such
that f(y1) = f(z1). One can show that 2 is really a valuation in § and,
for every ¢ € Subyp, z = ¢ iff f(z) E ¢ in the case z € domf, and z = ¢
iff ¢» € T'y, where a is the open domain in 9 associated with z, in the case
z ¢ domf.

If o is negation free and f is a plain subreduction then f(z1) may be
empty. In such a case we just put = |= p, for all variables p. o

Now let us summarize what we have got. Given an arbitrary formula
p, we can effectively construct a finite collection of finite rooted frames
§1,---,8n (underlying all possible rooted countermodels for ¢ with < ¢,
points) and select in them sets D1,...,®,, of antichains (open domains in
those countermodels) such that, for any frame §, § [~ o iff there is a cofinal
subreduction of § to §;, for some i, satisfying (CDC) for ©;. If ¢ is negation
free then a plain subreduction satisfying (CDC) is enough.

This general characterization of the constitution of refutation transitive
frames can be presented in a more convenient form if with every finite rooted
frame § = (W, R) and a set ® of antichains in § we associate formulas
a(§,D, L) and a(F, D) such that & = a(F,D, L) (& £ a(F,D)) iff there is
a cofinal (respectively, plain) subreduction of & to § satisfying (CDC) for
9. For instance, one can take

a3, L) = ) %J/\/\npl N ©o Aor = po
a;Raj 0ED

where aq, ..., a, are all points in § and ag is its root,

iy = OF(3p; — pi),
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n
i = O7(( /\ Upi A /\ pj = Pi) = Pis
—a;Rag J=0,j#i
n
o = O /\ Dpj/\/\pi—> \/ Op;),
aiGWfDI =0 aj€d
n
p1r = D+(/\ Deri—)J_).
=0

a(F, D) results from a(F, D, L) by deleting the conjunct ¢ . a(F,D, L) and
a(F,D) are called the canonical and negation free canonical formulas for §
and D, respectively. It is not hard to check that if a(F,®, L) is refuted in
® = (V, S, Q) under some valuation then the partial map defined by z + a;
if the premise of «a(F, D, L) is true at  and p; false is a cofinal subreduction
of & to F satisfying (CDC) for ®; and conversely, if f is such a subreduction
then the valuation { defined by U(p;) =V — f1(a;) refutes a(F, D, L) at
any point in f~!(ag).

THEOREM 1.44 There is an algorithm which, given a formula p, returns
canonical formulas a(F1,D1,L), ..., a(Fn,Dn, L) such that

Kadp= K4EBO(({§1,©1,J.) @---@a(gnagnyl)'

So the set of canonical formulas is complete for the class NExtK4. If ¢ is
negation free then one can use negation free canonical formulas.

It is not hard to see that K4 @ ¢ is a splitting of NExtK4 iff ¢ is deduc-
tively equivalent in NExtK4 to a formula of the form a(g, ®%, 1), where ©F
is the set of all antichains in § (in this case K4/§ = K4®a(g,D*, 1)). Such
formulas are known as Jankov formulas (Jankov [1963] introduced them for
intuitionistic logic), or frame formulas (cf. [Fine 1974a]), or Jankov—Fine
formulas. Since GL is not a union-splitting of NExtK4, this class of logics
has no axiomatic basis.

We conclude this section by showing in Table 2 canonical axiomatizations
of some standard modal logics in the field of K4. For brevity we write
a(F, L) instead of a(g,0, L) and of(F, L) instead of a(F, D%, L). Each * in
the table is to be replaced by both o and e.

For more information about the canonical formulas the reader is referred
to [Zakharyaschev 1992, 1997b].

1.7 Decidability via the finite model property

Although, for cardinality reason, there are “much more” undecidable logics
than decidable ones, almost all “natural” propositional systems close to
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K4.2
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= K4®a(0)@a()@a(2)
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= K4dalo)da(e)
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= K4®a(1)(4 axioms)
le o2

= GLaoof {11 {1,23))
: :
= K4®a(I,L)®a($,L)®a(Xf,L) (8 axioms)

= K4a4®qf Xj) (6 axioms)
® o
?/O) b a()

= S4da ©
n+1

—
% ... 3

= K4®a(V) (2n + 4 axioms)
§n
L1
= K49 a(*0) (2! axioms)
em
1
= Kd4da(e0,D%

Table 2. Canonical axioms of standard modal logics
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those we deal with in this chapter turn out to be decidable. Relevant and
linear logics are probably the best known among very few exceptions (see
[Urquhart 1984], [Lincoln et al. 1992]).

The majority of decidability results in modal logic was obtained by means
of establishing the finite model property. FMP by itself does not ensure yet
decidability (there is a continuum of logics with FMP); some additional con-
ditions are required to be satisfied. For instance, to prove the decidability
of S4 McKinsey [1941] used two such conditions: that the logic under con-
sideration is characterized by an effective class of finite frames (or algebras,
matrices, models, etc.) and that there is an effective (exponential in the case
of S4) upper bound for the size of minimal refutation frames. Under these
conditions, a formula belongs to the logic iff it is validated by (finite) frames
in a finite family which can be effectively constructed. Another sufficient
condition of decidability is provided by the following well known

THEOREM 1.45 (Harrop 1958) Every finitely aziomatizable logic with FMP
is decidable.

Here we need not to know a priori anything about the structure of frames
for a given logic. This information is replaced by checking the validity of its
axioms in finite frames, and the restriction of the size of refutation frames
is replaced by constructing all possible derivations: in a finite number of
steps we either separate a tested formula from the logic or derive it. Note
that unlike the previous case now we cannot estimate the time required to
complete this algorithm.

The condition of finite axiomatizability in Harrop’s Theorem cannot be
weakened to that of recursive axiomatizability. For there is a logic of depth
3 in NExtK4 (i.e., a logic in NExtK4BD3) with an infinite set of inde-
pendent axioms; so the logic of depth 3 axiomatizable by some recursively
enumerable but not recursive sequence of formulas in this set is undecid-
able and has FMP. On the other hand there are examples of undecidable
logics characterized by decidable classes of finite frames (see e.g. [Chagrov
and Zakharyaschev 1997]). Yet one can generalize Harrop’s Theorem in
the following way. A logic is decidable iff it is recursively enumerable and
characterized by a recursive class of recursive algebras. However, this cri-
terion is absolutely useless in its generality. In this connection we note two
open problems posed by Kuznetsov [1979]. Is every finitely axiomatizable
logic characterized by recursive algebras? Is every finitely axiomatizable
logic, characterized by recursive algebras, decidable? (That finite axiom-
atizability is essential here is explained by the following fact: if a lattice
of logics contains a logic with a continuum of immediate predecessors then
there is no countable sequence of algebras such that every logic in the lattice
is characterized by one of its subsequences. For details see [Chagrov and
Zakharyaschev 1997].)
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FMP of almost all standard systems was proved using various forms of
filtration (consult Section 12 Basic Modal Logic and [Gabbay 1976]). How-
ever, the method of filtration is rather capricious; one needs a special craft
to apply it in each particular case (for instance, to find a suitable “filter”).
In this and two subsequent sections we discuss other methods of proving
FMP which are applicable to families of logics and provide in fact sufficient
conditions of FMP. (It is to be noted that the families of Kripke complete
logics considered in Section 1.3 contain logics without FMP.) A pair of such
conditions was already presented in Basic Modal Logic:

THEOREM 1.46 (Segerberg 1971) Each logic in NExtK4 characterized by
a frame of finite depth (or, which is equivalent, containing K4BD,,, for
some n < w) has FMP.

THEOREM 1.47 (Bull 1966b, Fine 1971) Each logic in NExtS4.3 has FMP
and is finitely aziomatizable (and so decidable).

The former result, covering a continuum of logics, follows immediately
from the description of finitely generated refined frames for K4 in Section 1.2
and the latter is a consequence of Theorem 1.52 and Example 1.54 below.
It is worth noting also that since § 1, (n) is finite for every logic L € NExtK4
of finite depth and every n < w, there are only finitely many pairwise non-
equivalent in L formulas of n variables. Logics with this property are called
locally tabular (or locally finite). Moreover, as was observed by Maksimova
[1975a], the converse is also true: if L € NExtK4 has frames of any depth
< w then the formulas in the sequence p; = p, ppt1 = pV O(p = Opy,)
are not equivalent in L. Thus, a logic in NExtK4 is locally tabular iff it
is of finite depth. For L € NExtS4 this criterion can be reformulated in
the following way: L is not locally tabular iff L C Grz.3, where Grz.3 =
S4.3 © Grz. Likewise, L € NExtGL is not locally tabular iff L C GL.3.
Nagle and Thomason [1985] showed that all normal extensions of K5 are
locally tabular.

Uniform logics Fine [1975a] used a modal analog of the full disjunctive
normal form for constructing finite models and proving FMP of a family
of logics in NExtD (containing in particular the McKinsey system K @
OSp — <O0Op which had resisted all attempts to prove its completeness by
the method of canonical models and filtration). Let us notice first that every
formula ¢(p1,...,pm) is equivalent in K either to L or to a disjunction
of normal forms (in the variables py,...,p,) of degree md(p), which are
defined inductively in the following way. NFy, the set of normal forms of
degree 0, contains all formulas of the form —yp; A ... A =, pm, Where each
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—; is either blank or =. NF, 11, the set of normal forms of degree n + 1,
consists of formulas of the form

ONA—100L A ... AN,

where # € NF( and 64, ...,60; are all distinct normal forms in NF,,. Put
NF = U,,., NF,. Using the fact that \/{¢6 : 6 € NF,} € D it is not
hard to see also that in D every formula ¢ with md(yp) < n is equivalent
either to L or to a disjunction of normal forms of degree n such that at
least one of -, ..., in the inductive step of the definition above is blank.
Such normal forms are called D-suitable.

It should be clear that, for any distinct ',8"” € NF,,, —=(0' A §") € K.
Consequently, for every § € NF,, and every ¢(p1,...,pm) with md(p) < n,
we have either § — p € K or 8 - —¢ € K.

With each D-suitable normal form € we associate a model My = (Fy, V)
on a frame Fp = (Wy, Ry) by taking

Wy ={T}U{#' € NF: 6 <" 6, for some n >0},

0" < 0" iff &' is a conjunct of §”,
0' Rg0" iff either 6’ > 6" or md(f') =0 and 6" =T,
By(p) = {0' € Wy : pis a conjunct of 0'}.

According to the definition, T is the reflexive last point in §Fp and so Fy is
serial. By a straightforward induction on the degree of ' € Wy one can
readily show that (9y,0') |= 0'. It follows immediately that D has FMP.
Indeed, given ¢ ¢ D, we reduce —p to a disjunction of D-suitable normal
forms with at least one disjunct 6, and then (9, 0) |= 6.

It turns out that in the same way we can prove FMP of all logics in
NExtD axiomatizable by wuniform formulas, which are defined as follows.
Every ¢ without modal operators is a uniform formula of degree 0; and if
$ = ¢(OlX1> ) Ome): where Ol € {Dv <>}7 md(d](pl; s ;pm)) =0 and
X1,---,Xm are uniform formulas of degree n, then ¢ is a uniform formula
of degree n+ 1. A remarkable property of uniform formulas is the following

PROPOSITION 1.48 Suppose ¢ is a uniform formula of degree n and N,
N are models based upon the same frame and such that, for some point x,
(M, y) = p iff N, y) = p for every y € 1™ and every variable p in ¢. Then
(O, 2) = ¢ iff (M, z) = .

Given a logic L, we call a normal form 6 L-suitable if § = L.

THEOREM 1.49 (Fine 1975a) Every logic L € NExtD aziomatizable by
uniform formulas has FMP.
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Proof It suffices to prove that each formula ¢ with md(y) < n is equiva-
lent in L either to L or to a disjunction of L-suitable normal forms of degree
n. And this fact will be established if we show that every D-suitable normal
form 6 such that # — | ¢ L is L-suitable. Suppose otherwise. Let € be an
L-consistent and D-suitable normal form of the least possible degree under
which it is not L-suitable. Then there are a uniform formula ¢ € L of some
degree m and a model M = (Fy, V) such that (I, 0) = .

For every variable p in 4, let I') = {#' € 1™ (9,6") & p} and let
dp =\ T, (if I, = 0 then §, = L). Observe that for every ' € " we have
(My,0") |= 9, it ' € T, iff (M,0") = p. Therefore, by Proposition 1.48,
the formula ¢’ which results from ¢ by replacing each p with 0, is false
at 0 in My. Now, if md(y)') > n then m > n and so §, = L for every p
in 9, i.e., ¥’ is variable free. But then ¢’ is equivalent in D to T or L,
contrary to §p = o' and L being consistent. And if md(¢)') < n then either
0 — ' € K, which is impossible, since (MMy,0) =0 — ', or § —» ' € K,
from which ¢’ — = € K and so =6 € L, contrary to 6 being L-consistent.

|

Logics with O0-axioms Another result, connecting FMP of logics with
the distribution of O and < over their axioms, is based on the following

LEMMA 1.50 For any ¢ and v, Op <> O € S5 iff OO0 «» OOy € K4.

Proof Suppose OCp — OOY ¢ K4. Then there is a finite model 90,
based on a transitive frame, and a point z in it such that z E OOp and
x £ OOy, It follows from the former that every final cluster accessible
from z, if any, is non-degenerate and contains a point where ¢ is true. The
latter means that x sees a final cluster C at all points of which ¢ is false.
Now, taking the generated submodel of 9t based on C, we obtain a model
for S5 refuting ¢ — G, The rest is obvious, since Op +» OOp is in S5
and K4 C S5. a

Formulas in which every occurrence of a variable is in the scope of a
modality O will be called O<C-formulas.

THEOREM 1.51 (Rybakov 1978) If a logic L € NExtK4 is decidable (or
has FMP) and ) is a OO -formula then L ® 1 is also decidable (has FMP).

Proof Let ¢ = ¢'(0Cxq,...,00xy,), for some formula ¢'(q1,...,q,)- If
@(p1,---,0pm) € L@ then there exists a derivation of ¢ in L @1 in which
substitution instances of 1 contain no variables different from pq,...,pm.
Each of these instances has the form ¢’ (00X, , ..., OCx], ), where every X/} is
some substitution instance of x; containing only p1, ..., p,. By Lemma 1.50
and in view of the local tabularity of S5 (it is of depth 1), there are finitely
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many pairwise non-equivalent in K4 substitution instances of O<y; of that
sort (the reader can easily estimate the number of them). So there exist
only finitely many pairwise non-equivalent in K4 substitution instances of
1 containing pi,...,DPm, Say ¥1,-..,¥, and we can effectively construct
them. Then, by the Deduction Theorem,

e L®Yiff gy, p bl @if OT (Y1 A ... AYp) > €L

and so L@ is decidable (or has FMP) whenever L is decidable (has FMP).
|

It should be noted that by adding to L with FMP infinitely many O<-
formulas we can construct an incomplete logic. For a concrete example see
[Rybakov 1977]. By adding a variable free formula to a logic in NExtK with
FMP one can get a logic without FMP. However, K @ ¢, ¢ variable free,
has FMP, as can be easily shown by the standard filtration through the set
Subyp U Sub), where 1) € K @ ¢. Infinitely many variable free formulas can
axiomatize a normal extension of K4 without FMP (for a concrete example
see [Chagrov and Zakharyaschev 1997]).

1.8 Subframe and cofinal subframe logics

A very useful source of information for investigating various properties of
logics in NExtK4 is their canonical axioms. Notice, for instance, that the
canonical axioms of all logics in Table 2, save A* and K4,, ,,,, contain no
closed domains. Canonical and negation free canonical formulas of the form
a(F) and a(F, L) are called subframe and cofinal subframe formulas, respec-
tively, and logics in NExtK4 axiomatizable by them are called subframe and
cofinal subframe logics. The classes of such logics will be denoted by SF
and CSF. Subframe and cofinal subframe logics in NExtK4 were studied
by Fine [1985] and Zakharyaschev [1984, 1988, 1996].

THEOREM 1.52 All logics in SF and CSF have FMP.

Proof Suppose L = K4®{a(F;, L) :i €} and ¢ € L. By Theorem 1.44,
without loss of generality we may assume that ¢ is a canonical formula,
say, a(F,D,L). Now consider two cases. (1) For no i € I, § is cofinally
subreducible to §;. Then § E L, § I~ a(F,9D, 1), and we are done. (2) §
is cofinally subreducible to «(F;, L), for some i € I. In this case we have
a(F,D, L) € K4® a(F;, L) C L, which is a contradiction. Indeed, suppose
& £ a(F, D, L). Then there is a cofinal subreduction of & to §. And since
the composition of (cofinal) subreductions is again a (cofinal) subreduction,
& is cofinally subreducible to §;, which means that & £ a(F;, L). Subframe

logics are treated analogously. a
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The names “subframe logic” and “cofinal subframe logic” are explained
by the following frame-theoretic characterization of these logics. A subframe
& = (V,S,Q) of a frame § is called cofinal if V4 C V] in §. Say that a class
C of frames is closed under (cofinal) subframes if every (cofinal) subframe
of § is in C whenever § € C.

THEOREM 1.53 L € NExtK4 is a (cofinal) subframe logic iff it is charac-
terized by a class of frames that is closed under (cofinal) subframes.

Proof Suppose L € CSF. We show that the class of all frames for L is
closed under cofinal subframes. Let & |= L and ) be a cofinal subframe
of &. If 9 £ a(F, L), for some a(F, L) € L, then (since & is cofinally
subreducible to 9) & }= «(F, L), which is a contradiction. So $) = L.

Now suppose that L is characterized by some class of frames C closed
under cofinal subframes. We show that L = L', where

L'=K4a{aF, L1): 3L}

If § is a finite rooted frame and § & L then «(F, L) € L, for otherwise
& £ aF, L) for some ® € C, and hence there is a cofinal subframe $ of
® which is reducible to §; but $ € C and so, by the Reduction Theorem,
§ is a frame for L, which is a contradiction. Thus, L' C L. To prove the
converse, suppose a(F,D, L) € L. Then § £ L, and hence a(F, L) € L',
from which «(F,D,L1) € L.

Subframe logics are considered in the same way. a

It follows in particular that SF C CSF (K4.1 and K4.2 are cofinal
subframe logics but not subframe ones). One can easily show also that
CSF is a complete sublattice of NExtK4 and SF a complete sublattice of
CSF.

EXAMPLE 1.54 Every normal extension of S4.3 is axiomatizable by canon-
ical formulas which are based on chains of non-degenerate clusters and so
have no closed domains. Therefore, NExtS4.3 C CSF.

The classes SF and CSF — SF contain a continuum of logics. And
yet, unlike NExtK or NExtK4, their structure and their logics are not so
complex. For instance, it is not hard to see that every logic in CSF is
uniquely axiomatizable by an independent set of cofinal subframe formulas
and so these formulas form an axiomatic basis for CSF.

The concept of subframe logic was extended in [Wolter 1993] to the class
NExtK by taking the frame-theoretic characterization of Theorem 1.53 as
the definition. Namely, we say that L € NExtK is a subframe logic if the
class of frames for L is closed under subframes. In other words, subframe
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logics are precisely those logics whose axioms “do not force the existence of
points”. For example, K, KB, K5, T, and Alt, are subframe logics. To
give a syntactic characterization of subframe logics we require the following
formulas.

For a formula ¢ and a variable p not occurring in ¢, define a formula ©?
inductively by taking

q° = ¢Ap, qan atom,
Wox)P = PProxt, for®€{AV,=}
@) = DBlp—=yYP)Ap

and put p*f =p = ©P.

LEMMA 1.55 For any frame §, § &= ¢*f iff ¢ is valid in all subframes of
3.

Proof It suffices to notice that if 9 is a model based on §, 9 a model
based on the subframe of § induced by {y : (0, y) = p} and (I, z) |= ¢ iff
(M', z) [ q, for all variables ¢, then (M, z) | P iff (N, z) = . a

PROPOSITION 1.56 The following conditions are equivalent for any modal
logic L:

(i) L is a subframe logic;

(ii) L = K@ {¢*f : ¢ € T'}, for some set of formulas T';

(iii) L is characterized by a class of frames closed under subframes.

Proof The implication (i) = (iii) is trivial; (ili) = (ii) and (ii) = (i) are
consequences of Lemma 1.55. o

It follows that the class of subframe logics forms a complete sublattice of
NExtK. However, not all of them have FMP and even are Kripke complete.

EXAMPLE 1.57 Let L be the logic of the frame § constructed in Exam-
ple 1.7. Since every rooted subframe & of § is isomorphic to a generated
subframe of §, L is a subframe logic. We show that L has the same Kripke
frames as GL.3. Suppose & is a rooted Kripke frame for GL.3 refuting
@ € L. Then clearly & contains a finite subframe ) refuting ¢. Since ) is
a finite chain of irreflexive points, it is isomorphic to a generated subframe
of §, contrary to § [~ ¢. Thus & |= L. Conversely, suppose & is a Kripke
frame for L. Then & is irreflexive. For otherwise & refutes the formula
p = 0%(0p — p) AO(Op — p) — Op, which is valid in F. Let us show
now that & is transitive. Suppose otherwise. Then & refutes the formula
Op — O(Op V (Og — ¢q)), which is valid in § because w is a reflexive point.
Finally, since & = ¢, & is Noetherian and since § is of width 1, we may
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conclude that & = GL.3. It follows that the subframe logic L is Kripke
incomplete. Indeed, it shares the same class of Kripke frames with GL.3
but Op — O0p € GL.3 — L.

The following theorem provides a frame-theoretic characterization of those
complete subframe logics in NExtK that are elementary, D—persistent and
strongly complete. Say that a logic L has the finite embedding property if
a Kripke frame § validates L whenever all finite subframes of § are frames
for L.

THEOREM 1.58 (Fine 1985) For each Kripke complete subframe logic L
the following conditions are equivalent:

(i) L is universal®

(ii) L is elementary;

(iii) L is D—persistent;

(iv) L is strongly Kripke complete;

(v) L has the finite embedding property.

Proof The implications (i) = (ii) and (iii) = (iv) are trivial; (ii) = (iii)
follows from Fine’s [1975b] Theorem formulated in Section 1.3 and (v) =
(i) from [Tarski 1954]. Thus it remains to show that (iv) = (v). Suppose
§ is a Kripke frame with root r such that § & L but all finite subframes
of § validate L. Then it is readily checked that all finite subsets of I' =
{p-} UO<¥Ag are L-consistent. Hence the whole set I is L-consistent. On
the other hand, similarly to the proof of Lemma 1.13 one can show that T is
satisfiable in a Kripke frame iff the frame is subreducible to §. So I' cannot
be satisfied in a Kripke frame for L and L is not strongly complete. a

A similar criterion for the cofinal subframe logics in NExtK4 can be
found in [Zakharyaschev 1996]. Note, however, that they are not in general
universal and certainly do not have the finite embedding property, but (ii),
(iii) and (iv) are still equivalent.

PROPOSITION 1.59 Every subframe logic L € NExtAlt,, has FMP.

Proof Suppose ¢ € L. By Theorem 1.22, there is a Kripke frame § for L
refuting ¢ at a point z. Denote by X the set of points in § accessible from
x by < md(p) steps. Clearly, X is finite and the subframe of § induced by
X validates L and refutes . a

To understand the place of incomplete logics in the lattice of subframe
logics we call a subframe logic L strictly sf-complete if it is Kripke complete

9.e., universal is the class of Kripke frames for L considered as models of the first
order language with R and =.
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and no other subframe logic has the same Kripke frames as L. Example 1.57
shows that GL.3 is not strictly sf-complete. However, the logics T, S4 and
Grz turn out to be strictly sf-complete. The following result clarifies the
situation. It is proved by applying the splitting technique to lattices of
subframe logics.

THEOREM 1.60 A subframe logic L containing K4 is strictly sf-complete
iff L € GL.3. All subframe logics in NExtAlt,, are strictly sf-complete.
A subframe logic is tabular iff there are only finitely many subframe logics
containing it.

1.9 More sufficient conditions of FMP

As follows from Theorem 1.52, a logic in NExtK4 does not have FMP only
if at least one of its canonical axioms contains closed domains. We illustrate
their role by a simple example.

EXAMPLE 1.61 Consider the logic L = K4.3 ® (3, L) and the formula
a(F, L), where § is the frame depicted in Fig. 5 (a). The frame & in
Fig. 5 (b) separates «(§, L) from L. Indeed, § is a cofinal subframe of &
and so & [~ a(F, L). To show that & = of(F, L), suppose f is a cofinal
subreduction of & to §. Then f~1(1) contains only one point, say x; f*(0)
also contains only one point, namely the root of &. So the infinite set of
points between z and the root is outside domf, which means that f does
not satisfy (CDC) for {{1}}. On the other hand, if §) is a finite refutation
frame of width 1 for «(F, L) then §) contains a generated subframe reducible
to §, from which $) j£ L. Thus, L fails to have FMP. In the same manner
the reader can prove that A* in Table 2 does not have FMP either.

We show now two methods developed in [Zakharyaschev 1997a] for es-
tablishing FMP of logics whose canonical axioms contain closed domains.
One of them uses the following lemma, which is an immediate consequence
of the refutability criterion for the canonical formulas.
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LEMMA 1.62 Suppose a(F,D) and a(®,€) (a(F,D,L) and (&, €, 1))
are canonical formulas such that there is a (cofinal) subreduction f of &
to § satisfying (CDC) for ® and an antichain ¢ C domf1 is in € whenever
flet) = 01 for some 0 € ©. Then a(®,€) € K4 ® a(F,D) (respectively,
(&, ¢, 1) e K4 a(§,D,1)).

THEOREM 1.63 L = K4® {a(3:,9:, 1) :i € I} d{a(F;,D;) : j € J} has
FMP provided that either all frames §;, for i € I U .J, are irreflexzive or all
of them are reflexive.

Proof Suppose all §; are irreflexive and a(®, &, 1) is an arbitrary canon-
ical formula. We construct from & a new finite frame § by inserting into it
new reflexive points. Namely, suppose ¢ is an antichain in & such that ¢ & €.
Suppose also that C1,...,C), are all clusters in & such that ¢ C C;1 and
eNC; =0, for i =1,...,n, but no successor of C; possesses this property.
Then we insert in & new reflexive points 1, ..., x, so that each z; could
see only the points in ¢ and their successors and could be seen only from the
points in C; and their predecessors. The same we simultaneously do for all
antichains ¢ in & of that sort. The resulting frame is denoted by $. Since
no new point was inserted just below an antichain in &, § = a(®, &, 1).

Suppose now that a(®, €&, L) ¢ L and show that $ = L. If this is not so
then either § £~ a(F;,9;, L), for some i € I, or = a(F;,D;), for some
j € J. We consider only the former case, since the latter one is treated
similarly. Thus, we have a cofinal subreduction f of $ to §; satisfying
(CDC) for @;. Since §; is irreflexive, no point that was added to & is in
domf. So f may be regarded as a cofinal subreduction of & to §; satisfying
(CDC) for ©;. We clearly may assume also that the subframe of & generated
by domf is rooted. Let e be an antichain in & belonging to dom f1 and such
that f(et) = 01 for some 0 € D;. If e & € then there is a reflexive point
z in $ such that z € domf?1 and z sees only et and, of course, itself. But
then f(z1) = f(e1) = 91 and so, by (CDC), & € domf, which is impossible.
Therefore, ¢ € € and so, by Lemma 1.62, a(®, €, L) € L, contrary to our
assumption.

In the case of reflexive frames irreflerive points are inserted. a

EXAMPLE 1.64 According to Theorem 1.63, the logic

le o2
L=K4& o A1 {1,231}

has FMP. However, Artemov’s logic A* = L & GL does not enjoy this
property. So FMP is not in general preserved under sums of logics.
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The scope of the method of inserting points is not bounded only by canon-
ical axioms associated with homogeneous (irreflexive or reflexive) frames. It
can be applied, for instance, to normal extensions of K4 with modal reduc-
tion principles, i.e., formulas of the form Mp — Np, where M and IN are
strings of O and < (for first order equivalents of modal reduction principles
see [van Benthem 1976]). One can show that each such logic is either of
finite depth, or can be axiomatized by O<-formulas and canonical formulas
based upon almost homogeneous frames (containing at most one reflexive
point), for which the method works as well. So we have

THEOREM 1.65 All logics in NExtK4 aziomatizable by modal reduction
principles have FMP and are decidable.

One of the most interesting open problems in completeness theory of
modal logic is to prove an analogous theorem for logics in NExtK or to
construct a counter-example. It is unknown, in particular, whether the
logics K & O0™p — O"p have FMP; the same concerns the logics K & tra,,.

The second method of proving FMP uses the more conventional technique
of removing points. Suppose that L = K4 & {a(®;,D;, L) : i € I} and
a=«a$,€ L) € L. Then there exists a frame § for L such that § [~ «,
i.e., there is a cofinal subreduction h of § to $) satisfying (CDC) for €.
Construct the countermodel M = (F, V) for « as it was done in Section 1.6.
Without loss of generality we may assume that domht = domh] = § and
that § is generated by the sets U(p;), p; a variable in a.

Actually, the step-wise refinement procedure with deleting points having
Suba-equivalent successors, used in the proof of Theorem 1.42, establishes
FMP of L when all ®; are empty, i.e., L is a cofinal subframe logic. To
tune it for L with non-empty ©;, we should follow a subtler strategy of
deleting points, preserving those that are “responsible” for validating the
axioms of L. Suppose we have already constructed a model M), = (§7,,T,)
by “folding up” n — l-cyclic sets into clusters of depth n (we use the same
notations as in the proof of Theorem 1.42). Now we throw away points of
two sorts.

First, for every proper cluster C' of depth n such that some x € C has
a Suba-equivalent successor of depth < n, we remove from C' all points
except . Second, call a point z of depth > n redundant in M if it has
a Suba-equivalent successor of depth < n and, for every ¢ € I and every
cofinal subreduction g of ()" to the subframe of &; generated by some
0 € ©; such that © C g(z?1) and g satisfies (CDC) for @;, there is a point
y € x1 of depth < n such that g(y1) = 9. Let X be the maximal
set of redundant points in 9%/, which is upward closed in (W})>". We
define M, 11 = (Fnt1,Vnt1) as the submodel of M, resulting from it by
removing all points in X as well. Since all deleted points have Suba-
equivalent successors, My+1 = . And since we keep in §p41 points which
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violate (CDC) for ®; of possible cofinal subreductions to &;, §F.+1 E L.
So FMP of L will be established if we manage to prove that this process
eventually terminates.

EXAMPLE 1.66 Let L = S4 @ «(®,{{1,2}}, 1), where & is , and
assume that our “algorithm”, when being applied to §, a and L, works
infinitely long. Then the frame §, = (W,,, R,,), where

wo= |J W&, Ro= |J B, 8i=(Wi,Ri,P),
0<i<w 0<i<w

is of infinite depth. By Konig’s Lemma, there is an infinite descending
chain ...z;R,z; 1 ... Ry,x2R,x1 in §, such that x; is of depth i. Since
there are only finitely many pairwise non-Suba-equivalent points, there
must be some n > 0 such that, for every k > n, each point in C'(xy) has a
Suba-equivalent successor in 3,?’“. And since 3%1 is finite, there is m > n
starting from which all x; see the same points of depth 1. Let us consider
now §,, and ask why points in the m-cyclic set X, folded at step m + 1
into C'(zy,41), were not removed at step m. X is upward closed in W™
and every point in it has a Suba-equivalent successor in =™. So the only
reason for keeping some x € X is that F=™ is cofinally subreducible to &=1,
x sees inverse images of both points in &=! but none of its successors in
=™ does. By the cofinality condition, these inverse images can be taken
from 3151. But then they are also seen from x,,, which is a contradiction.
Thus sooner or later our algorithm will construct a finite frame separating
L from «, which proves that L has FMP.

The reason why we succeeded in this example is that inverse images of
points in the closed domain {1,2} can be found at a fixed finite depth in
Sw, and so points violating (CDC) for it can also be found at finite depth
(that was not the case in Example 1.61). The following definitions describe
a big family of frames and closed domains of that sort.

A point z in a frame & is called a focus of an antichain a in & if z € a
and z1 = {z} U af. Suppose & is a finite frame and D a set of antichains
in &. Define by induction on n notions of n-stable point in & (relative to
D) and n-stable antichain in ©. A point x is 1-stable in & iff either x is of
depth 1 in & or the cluster C(x) is proper. A point z is n + 1-stable in &
(relative to @) iff it is not m-stable, for any m < n, and either there is an
n-stable point in & (relative to ©®) which is not seen from z or z is a focus
of an antichain in ® containing an n — 1-stable point and no n-stable point.
And we say an antichain 0 in ® is n-stable iff it contains an n-stable point



ADVANCED MODAL LOGIC 53

1 1 1q>1<1><>1 1o ol
3 2 2‘>2(><12 3><3
) 4 3‘>3(><r3 5><5
70 06 40" 4% 04 7@><A7

Figure 6.

in the subframe &' of & generated by 0 (relative to ) and no m-stable
point in &' (relative to D), for mn > n. A point or an antichain is stable if
it is n-stable for some n. It should be clear that if a point in an antichain
is stable then the rest points in the antichain are also stable.

EXAMPLE 1.67 (1) Suppose & is a finite rooted generated subframe of one
of the frames shown in Fig. 6 (a)—(c). Then, regardless of ©, each point
in & different from its root is n-stable, where n is the number located near
the point. Every antichain 0 in &, containing at least two points, is also
n-stable, with n being the maximal degree of stability of points in 0.

(2) If & is a rooted generated subframe of the frame depicted in Fig. 6
(d) and ® is the set of all two-point antichains in & then every point in & is
n-stable (relative to D), where n stays near the point. However, for ® = ()
no point in &, save those of depth 1, is stable.

(3) If & is a finite tree of clusters then every antichain in &, different from
a non-final singleton, is either 1- or 2-stable in & regardless of ©. Every
antichain containing a point z with proper C(z) is 1- or 2-stable as well,
whatever ® and ® are.

(4) Every antichain is stable in every irreflexive frame & relative to the
set D! of all antichains in &. However, this is not so if & contains reflexive
points (for reflexive singletons are open domains and do not belong to D¥).

The sufficient condition of FMP below is proved by arguments that are
similar to those we used in Example 1.66.

THEOREM 1.68 If L = K4®{a(®;,D;, 1) :i € I} and there is d > 0 such
that, for any i € I, every closed domain ® € ®; is n-stable in &; (relative
to ©;), for some n < d, then L has FMP.

Example 1.67 shows many applications of this condition. Moreover, using
it one can prove the following
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THEOREM 1.69 FEvery normal extension of S4 with a formula in one vari-
able has FMP and is decidable.

Note that, as was shown by Shehtman [1980], a formula in two variables
or an infinite set of one-variable formulas can axiomatize logics in NExtS4
without FMP (and even Kripke incomplete).

1.10 The reduction method

That a logic does not have FMP (or is Kripke incomplete) is not yet an
evidence of its undecidability: it is enough to recall that the majority of
decidability results for classical theories was proved without using any ana-
logues of the finite model property (see e.g. [Rabin 1977], [Ershov 1980]).
The first example of a decidable finitely axiomatizable modal logic without
FMP was constructed by Gabbay [1971].

It seems unlikely that the methods of classical model theory can be ap-
plied directly for proving the decidability of propositional modal logics.
However, sometimes it is possible to reduce the decision problem for a given
modal logic L to that for a knowingly decidable first or higher order theory
whose language is expressive enough for describing the structure of frames
characterizing L. The most popular tools used for this purpose are Biichi’s
[1962] Theorem on the decidability of the weak monadic second order theory
of the successor function on natural numbers and Rabin’s [1969] Tree The-
orem. Below we illustrate the use of Rabin’s Theorem following [Gabbay
1975] and [Cresswell 1984].

Let w* be the set of all finite sequences of natural numbers and < the
lexicographic order on it. For z € w* and i < w, put r;(z) = x x i, where
* denotes the usual concatenation operation. Besides, define the following
predicates <; on w*, for 0 <i < 2,

x <;yiff y =2 % (3n+ 1) for some n < w.

It follows from [Rabin 1969] that the monadic second order theory SwS
of the model (w*,{r;:i <w},{<;: 0<i<2},<,0) (0 denotes the empty
sequence) is decidable.

The theory SwS has a very strong expressive power which makes it pos-
sible to effectively describe semantical definitions of many modal (as well as
some other) logics and thereby prove their decidability. In this way Gabbay
[1975] established the decidability of, for instance,

Kpdmop —» Op, Ko <O™Op — Op,

Kegdmp —» O"p, K& O™p — 0"p.
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By Sahlqvist’s Theorem, all these logics are Kripke complete; however, we
do not know whether they have FMP. General frames can also be described
by means of SwS.

EXAMPLE 1.70 The frame § = (W, R, P) constructed in Example 1.7 can
be represented in the language of SwS as follows. Let us encode each n < w
by the sequence (3n), while w and w + 1 by r1(0) and 72(0), respectively.
Then we have

zeW iff D<gzVz=ri(0)Vz=ry),

zRy iff D<oz AD<oyAy<zAz#yV
z=riMAb<oy) Vo =y=ri(f)V
(@ =r2(0) Ny = r1(0)),

XepP iff Ve(zeX—szeW)A(Fin(X)Ari(0) ¢ X)V
VY Vy (yeY < (yeWAy ¢ X)) = Fin(Y)Ar (D) ¢ Y)),

where x = y means ¢ < y Ay < x and
Fin(X)=3a2Vy (ye X -y < z).

It follows that the logic Logg¥ is decidable. Indeed, for every formula
©(p1,-.-,DPn), we have p € LogF iff the second order formula

VaVXy,..., X, (X, €PA...AX, €PNz €W = ST(p(X1,...,Xn)))

belongs to SwS. Here ST (p(X,...,X,)), the standard translation of ¢, is
defined inductively in the following way (see also Correspondence Theory):

ST(X)=z€e X, ST(L)=1,
ST(XeY)=ST(X)oST(Y), for ® € {A,V,—},
ST(OX) =Wy (sRy — ST(X){y/}).
Recall that, as was shown in Example 1.57, Logg§ is Kripke incomplete.

Also, it is not hard to find examples of applications of this technique
for proving the decidability of finitely axiomatizable quasi-normal unimodal
and normal polymodal (in particular, tense) logics which do not have Kripke
frames at all; perhaps, the simplest one is Solovay’s logic S.

Sobolev [1977a] found another way of proving decidability by applying
methods of automata theory on infinite sequences. Using the results of
[Biichi and Siefkes 1973] he showed that all finitely axiomatizable superin-
tuitionistic logics of finite width (see Section 3.4) containing the formula

(p—=q)—=p) —=pVlg—=p) —q—q-
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are decidable. By the preservation theorem of Section 3.3, this result can
be transferred to the corresponding extensions of S4.

If a logic is known to be complete with respect to a suitable class of
frames, the methods discussed above are usually applicable to it in a rather
straightforward manner. A relative disadvantage of this approach is that the
resulting decision algorithms inherit the extremely high complexity of the
decision algorithms for SwS or other “rich theories” used to prove decidabil-
ity. On the other hand, the logic S, for instance, turns out to be decidable
by an algorithm of the same complexity as that for GL (see Example 1.75),
in particular, the derivability problem in S is PSP AC E-complete. The
logic of the frame § in Example 1.7 is “almost trivial”—it is polynomially
equivalent to classical propositional logic, which follows from the fact that
every formula ¢ refutable by § can be also refuted in § under a valua-
tion giving the same truth-value to all variables in ¢ at all points ¢ such
that |Subp| < i < w (see Section 4.6). Actually, this sort of decidability
proofs (ignoring “inessential” parts of infinite frames) was used already by
Kuznetsov and Gerchiu [1970] for studying some superintuitionistic logics.

Recently more general semantical methods of obtaining decidability re-
sults without turning to “rich theories” have been developed. We demon-
strate them in the next section by establishing the decidability of all finitely
axiomatizable logics in NExtK4.3, which according to Example 1.61 do not
in general have FMP. We show, however, that those logics are complete
with respect to recursively enumerable classes of recursive frames in which
the validity of formulas can be effectively checked—it was this rather than
the finiteness of frames that we used in the proof of Harrop’s Theorem. In
Section 2.5 this result will be extended to linear tense logics which in general
are not even Kripke complete. Our presentation follows [Zakharyaschev and
Alekseev 1995].

1.11 Logics containing K4.3

Each logic in L € NExtK4.3 is represented in the form
L=K43® {a(&i,gi, J_) 11 € I},

where all §; are chains of clusters. So our decidability problem reduces to
finding an algorithm which, given such a representation with finite I and
a canonical formula a(F,®, L) built on a chain of clusters §, could decide
whether a(F,D, L) € L. Recall also that, by Fine’s [1974c] Theorem, logics
of width 1 are characterized by Kripke frames having the form of Noetherian
chains of clusters.
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LEMMA 1.71 For any Noetherian chain of clusters & and any canonical
formula a(F,D, L), & = a(F,D, L) iff there is an injective'® cofinal subre-
duction g of & to § satisfying (CDC) for .

Proof If & £ a(F,D, L) then there is a cofinal subreduction f of & to
¥ satisfying (CDC) for . Clearly, f~'(z) is a singleton if z is irreflexive.
Suppose now that z is a reflexive point in §. Since & contains no infinite
ascending chains, f~!(x) has a finite cover and so there is a reflexive point
uy € f71(x) such that f~1(z) C u,|. Fix such a u, for each reflexive z and
define a partial map g by taking

) if either f(y) is irreflexive or

g(y) = f(y) is reflexive and y = uy(,)
undefined otherwise.

One can readily check that g is the injective cofinal subreduction we need.
The converse is trivial. o

Roughly, every Noetherian chain of clusters refuting a(F,®, L) results
from § by inserting some Noetherian chains of clusters just below clusters
C(z) in § such that {z} ¢ ©®. We show now that if a(F,D, L) is not in
L € NExtK4.3 then it can be separated from L by a frame constructed
from § by inserting in open domains between its adjacent clusters either
finite descending chains of irreflexive points possibly ending with a reflexive
one or infinite descending chains of irreflexive points.

Let C(zo),...,C(zy) be all distinct clusters in § ordered in such a way
that C(z9) C C(21)} C ... C C(zy,)]). Say that an n-tuple t = (¢;,...,&,)
is a type for a(F,D, L) if either & = m or & = m+, for some m < w, or
& =w,with& =0if {x;} € D. Given atypet = ({1,...,&,) for a(F, D, L),
we define the t-extension of § to be the frame & that is obtained from §
by inserting between each pair C'(z;_1), C(z;) either a descending chain of
m irreflexive points, if §; = m < w, or a descending chain of m + 1 points
of which only the last (lowest) one is reflexive, if £ = m+, or an infinite
descending chain of irreflexive points, if ¢ = w. It should be clear that
& a(F,?,1).

LEMMA 1.72 If L € NExtK4.3 and a(§,D,1) &€ L then a(F,D,1) is
separated from L by the t-extension of §, for some type t for a(F,D, ).

Proof By Lemma 1.71, we have a Noetherian chain of clusters & for L
and an injective cofinal subreduction f of ® to § satisfying (CDC) for D.
By the Generation Theorem, we may assume that f maps the root of & to
the root of §. Let &y be the subframe of & obtained by removing from &

10That is g(z) # g(y), for every distinct x,y € domg.
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all those points that are not in dom f but belong to clusters containing some
points in domf. The very same map f is an injective cofinal subreduction
of &g to § satisfying (CDC) for ©, and so &y £~ a(F,D, L). Since Gy is a
reduct of &, &y |= L.

Let C(zp),...,C(zy,) be all distinct clusters in ¢ such that

domf = | J C(x;), C(ao) C Clz1)l C ... C Clan)]
=0

By induction on ¢ we define a sequence of frames &g O ... D &, such that
(a) f is an injective cofinal subreduction of &; to § satisfying (CDC) for
D, (b) between C(z;_1) and C(z;) the frame &; contains either a finite
descending chain of irreflexive points possibly ending with a reflexive one
or an infinite descending chain of irreflexive points, and (c¢) &; = L.

Suppose &;_; has been already constructed and €; is the chain of clusters
located between C(xz;—1) and C(z;). Three cases are possible. (1) €; is a
finite chain of irreflexive points. Then we put &; = &;_;. (2) &; contains
a non-degenerate cluster C'(z) having finitely many distinct successors in
¢; and all of them are irreflexive. Then &; results from &; ; by removing
from €; all points save x and those successors. &; is a reduct of &;_;
and so conditions (a)—(c) are satisfied. (3) Suppose (1) and (2) do not
hold. Then €; contains an infinite descending chain Y of irreflexive points
accessible from all other points in €;. In this case &; is obtained from &; 1
by removing all points in €; save those in Y. Clearly, &; satisfies (a) and
(b). To prove (c) suppose &; [~ a($), €, L) for some a9, &, L) € L. Then
there is an injective cofinal subreduction g of &; to $ satisfying (CDC) for
€. Consider g as a cofinal subreduction of &;_; to $ and show that it also
satisfies (CDC) for €. Indeed, (CDC) could be violated only by a point in
z € €; — Y such that g(z1) = w?, for some {w} € €. Since g~ (w) is a
singleton and Y C 21, there is y € Y such that g(y1) = w? and y ¢ domg,

contrary to g satisfying (CDC) for & as a subreduction of &; to 9. a

Thus, a frame separating a(F,D, L) ¢ L from L € NExtK4.3 can be
found in the recursively enumerable class of t-extensions of §, t being a
type for a(F,®,L). Moreover, given a formula a(f), €, L) and a type t
for a(F,®, L), one can effectively check whether a($), €, L) is valid in the
t-extension of §. Indeed, let & be the number of irreflexive points in £,
t={(&,...,&), and & the t-extension of §. Construct a cofinal subframe
&), of ® by “cutting off” the infinite descending chains inserted in § (if any)
just below their k£ 4+ 1th points, and let X be the set of all these k + 1th
points. Clearly, &, is finite. It is now an easy exercise to prove the following

LEMMA 1.73 & £ a($, €, L) iff there is an injective cofinal subreduction
f of & to $ satisfying (CDC) for € and such that X Ndomf = §.
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As a consequence we obtain

THEOREM 1.74 All finitely axiomatizable normal extensions of K4.3 are
decidable.

1.12  Quasi-normal modal logics

All logics we have considered so far were normal, i.e., closed under the rule
of necessitation ¢/Op. McKinsey and Tarski [1948] noticed, however, that
by adding to S4 the McKinsey axiom ma = OOCp — <OOp and taking
the closure under modus ponens and substitution we obtain a logic—let us
denote it by S4.1'—which is not normal in that sense. To understand why
this is so, consider the frame § shown in Fig. 7. One can easily construct
a model on § such that 0 £ Oma (0 sees a final proper cluster). On the
other hand, ma and all its substitution instances are true at 0 (0 sees a
final simple cluster), from which S4.1' C {¢: 0 = ¢} and so Oma ¢ S4.1'.
A set of modal formulas containing K and closed under modus ponens
and substitution was called by Segerberg [1971] a quasi-normal logic. The
minimal quasi-normal extension of a logic L with formulas ¢;, i € I, will be
denoted by L + {y; : i € I'} (i.e., the operation + presupposes taking the
closure under modus ponens and substitution only). ExtL is the class of all
quasi-normal logics above L. It is easy to see that a quasi-normal logic is
normal iff it is closed under the congruence rule p <» ¢/0Op + Ogq.
Quasi-normal logics, introduced originally as some abstract (though nat-
ural) generalization of normal ones, attracted modal logicians’ attention
after Solovay [1976] constructed his provability logics GL and S. The for-
mer one treats O as “it is provable in Peano Arithmetic” and describes
those properties of Godel’s provability predicate that are provable in PA; it
is normal. The latter characterizes the properties of the provability predi-
cate that are true in the standard arithmetic model, and in view of Gédel’s
Incompleteness Theorem it cannot be normal. (For a detailed discussion of
provability logic consult Modal Logic and Self-reference.) Solovay showed
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in fact that
S=GL+dp—p.

At first sight S may appear to be inconsistent: Lob’s axiom requires frames
to be irreflexive, while Op — p is refuted in them. And indeed, no Kripke
frame validates both these axioms (in particular no consistent extension of
S is normal).

Having the algebraic semantics for normal modal logics, it is fairly easy to
construct an adequate algebraic semantics for a consistent L € ExtK. Let
M be a normal logic contained in L (for instance the greatest one, which is
called the kernel of L) and s its Tarski-Lindenbaum algebra (in Section
11 of Basic Modal Logic it was called the canonical modal algebra for M).
The set

V={lplm:p €L}

is clearly a filter in A5;. By the well known properties of the Tarski-—
Lindenbaum algebras, we then obtain the following completeness result:
¢ € L iff under every valuation in s the value of ¢ belongs to V. Struc-
tures of the form (2, V), where 2 is a modal algebra and V a filter in 2, are
known as modal matrices. Thus, every quasi-normal logic is characterized
by a suitable class of modal matrices. It is not hard to see that L is normal
iff it is characterized by a class of modal matrices with unit filters.

Now, going over to the dual (Stone-Jénsson—Tarski representation) 24
of 2 in a modal matrix (2(, V) and taking V1 to be the set of ultrafilters in
2 containing V, we arrive at the general frame 20 with the set of distin-
guished points (or actual worlds) V4. A formula ¢ is regarded to be valid
in (24, V,) iff under any valuation in 2, ¢ is true at all points in V.

Taking into account the Generation Theorem, we can conclude that ev-
ery quasi-normal modal logic is characterized by a suitable class of rooted
general frames in which the root is regarded to be the only actual world.
It follows in particular that, as was first observed by McKinsey and Tarski
[1948],

K4+ {Op;:iecl}=Kaa{Op,; :icl}.

However, one cannot replace here K4 by K or T. Note also that as was
shown by Segerberg [1971], K, T and some other standard normal logics
are not finitely axiomatizable with modus ponens and substitution as the
only postulated inference rules. Duality theory between modal matrices and
frames with distinguished points can be developed along with duality theory
for normal logics (for details see [Chagrov and Zakharyaschev 1997]). Kripke
frames with distinguished points were used for studying quasi-normal logics
by Segerberg [1971]. Modal matrices were considered by Blok and Kdohler
[1983] (under the name of filtered algebras), Chagrov [1985b], and Shum
[1985].
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EXAMPLE 1.75 Consider the (transitive) frame & = (V, S, Q) whose un-
derlying Kripke frame is shown in Fig. 7 and Q consists of @, V, all fi-
nite sets of natural numbers and the complements to them in the space
V (sow € X € @ iff there is n < w such that m € X for all m > n).
Since & is irreflexive and Noetherian, it validates GL. Moreover, we have
(&,w) |= Op — p; for if under some valuation w |= Op then p must be true
at every point. It follows that & with actual world w validates S. (The
reader can check that by making w reflexive we again obtain a frame for S.)

By inserting the “tail” & as in Fig. 7 into finite rooted frames for GL
below their roots and using the fact that GL has FMP, one can readily
show that, for every formula ¢,

pesiff A (Op 1) > peGL
Oy ESuby

It follows in particular that S is decidable.

This example shows that the concepts of Kripke completeness and FMP
do not play so important role in the quasi-normal case: even simple logics
require infinite general frames. One possible way to cope with them at
least in the transitive case is to extend the frame-theoretic language of the
canonical formulas to the class ExtK4.

Notice first that the canonical formulas, introduced in Section 1.6, cannot
axiomatize all logics in ExtK4. Indeed, (&, w) £ a(F,D, L) iff there is a
cofinal subreduction f of & to § satisfying (CDC) for ® and the following
actual world condition as well:

(AWC) f(w) is the root of §.

Now, consider the frame (&, w) constructed in Example 1.75. Since each set
X € @ containing w is infinite and has a dead end, it is impossible to reduce
X to o or e, and so (&, w) validates all normal canonical formulas. On the
other hand, we clearly have (&,w) & B, for every n > 1. So the logics
K4BD,, cannot be axiomatized by normal canonical formulas without the
postulated necessitation.

To get over this obstacle we have to modify the definition of subreduction
so that such sets as X above may be “reduced” at least to irreflexive roots
of frames. Given a frame ® = (V, S, Q) with an irreflezive root u and a
frame § = (W, R, P), we say a partial map f from W onto V is a quasi-
subreduction of § to & if it satisfies (R1) for all z,y € domf such that
f(x) #uor f(y) # u, (R2) and (R3).!* Thus, we may map all points in
the frame & in Fig. 7 to e, and this map will be a quasi-reduction of & to
e satisfying (AWC). Actually, every frame is quasi-reducible to e.

I Another possibility is to allow “reductions” of X to reflexive points by relaxing (R2);
cf. Section 2.6.
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Now, given a finite frame § with an irreflexive root ap and a set ® of
antichains in §, we define the quasi-normal canonical formula a®(§,D, L)
as the result of deleting Opp from ¢ in a(F, D, L) (which says that ao is not
self-accessible); the quasi-normal negation free canonical formula o (F,D)
is defined in exactly the same way, starting from «(gF,®). It is not hard
to see that o®(§,9, L) (or a®(F,D)) is refuted in a frame (&, w) iff there
is a cofinal (respectively, plain) quasi-subreduction of & to § satisfying
(CDC) for ® and (AWC). The following result is obtained by an obvious
generalization of the proof of Theorem 1.44 to frames with distinguished
points (for details see [Zakharyaschev 1992]).

THEOREM 1.76 There is an algorithm which, given a modal (negation
free) formula @, constructs a finite set A of normal and quasi-normal (nega-
tion free) canonical formulas such that K4 + ¢ = K4 + A.

For example, S = K4 + a(o) + a(e). Since frames for S4 are reflexive,
we have

COROLLARY 1.77 There is an algorithm which, given a modal formula
@, constructs a finite set A of normal canonical formulas built on reflexive
frames such that S4 + ¢ = S4 + A.

As a consequence we obtain

THEOREM 1.78 (Segerberg 1975) ExtS4.3 = NExtS4.3.

Proof We must show that every logic L € ExtS4.3 is normal, i.e.,, p € L
only if Op € L, for every . Suppose otherwise. Then by Corollary 1.77,
there exists a(§,®, L) € L such that Oa(F,D, L) ¢ L. Let (&, w) be a
frame validating L and refuting Oa(F,D, L). Since & = S4.3, & is a chain
of non-degenerate clusters. And since it refutes a(F, D, L) there is a cofinal
subreduction f of & to §. It follows, in particular, that § is also a chain
of non-degenerate clusters and so ® = ). Let a be the root of §. Define a
map g by taking

flx) if € domf
g(x) =X a if v € f~(a)} — domf
undefined otherwise.

It should be clear that g cofinally subreduces & to § and g(w) = a. Conse-
quently, (&, w) = «(F, L), which is a contradiction. a

Let us now briefly consider quasi-normal analogues of subframe and co-
final subframe logics in NExtK4. Those logics that can be represented in
the form

(Kaao{aF:):iel})+{aF,):jeJ}+{a*@r) : k€ K}
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are called (quasi-normal) subframe logics and those of the form
(Kad{a@iL):iel})+{a@;,L):jeJ}+{a*@ 1) : ke K}

are called (quasi-normal) cofinal subframe logics. The classes of quasi-
normal subframe and cofinal subframe logics are denoted by QSF and
QCSF, respectively. The example of S shows that Theorem 1.52 cannot
be extended to QSF and OCSF. Yet one can show that all finitely axiom-
atizable logics in QSF and QCSF are decidable. We omit almost all proofs
and confine ourselves mainly to formulations of relevant results. For details
the reader is referred to [Zakharyaschev 1996].

We use the following notation. For a frame § = (W, R) with irreflexive
root v and 0 < ¢ < w, 3? and 32 denote the frames obtained from §F

by replacing v with the descending chains 0,...,& — 1 of irreflexive and
reflexive points, respectively; 3@“)* = W(w+1)*:RZ,+1)*aP(w+1)*> is the

frame that results from § by replacing u with the infinite descending chain
0,1,... of irreflexive points and then adding irreflexive root w, with P, 1)-
containing all subsets of W — {u}, all finite subsets of natural numbers
{0,1,...}, all (finite) unions of these sets and all complements to them in
the space Wi, 11)« (see Fig. 8). Note that § is a quasi-reduct of every frame
of the form §3", § or Sty

The following theorem characterizes the canonical formulas belonging to
logics in QSF and QCSF.

THEOREM 1.79 Suppose L is a subframe or cofinal subframe quasi-normal
logic. Then
(i) for every finite frame § with root u, a(F,®, L) € L iff (§,u) £ L;
(ii) for every finite frame § with irreflexive root u, a*(F,, L) € L iff

(30 F L, (31,0) & L and (§1,,).,w) ¥ L.

Proof We prove only (<) of (ii). Let & = (V, S, Q) refute a*(F, D, L) at
its root w and show that (&, w) & L. We have a cofinal quasi-subreduction
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f of & to § such that f(w) = u. Consider the set U = f~1(u) € Q. Without
loss of generality we may assume that U = UJ. There are three possible
cases.

Case 1. The point w is irreflexive and {w} € @. Then the restriction of
ftodomf— (U —{w}) is a cofinal subreduction of & to § satisfying (AWC)
and so (&, w) & L.

Case 2. There is X C U such that w € X € @ and, for every z € X,
there exists y € X Nzt. Then the restriction of f to domf — (U — X) is a
cofinal subreduction of & to F/ satisfying (AWC) and so again (&, w) j= L.

Case 3. If neither of the preceding cases holds then, for every X C U
such that w € X € @, the set Dx = X — X| of dead ends in X is a cover
for X,ie, X CDxl],and w € X — Dx € Q. Put

Xo=Du,-..,Xn11 = Dy_(xpu..0x,):- - Xo =U = | Xe.
E<w

Each of these sets, save possibly X, is an antichain of irreflexive points
and belongs to (). Besides, X C X, =J X¢ for every n < ¢ < w.
Therefore, the map g defined by

| flx) fzeV-U
g(x)—{g ifreXe, 0<¢{<w

n<é<w

is a cofinal quasi-subreduction of & to %Z} +1)- satisfying (AWC).

Now using the fact that < ir w> = L and that the composition of

(w+1)*>
(cofinal) (quasi-) subreductions is again a (cofinal) (quasi-) subreduction, it
is not hard to see that (&, w) & L. a

COROLLARY 1.80 All subframe and cofinal subframe quasi-normal logics
above S4 have FMP.

EXAMPLE 1.81 As an illustration let us use Theorem 1.79 to characterize
those normal and quasi-normal canonical formulas that belong to S. Clearly,
either a(o) or a(e) is refuted at the root of every rooted Kripke frame. So all
normal canonical formulas are in S. Every quasi-normal formula o®(§F, 9, 1)
associated with § containing a reflexive point is also in S, since Oa(o) is
refuted at the roots of §, §] and Sf;-i-l)*' But no quasi-normal formula
a®(F,D, L) built on irreflexive § belongs to S, because Sf;-i-l)* = a(o) and

< f’;+1)*,w> = a(e), since {w} € P,11)-. Notice that incidentally we have
proved the following completeness theorem for S.

THEOREM 1.82 S is characterized by the class

{<3f:+1)*,w> : § is a finite rooted irreflexive frame}.
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Theorem 1.79 reduces the decision problem for a logic L in QSF or
QCSF to the problem of verifying, given a finite frame § with root w,

whether (§,u), (§7,0) and <Sf;+1)*,w> refute an axiom of L. The two
former frames present no difficulties: they are finite. As to the latter, it is
not hard to see that, for instance, <3§;+1)* , w> ot (@, L)iff <g?‘, = 1>,

for some ¢ < |&], is cofinally quasi-subreducible to . Thus we obtain

THEOREM 1.83 All finitely axiomatizable subframe and cofinal subframe
quasi-normal logics are decidable.

One can also give a frame-theoretic characterization of the classes QSF
and QCSF similar to Theorem 1.53. Let us say that a frame § with actual
world u is a (cofinal) subframe of a frame & with actual world w if § is a
(cofinal) subframe of ® and v = w.

THEOREM 1.84 L is a (cofinal) subframe quasi-normal logic iff L is char-
acterized by a class of frames with actual worlds that is closed under (cofinal)
subframes.

1.13 Tabular logics

Every logic L having the finite model property can be represented as the in-
tersection of some tabular logics, that is logics characterized by finite frames
(or models, algebras, matrices, etc.):

L= ﬂ{LogS : § is a finite frame for L}.

(It follows in particular that every fragment of L containing only those
formulas whose length does not exceed some fixed n < w is determined
by a finite frame; for that reason logics with FMP are also called finitely
approzimable.) In many respects tabular logics are very easy to deal with.
For instance, the key problem of recognizing whether a formula ¢ belongs
to a tabular L is trivially decided by the direct inspection of all possible
valuations of ¢’s variables in the finite frame characterizing L. That is
why the question “is it tabular?” is one of the first items in the standard
“questionnaire” for every new logical system.

First results concerning the tabularity of modal logics were obtained by
Godel [1932] and Dugundji [1940] who showed that intuitionistic proposi-
tional logic and all Lewis’ modal systems S1-S5 are not tabular. (Note that
using the same method Drabbé [1967] proved that the three non-normal
Lewis’ systems S1-S3 cannot be characterized by a matrix with a finite
number of distinguished elements). For arbitrary logics in ExtK one can
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easily prove the following syntactical criterion of tabularity, which uses the
formulas

anp =(p1t AO(P2 AO(ps Ao . AOPL) .. 0)),

n—1

Bn = /\ —OM(OPL A . A OPy),

m=0
tab, = a, A By,

where 0; = p1 A .. APict AP ADig1 Ao A Py
THEOREM 1.85 L € ExtK is tabular iff tab,, € L, for some n < w.

Proof A frame § = (W, R) refutes «a,, at a point z; iff a chain of length n
starts from z1, and § refutes (3, at xy iff there is a chain z1 RzsR ... Rty
of length m < n such that x,, is of branching n, i.e., z,,Ry1,...,TmRyn
for some distinct y1,...,yn. It follows that every rooted generated (by an
actual world) subframe of the canonical frame for L containing tab,, has at

most 1+ (n — 1) +...+ (n —1)"2 points. a
As a consequence we immediately obtain

COROLLARY 1.86 Ewvery tabular modal logic has finitely many extensions
and all of them are also tabular.

The next theorem follows from general algebraic results of [Blok and
Kohler 1983]; equally easy it can be proved using the characterization above.

THEOREM 1.87 Every tabular logic L € ExtK is finitely aziomatizable.

Proof According to Theorem 1.85, L is an extension of K+ tab,,, for some
n < w. By Corollary 1.86, we have a chain

K+tab,=L, CLyC...CLp_1CL,=1L

of quasi-normal logics such that {L' € ExtK : L; C L' C L;y1} = 0, for
everyi = 1,...,k—1. It remains to notice that if L’ is finitely axiomatizable,
L' ¢ L" and there is no logic located properly between L' and L" then L"
is also finitely axiomatizable (e.g. L" = L'+, for any p € L' —L'). a

Theorem 1.12 provides us in fact with an algorithm to decide, given a
tabular logic L € NExtK4 and an arbitrary formula ¢, whether K4®¢p = L.
Indeed, notice first that we have
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THEOREM 1.88 Fach finitely aziomatizable logic L € NExtK4 of finite
depth is a finite union-splitting, i.e., can be represented in the form

L=K4a {a* @i, L1):icl}
with finite 1.

Proof Let L = K4 ® ¢ be a logic of depth n and let m be the number of
variables in ¢. We show that L coincides with the logic

n+1
L'=Kaa{a"(®,1): 6] <Y 27cn(i), & [ o}
i=1

(cm (i) was defined in Section 1.2). The inclusion L O L' is obvious. Suppose
@ & L'. Then there is a rooted refined m-generated frame § for L' refuting
@. Clearly, § is of depth < n, since otherwise af(&, L) is an axiom of L'
for every rooted generated subframe & of § of depth n + 1 and so § | L',
which is a contradiction. But then of(F, 1) is an axiom of L', contrary to
our assumption. o

Thus, all tabular logics in NExtK4 are finite union-splittings and so, by
Theorem 1.12, we obtain the following

THEOREM 1.89 Let L be a tabular logic in NExtK4.

(i) (Blok 1980c) L has finitely many immediate predecessors and they are
also tabular.

(ii) The aziomatizability problem for L above K4 is decidable.

For logics in NExtK this is not the case, witness Theorems 1.36 and 4.13.

The tabularity criterion of Theorem 1.85 is not effective. Moreover, as
we shall see in Section 4.4, no effective tabularity criterion exists in general.
However, if we restrict attention to sufficiently strong logics, e.g. to the
class NExtS4, the tabularity problem turns out to be decidable. The key
idea, proposed by Kuznetsov [1971], is to consider the so called pretabular
logics.

A logic L € (N)ExtLy is said to be pretabular in the lattice (N)ExtLg, if
L is not tabular but every proper extension of L in (N)ExtLg is tabular. In
other words, a pretabular logic in (N)ExtLg is a maximal non-tabular logic
in (N)ExtLy.

THEOREM 1.90 In the lattices ExtK and NExtK every non-tabular logic
is contained in a pretabular one.
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Proof By Theorem 1.85, a logic is non-tabular iff it does not contain the
formula tab,, for any n < w. It follows that the union of an ascending
chain of non-tabular logics is a non-tabular logic as well. The standard use
of Zorn’s Lemma, completes the proof. a

If there is a simple description of all pretabular logics in a lattice, we
obtain an effective (modulo the description) tabularity criterion for the lat-
tice. Indeed, take for definiteness the lattice NExtK4. How to determine,
given a formula ¢, whether K4 & ¢ is tabular? We may launch two parallel
processes: one of them generates all derivations in K4 @ ¢ and stops after
finding a derivation of tab,, for some n < w; another process checks if ¢
belongs to a pretabular logic in NExtK4 and stops if this is the case. The
termination of the first process means that K4 @ ¢ is tabular, while that of
the second one shows that it is not tabular.

Unfortunately, it is impossible to describe in an effective way all pretab-
ular logics in (N)ExtK and even (N)ExtK4: Blok [1980c] and Chagrov
[1989] constructed a continuum of them. However, for smaller lattices like
NExtS4 or NExtGL such descriptions were found by Maksimova [1975b],
Esakia and Meskhi [1977] and Blok [1980c]. The five pretabular logics in
NExtS4 were presented in Section 17 of Basic Modal Logic. In NExtGL
the picture is much more complicated.

THEOREM 1.91 (Blok 1980c, Chagrov 1989) The set of pretabular logics
in NExtGL is denumerable. It consists of the logics GL.3 = Log®“ and
Log®;,, ., form >0, n > 1, where & and &, |, are the frames depicted in

Fig. 9. 7If (m,n) # (k,l) then Log®;, , # Log®Y .

Using this semantic description of pretabular logics in NExtGL, it is not
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hard to find finite sets of formulas axiomatizing them. Moreover, all of them
turn out to be decidable. For we have

THEOREM 1.92 Every non-tabular logic L € NExtK4 has a non-tabular
extension with FMP, and so every pretabular logic in NExtK4 has FMP.

Proof Since L is non-tabular and characterized by the class of its rooted
finitely generated refined frames, we have either a sequence §;, 71 =1,2,.. .,
of rooted finite frames for L of depth i, or a sequence §; of rooted finite
frames for L of width > i. In both cases the logic Log{§;: ¢ < w} D L is
non-tabular and has FMP. a

So we obtain the following result on the decidability of tabularity.

THEOREM 1.93 The property of tabularity is decidable in NExtS4, ExtS4,
NExtGL, ExtGL.

Since a logic in ExtK4 is locally tabular iff it is determined by a frame
of finite depth, the property of local tabularity is decidable in the lattices
mentioned in Theorem 1.93 as well. However, this is not the case for ExtK4
itself.

1.14 Interpolation

One of the fundamental properties of logics is their capability to provide
explicit definitions of implicitly definable terms, which is known as the Beth
property (Beth [1953] proved it for classical logic). In the modal case we
say a logic L has the Beth property if, for any formula ¢(p1,...,pn,Pnt1)
and variables p and ¢ different from pq, ..., py,

o1, PnsP) NP1, -Pnsq) = (P q) €L

only if there is a formula ¥ (p1, . ..ps) such that

(p(pla"'apnap) — (p — 1/1(p1,pn)) e L.

The Beth property turns out to be closely related to the interpolation prop-
erty which was introduced by Craig [1957] for classical logic. Namely, we
say that a logic L has the interpolation property if, for every implication
a — (B € L, there exists a formula v, called an interpolant for « — 3 in L,
such that « — v € L, v — 8 € L and every variable in ~, if any, occurs in
both o and 4. While in abstract model theory interpolation is weaker than
Beth definability, for modal logics we have

THEOREM 1.94 (Maksimova 1992) A normal modal logic has interpola-
tion iff it has the Beth property.
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Say also that a normal modal logic L has the interpolation property for
the consequence relation &7, F*-interpolation for short, if every time when
a Fj B, there is a formula v such that o F} 7, v F} 8 and Vary C
Vara N VarfB. (Here Varyp is the set of all variables in ¢.) It should be
clear that interpolation implies F*-interpolation.

By the end of the 1970s interpolation had been established for a good
many standard modal systems. The semantical proofs, sometimes rather
sophisticated, resemble the Henkin construction of the canonical models.
Here are two examples of such proofs (which are due to Maksimova [1982b]
and Smorynski [1978]).

THEOREM 1.95 (Gabbay 1972) The logics K, K4, T, S4 have the inter-
polation property.

Proof We consider only S4; for the other logics the proofs are similar.
Suppose a = v € S4 and v — 3 € S4 for any v whose variables occur in
both « and (3, and show that in this case a« — 3 ¢ S4.

Let t = (I, A) be a pair of sets of formulas such that Varp C Vara if
¢ € I and Varp C Varg if ¢ € A. Say that ¢ is inseparable if there are
no formulas ¢; € I', 9; € A and 7 with Vary C Vara N Varf such that
Ny i = v € S4, v = Vi~ ¢; € S4. The pair ¢ is called complete if for
every ¢ and ¥ with Vary C Vara and Vary C Varg, one of the formulas
¢ and = is in T and one of ¢ and —) is in A.

LEMMA 1.96 Ewvery inseparable pair to = (Lo, Ag) can be extended to a
complete inseparable pair.

Proof Let 1, p2,...and ¢1,2,... be enumerations of all formulas whose
variables occur in « and 3, respectively. Define pairs ¢}, = (I',, Al) and
tn+1 = (Cog1, Apt1) inductively by taking

. (Tp, U{en}t,An) if this pair is inseparable
Tl (ThU{—¢n},Ay) otherwise,

(Iy,, AL U{=9,}) otherwise

and put ¢t* = (I'*,A*), where T = J,.,T'n, A" = U, An. Clearly
t* is complete. Suppose it is separable, i.e., for some ¢1,...,¢, € I'*,
U1, ..., Y, € A* and some « containing only those variables that occur in
both o and 3, we have A\ | ¢; - v € S4 and v — \/;~, ¢; € S4. Then
there is k < w such that ¢1,...,p, € Ty and ¥y, ..., ¥, € Ay, which means
that ¢y is separable. So it remains to show that if ¢ = (I, A) is inseparable,
Varyp C Vara and Vary C Varf then

A { (T7,, AL U{tp}) if this pair is inseparable
n+l —
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e one of the pairs (I' U {¢p}, A) or (I' U {—¢}, A) is inseparable and
e one of the pairs (I', AU {¢}) or (T', A U {—%)}) is inseparable.

We prove only the former claim. Suppose, on the contrary, that both pairs
are separable, i.e., there are formulas =, 72 in variables occurring in both
a and (3 such that, for some ¢1,...,0, € T, ¥1,..., 0, € A, we have

(plA.../\(pnA(p—)’)/1€S4, 71—)1/)1V...\/¢m€S4,

(101/\.../\(,0n/\_'(,0—>’)/2654, ’)/2—)1/11\/\/1/1771654

Then we obtain (p1 A ... A A@)V (Pt A.. App A=) = 71 Vv € S4,
Y1 V2 =1 V...V, €S4, from which

1N NP Y1V Y2 € 5S4, Y1V Y2 =P V...V, € S4,
contrary to ¢ being inseparable. o

Now we define a frame § = (W, R) by taking W to be the set of all
complete and inseparable pairs and, for t; = (I'1, Aq), to = ([, Az) in W,
t1 Rt, iff Op € T’y implies ¢ € I's. Using the axioms Op — p and Op — OOp
of S4, one can readily check that R is a quasi-order on W, i.e., § | S4.

Define a valuation U in § by taking for every variable p € Var(a — ),
V(p) = {(T,A) € W : either p € T or p € Varf and p ¢ A}. Put
M = (F,V). By induction on the construction of formulas ¢ and ¢ with
Varyp C Vara, Vary C Varf one can show that for every ¢t = (I’ A) in §

M t) Eeif e, (M) Foyiff p € A,

Indeed, the basis of induction follows from the definition of U and the
completeness and inseparability of ¢t. The cases of the Boolean connectives
present no difficulty. So suppose ¢ = Opy. If ¢t |= Og; then, for every
t'=(T",A") € t, we have t' |= 1 and so ¢; € I'. Suppose Oy; € I'. Then
—O¢p; € I'. Consider the pair to = (I'g, Ag), where

Lo ={-p1}U{x: Ox €T}, Ao ={-x: -Ox € A},

and show that it is inseparable. Assume otherwise. Then there is v with
Vary C Vara N Varf such that, for some formulas Oyq,...,0x, € T,
_'DXTL+17 ) _‘DXm € A:

1 AX1TA ... AXn >YES4, v—= xpt1 V... VX, € S4.
It follows that

=Op; AOx1 A...AOx, = Oy € S4,
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Oy = =0xpg1 V...V a0y, € S4,

contrary to ¢ being inseparable. Let t' = (I'', A’) be a complete inseparable
extension of . By the definition of ¢y, we have tRt' and so ¢ € I/, contrary
to -1 € Iy C IV and ¢’ being inseparable.

Suppose now that Oy; € . Then for every ¢’ = (I, A’) such that tR#',
we have p; € T and so t' |= ¢1. Consequently, ¢ |= Op;. The formula ¢ is
treated in the dual way.

To complete the proof it remains to observe that 9 = a — 3. o

This proof does not always go through for different kinds of logics. How-
ever, sometimes suitable modifications are possible.

THEOREM 1.97 GL has the interpolation property.

Proof Suppose a — § has no interpolant in GL. Our goal is to construct
a finite irreflexive transitive frame refuting a — 3.

This time we consider finite pairs ¢t = (', A) such that all formulas in T’
and A are constructed from variables and their negations using A, Vv, O, <.
Without loss of generality we will assume a and 3 to be formulas of that
sort. Say that t is separable if there is a formula v with Vary C VaranVarj
such that AT - v € GL and v - \V A € GL. It should be clear that if
t = (T',A) is a finite inseparable pair then in the same way as in the proof
of Theorem 1.95 but taking only subformulas of a and 3 we can obtain
a finite inseparable pair t* = (I'*, A*) satisfying the conditions: for every
¢ € Suba and 1 € Subg, one of the formulas ¢ and —¢ (an equivalent
formula of the form under consideration, to be more precise) is in I'* and
one of ¢ and —p is in A*.

Now we construct by induction a finite rooted model for GL refuting
a — (. As its root we take ({a}*, {8}*). If we have already put in our
model a pair ¢t = (I, A) and it has not been considered yet, then for every
Op €T and every Oy € A, we add to the model the pairs

t1 = ({x, Bx, O, ¢ : Ox € T}, {x, Ox : Ox € A}¥),

to = {x, Ox : Ox € T}, {x, Ox, O, ¢ : Ox € A}F).

One can readily show that if ¢ is inseparable then ¢; and ¢» are also in-
separable. Put tR't; and tR'ty. The process of adding new pairs must
eventually terminate, since each step reduces the number of formulas of the
form <& and O in the left and right parts of pairs. Let W be the set of
all pairs constructed in this way and R the transitive closure of R'. Clearly,
the resulting frame § = (W, R) validates GL. Define a valuation U in § by
taking, for each variable p,

B(p) ={(T,A) e W: peT}.
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As in the proof of Theorem 1.95, it is easily shown that @ — f is refuted in
§ under ‘0. a

To clarify the algebraic meaning of interpolation we require the following
well known proposition.

PROPOSITION 1.98 If V is a normal filter'? in a modal algebra A then
the relation ~v, defined by a ~v b iff a < b € V, is a congruence relation.
The map V — ~vy is an isomorphism from the lattice of normal filters in A
onto the lattice of congruences in 2.

Denote by 20/V the quotient algebra 2/ ~v and let ||a||v = {b: a ~v b}.

Say that a class C of algebras is amalgamable if for all algebras 2y, Ay,
2y in C such that 2 is embedded in 2(; and 2A> by isomorphisms f; and fs,
respectively, there exist 2 € C and isomorphisms ¢; and g, of 2; and 2,
into A with g1 (f1(z)) = g2(f2(2)), for any z in Ap. If in addition we have

g9i(z) < g;(y) implies 3z € Ay (z <; fi(2) and f;(z) <; y)

for all z € A;, y € A; such that {i,j} = {1,2}, then C is called superamal-
gamable. Here A; is the universe of 2; and <; its lattice order.

THEOREM 1.99 (Maksimova 1979) L has the interpolation property iff the
variety AlgL of modal algebras for L is superamalgamable. L has the -*-
interpolation property iff AlgL is amalgamable.

Proof We prove only the former claim. (=) Suppose L has the interpo-
lation property and 2, 2;, %> are modal algebras for L such that %A is
a subalgebra of both 2y and 2A>. With each element a € A;, i = 0,1,2,
we associate a variable p! in such a way that, for a € Ao, p? = pL = p.
Denote by £; the language with the variables p, for a € A;,i = 0,1,2, and
let £ =Ly ULy. We will assume that £ is the language of L.

Fix the valuation U; of £; in 2;, defined by U;(pl) = a, and put

Y, ={p € ForLl;: V(p) =T}

Let ¥ be the closure of ¥; U X5 U L under modus ponens. We show that,
for every ¢ € ForL;, 9 € ForL; such that {i,j} = {1, 2},

p—oypeXiff IyeForly (p > x € and x = € 55).  (13)

Suppose ¢ — ¢ € ¥. Then there exist finite sets ['; C ¥; and I'; C ¥ such
that

A\Ting = (A\T; =)€L

12A filter V is normal (or open, as in Section 10 of Basic Modal Logic) if Oa € V
whenever a € V.
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Since L has interpolation, there is a formula y € ForLg such that

/\Fi/\go—)XeL, /\Fj—>(x—>z/))€L,

from which ¢ = x € ¥; and x = ¢ € X;. The converse implication is
obvious.

Now construct an algebra 2 by taking the set {||¢|| : ¢ € I} as its
universe, where [pf| = {¢ : ¢ < ¢ € I}, lpll AllYll = llo A ¢f| and
Ollell = | © ¢ll, for ® € {=,0}. One can readily prove that 2 € AlgL.
Define maps g; from 2; into 2 by taking g;(a) = ||p%||. It is not difficult to
show that g; is an embedding of ; in 2. And for a € Ay, we have

g1(a) = |Ipall = g2(a).

It remains to check the condition for superamalgamability: Suppose a € A;,
be Ay {i,j} = {1,2}, and g;(a) < g¢;(b). Then g;(a) = g;(b) = T and
so ||pt, — pg|| =T, ie, pi — p{) € ¥. By (13), we have x € ForLy with
B(x) = c such that a <; ¢ <; b.

(<) Assuming AlgL to be superamalgamable, we show that L has the
interpolation property. To this end we require

LEMMA 1.100 Suppose 2o is a subalgebra of modal algebras Ay and s,
a € A1, b € Ay and there is no ¢ € Ag such that a <1 ¢ <o b. Then
there are ultrafilters Vi in 2y and Vo in 2s such that a € Vi, b € Vs and
ViNA4g=VynNA,.

Suppose (P1,- -, Pm>q1s---,qn) and (g1, ..., qn,T1,--.,7) are formu-
las for which there is no x(q1, - ..,qs) such that ¢ — x € L and x — ¢ € L.
We show that in this case there exists an algebra 2 € VarL refuting ¢ — 1.

Let j, A7 and A, be the free algebras in AlgL generated by the sets
{e1,..,enh {ar, - oy am,c1,y ... cn}and {c1, ..., cp, b1, ..., b}, respectively.
According to this definition, 2j is a subalgebra of both 2} and 2,. By
Lemma 1.100, there are ultrafilters V; in 2] and V» in 20} such that we
have p(ai,...,@m,c1,...,¢,) € V1 and ¥(c1,...,¢n,b1,...,b)) & Va. De-
fine normal filters

Vi={a€ A, :Vm<wOma€V;}

and put 2 = A} /VF, Ay = A, /VE. Construct an algebra 2 by taking
Ag = {llal]|vs : a € Ay}. By the definition, Ay is a subalgebra of 2, i.e., is
embedded in 2; by the map fi(z) = z. One can show that 2y is embedded
in ™y by the map fa(||z]|v,) = [|z||v;. Then there are an algebra 2 for L
and isomorphisms g; and g2 of 2; and 2, into A satisfying the conditions
of superamalgamability. Define a valuation U in 2 by taking U(p;) =
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Figure 10.

g1 (laille), B(a) = gilleslles) = ga(llesllv,) and Bire) = galllballvs)-
Then B(p) £ V(1)) because otherwise there would exist {i,j} = {1,2} and
z € Ay such that V() <; fi(z) and f;(z) <; V(). Thus, A = ¢ — 9 and
sop— Y ¢&L. a

Using this theorem Maksimova [1979] discovered a surprising fact: there
are only finitely many logics in NExtS4 with the interpolation property
(not more than 38, to be more exact) and all of them turned out to be
union-splittings. By Theorem 1.12, we obtain then

THEOREM 1.101 (Maksimova 1979) There is an algorithm which, given a
modal formula @, decides whether S4 ® ¢ has interpolation.

We illustrate this result by considering a much simpler class of logics.

THEOREM 1.102 Only four logics in NExtS5 have the interpolation prop-
erty: S5 itself, the logic of the two-point cluster, Triv and For.

Proof We have already demonstrated how to prove that a logic has inter-
polation. So now we show only that no logic L in NExtS5 different from
those mentioned in the formulation has the interpolation property. Suppose
on the contrary that L has interpolation. We use the amalgamability of the
variety of modal algebras for L to show that an arbitrary big finite cluster
is a frame for L, from which it will follow that L = S5.
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Figure 10 demonstrates two ways of reducing the three-point cluster to
the two-point one. By the amalgamation property, there must exist a clus-
ter reducible to the two depicted copies of the two-point cluster, with the
reductions satisfying the amalgamation condition. It should be clear from
Fig. 10 that such a cluster contains at least four points. By the same scheme
one can prove now that every n-point cluster validates L. o

It would be naive to expect that such a simple picture can be extended
to classes like NExtK4 or NExtK. Even in NExtGL the situation is quite
different from that in NExtS4: Maksimova [1989] discovered that there is
a continuum of logics in NExtGL having the interpolation property. This
result is based upon the following observation. For L € NExtK4, we call a
formula a(p) conservative in NExtL if

0% (a(L) Aa(p) Aalq) = a(p = ¢) Aa(Op) € L.

For example, in NExtS4 conservative are OOp — $OOp, OOCp < $COp, and
Op < <p.

THEOREM 1.103 (Maksimova 1987) If L € NExtK4 has the interpolation
property and formulas «;, for © € I, are conservative in NExtL, then the
logic L ® {«; : i € I'} also has the interpolation property.

Proof Suppose ¢ — 9 € L®{w; : 4 € I}. Then there is a finite J C I, say
J={1,...,1}, such that p = ¢ € L ® {a; : i € J} and so, as follows from
the definition of conservative formulas and the Deduction Theorem for K4,

!
ot /\(aj(J_) ANaj(pr) A ... Aaj(pn)) = (@ =) € L,

where pi1,...,Pm,Pm+1,--- Pk and Pm1,..., Dk, Pk+1,-- -, P are all the
variables in ¢ and v, respectively. Consequently

l

0% A (i (L) Aaj(p) Ae o Aay(pr) Ay =
j=1
l

(ot /\ (aj(Pm+1) A - .- ANaj(pn)) = ¢) € L.

Since L has the interpolation property, there is x(pm+1,-- -, k) such that

!
ot /\(aj(J_) ANaj(pr)A...ANaj(pr)) N = x €L,
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1
OF A\ (@ (Prs1) A+ Aa(pn) = (x = %) € L.

j=1
Then we obtain ¢ - x € L& {a;: i € [} and x > ¢ € LD {a;: i€ I},
i.e., x is an interpolant for ¢ — ¢ in L & {«; : 7 € I}. a

Using the formulas
a; =0T (O T ADH2L - OfFlpy Oifl—p)

which are conservative in NExtGL, one can readily construct a continuum
of logics in this class with the interpolation property. The set of logics in
NExtGL without interpolation is also continual.

In general, an interpolant 7 for an implication o — 3 € L depends on
both a and . Say that a logic L has uniform interpolation if, for any
finite set of variables = and any formula «, there exists a formula v such
that Vary C Z and a« - v € L, v — B € L whenever Vara N Varg C =
and @ — [ € L. In this case v is called a post-interpolant for a and
=. Roughly speaking, a logic has uniform interpolation if we can choose
an interpolant for « — 3 € L independly from the actual shape of 3.
Uniform interpolation was first investigated by Pitts [1992] who proved that
intuitionistic logic enjoys it. It is fairly easy to find multiple examples
of modal logics with uniform interpolation by observing that any locally
tabular logic with interpolation has uniform interpolation as well. Indeed,
for every formula a and every set of variables =, we can define a post-
interpolant « as the conjunction of a maximal set of pairwise non-equivalent
in L formulas 4’ such that Vary' C = and a — ' € L (which is finite in view
of the local tabularity of L). It follows, for instance, that S5 has uniform
interpolation. In general, however, interpolation does not imply uniform
interpolation: [Ghilardi and Zawadowski 1995] showed that S4 does not
enjoy the latter, witness the following formula without a post-interpolant
for {r} in S4

pAO(p— Oq)AO(g — Op) AO(p = 7) AD(qg — —r).

Only a few positive results on the uniform interpolation of modal logics
are known: Shavrukov [1993] proved it for GL, Ghilardi [1995] for K, and
Visser [1996] for Grz.

A property closely related to interpolation is so called Halldén com-
pleteness. A logic L is said to be Halldén complete if ¢ Vb € L and
Varp N Vary = ) imply ¢ € L or ¢ € L. Since every variable free for-
mula is equivalent in D either to T or to L, L € ExtD is Halldén complete
whenever it has interpolation. K, K4, GL are examples of Halldén incom-
plete logics with interpolation: each of them contains ¢T V =T but not
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OT and =T, On the other hand, S4.3 is a Halldén complete logic (see
[van Benthem and Humberstone 1983]) without interpolation (see [Maksi-
mova 1982a]). Actually, there is a continuum of Halldén complete logics in
NExtS4 (see [Chagrov and Zakharyaschev 1993]).

Halldén completeness has an interesting lattice-theoretic characteriza-
tion.

THEOREM 1.104 (Lemmon 1966¢) A logic L € ExtK is Halldén complete
iff it is (-irreducible in ExtL.

Since the lattice ExtS5 is linearly ordered by inclusion, all logics above
S5 are Halldén complete. There are various semantic criteria for Halldén
completeness (see e.g. [Maksimova 1995]). Here we note only the following
generalization of the result of [van Benthem and Humberstone 1983].

THEOREM 1.105 Suppose a logic L € ExtK is characterized by a class
C of descriptive rooted frames with distinguished roots. Then L is Halldén
complete iff, for all frames (§1,d1) and (F2,dz) in C, there is a frame (F,d)
for L reducible’® to both (F1,d1) and (T2, ds).

For more results and references on Halldén completeness consult [Chagrov
and Zakharyaschev 1991].

2 POLYMODAL LOGICS

So far we have confined ourselves to considering modal logics with only one
necessity operator. From a theoretical point of view this restriction is not
such a great loss as it may seem at first sight. In fact, really important
concepts of modal logic do not depend on the number of boxes and can
be introduced and investigated on the basis of just one. We shall give a
precise meaning to this claim in Section 2.3 below where it is shown that
polymodal logic is reduced in a natural way to unimodal logic. However,
there are at least two reasons for a detailed discussion of polymodal logic
in this chapter.

First, a number of interesting phenomena are easily missed in unimodal
logic and actually appear in a representative form only in the polymodal
case. For example, with the exception of NExtK4.3 and QCSF all known
general decidability results in unimodal logic have been obtained by proving
the finite model property. In fact, nearly all natural classes of logics in
NExtK turned out to be describable by their finite frames. The situation
drastically changes with the addition of just one more box. Even in the
case of linear tense logics or bimodal provability logics one has to start with

13By reductions that map d to d;.
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a thorough investigation of their infinite frames: FMP becomes a rather
rare guest. While the result on NExtK4.3 indicated the need for general
methods of establishing decidability without FMP, this need becomes of
vital importance only in the context of polymodal logic.

The second reason is that various applications of modal logic require
polymodal languages. For example, in tense logic we have two necessity-
like operators O; and Os. One of them, say the former, is interpreted as “it
will always be true” and the other as “it was always true”. Kripke frames for
tense logics are structures (W, Ry, R2) with two binary relations Ry and Rs
such that Ry coincides with the converse R; Lof By (which reflects the fact
that a moment x is earlier than y iff y is later than z). The characteristic
axioms connecting the two tense operators are

p— 0:Cop and p — OaO1p.

For more information about tense systems consult Basic Tense Logic.

Another example is basic temporal logic in which we have two necessity-
like operators: one of them—usually called Next—is interpreted by the
successor relation in w and the other by its transitive and reflexive clo-
sure. Details can be found in [Segerberg 1989]. Propositional dynamic logic
PDL and its extensions, like deterministic PDL, can also be regarded as
polymodal logics (see Dynamic Logic).

A number of provability logics use two or more modal operators; see e.g.
Boolos [1993]. In GLB, for instance, we have one operator 0; understood
as provability in PA and another operator Oy interpreted as w-provability
in PA. The unimodal fragments of GLB coincide with GL. The axioms
connecting [0y and Oy are

O1p — Oop and O1p — O p.

In epistemic logics we need an operator O; for each agent ¢; O;¢p is inter-
preted as “agent ¢ believes (or knows) ¢”. One possible way to axiomatize
the logic of knowledge with m agents is to take the axioms of S5 for each
agent without any principles connecting different 0; and O;. We denote
the resultant logic by @, S5. Often @, S5 is extended by the common
knowledge operator C with the intended meaning

Cop=EpAE’pA...AE"oA..., where Ep = \I", O;¢p

(see e.g. [Halpern and Moses 1992] and [Meyer and van der Hoek 1995]).
The reader will find more items for this list in other chapters of the
Handbook.
From the semantical point of view, many standard polymodal logics
can be obtained by applying Boolean or various natural closure opera-
tors to the accessibility relations of Kripke frames. For instance, in frames
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(W,Ry,...,R,) for epistemic logic the common knowledge operator is in-
terpreted by the transitive closure of Ry U ... U R,,. Tense frames result
from usual (W, R) by adding the converse of R. Humberstone [1983] and
Goranko [1990a] study the bimodal logic of inaccessible worlds determined
by frames of the form (W, R,W? — R). This list of examples can be con-
tinued; for a general approach and related topics consult [Goranko 1990b],
[Gargov et al. 1987], [Gargov and Passy 1990].

Let us see now how polymodal logics in general fit into the theory de-
veloped so far. We begin by demonstrating how the concepts introduced in
the unimodal case transfer to polymodal logic and showing that a few gen-
eral results—Ilike Sahlgvist’s and Blok’s Theorems—have natural analogues
in polymodal logic. We hope to convince the reader that up to this point
no new difficulties arise when one switches from the unimodal language to
the polymodal one. After that, in Section 2.2, we start considering subtler
features of polymodal logics.

2.1  From unimodal to polymodal

Let £ be the propositional language with a finite number of necessity op-
erators O;, ¢ € I. A normal polymodal logic in Ly is a set of Lj-formulas
containing all classical tautologies, the axioms O;(p — ¢q) — (O;p — O;q)
for all 7 € I, and closed under substitution, modus ponens and the rule of
necessitation ¢/0;p for every ¢ € I. If the language is clear from the con-
text, we call these logics just (normal) modal logics and denote by NExtL
the family of all normal extensions of L (in the language £r). The smallest
normal modal logic with n necessity operators is denoted by K,, (K = Kj,
of course).

Given a logic Lo in £ and a set of Lj-formulas I', we again denote by
Lo ® T the smallest normal logic (in £;) containing Lo UT. A number
of other notions and results also transfer in a rather straightforward way,
e.g. Theorems 1.4 and 1.6, Proposition 1.5 and all concepts involved in their
formulations. More care has to be taken to generalize Theorems 1.1, 1.2 and
1.3. Denote by M the set of non-empty strings (words) over {0; : 4 € T}
which do not contain any O; twice and put

Orp = \{Me¢: M € M7}, 07" = \{Ofp :n <m}.

In the language L£; the operator O serves as a sort of surrogate for O in
K. For example, the following polymodal version of Theorem 1.1 holds.

THEOREM 2.1 (Deduction) For every modal logic L in Ly, every set of
Lr-formulas T, and all L1-formulas ¢ and 1,

T, b @ iff Im >0 F; OF™p — o
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Theorems 1.2 and 1.3 can be reformulated analogously by replacing O
with 07 (a logic L in L is n-transitive if it contains Dlsnp — Optlip).

Basic semantic concepts are lifted to the polymodal case in a straight-
forward manner. The algebraic counterpart of L € NExtK,, is the vari-
ety of Boolean algebras with n unary operators validating L. A structure
§ = (W,(R; : i € I),P) is called a (general polymodal) frame whenever
every (W, R;, P), for i € I, is a unimodal frame. We then put

O,X ={zeW: :Vy (zRiy -y € X)}.

Differentiated, refined and descriptive frames and the truth-preserving op-
erations can also be defined in the same component-wise way. For instance,
a frame § = (W, (R; : i € I), P) is differentiated if all the unimodal frames
(W, R;, P), for i € I, are differentiated. § = (W,(R; : i € I),P) is a (gen-
erated) subframe of & = (V. (S; : i € I),Q) if all (W, R;, P) are (generated)
subframes of (V, S;,Q), and f is a reduction of § to & if f is a reduction of
(W, R;, P) to (V,S;,Q), for every i € I.

There are some exceptions to this rule. A point r is called a root of § if it
is a root of the unimodal frame (W, J;c; R;). This does not mean that r is a
root of all unimodal reducts of §. Another important exception: as before,
a polymodal frame is sc-generated if the algebra g1 is s~-generated; however,
this does not mean that the unimodal reducts of § are s-generated.

Splittings and the degree of Kripke incompleteness The semantic
criterion of splittings by finite frames given in Theorem 1.15 transfers to
polymodal logics by replacing O with O;. Again, all finite rooted frames
split NExtLg, if Ly is an n-transitive logic in £;. Notice, however, that
n-transitivity is a rather strong condition in the polymodal case. For ex-
ample, it is easily checked that the fusion S5 ® S5 as well as the minimal
tense logic K4.t containing K4 are not n-transitive, for any n < w (see
Sections 2.2 and 2.4 for precise definitions). In fact, only o splits the lattice
NExt(S5 ® S5) and only e splits NExtK4.t (see [Wolter 1993] and [Kracht
1992], respectively).

Call a frame (W, (R; : i € I)) cycle freeif the unimodal frame (W, ;. ; R:)
is cycle free. Kracht [1990] showed that precisely the finite cycle free frames
split NExtK,,.

It is not difficult now to extend Blok’s result on the degree of Kripke
incompleteness to the polymodal case. Note, however, that the degree of
incompleteness of For in NExtK,, is 2%° whenever n > 2. So, we do not have
a polymodal analog of Makinson’s Theorem. (An example of an incomplete
maximal consistent logic in NExtK, is the logic determined by the tense
frame €(0, o) introduced in Section 2.5).
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THEOREM 2.2 Let n > 1. If L is a union-splitting of NExtK,,, then L is
strictly Kripke complete. Otherwise L has degree of Kripke incompleteness
2% jn NExtK,.

Sahlqvist’s Theorem and persistence The proof of the following poly-
modal version of Sahlqvist’s Theorem is a straightforward extension of the
proof in the unimodal case. Say that ¢ is a Sahlquist formula (in L;) if the
result of replacing all O; and <y, ¢ € I, in ¢ with O and <, respectively, is
a unimodal Sahlqvist formula.

THEOREM 2.3 Suppose that ¢ is equivalent in NExtK,, to a Sahlquist for-
mula. Then K, & @ is D-persistent, and one can effectively construct a first
order formula ¢(x) in Ry, ..., R, and = such that, for every descriptive or

Kripke frame § and every point a in §, (§,a) = ¢ iff § = é(z)[a].

Bellissima’s result on the DF-persistence of all logics in NExtAlt, has
a polymodal analog as well. Denote by &);.; Alt,, the smallest polymodal
logic in L containing Alt,, in all its unimodal fragments. It is easy to see
that every L € NExt ®ie] Alt,, is DF-persistent and so Kripke complete.
However, in contrast to the lattice NExtAlt;—which is countable and all
logics in which have FMP (see [Segerberg 1986] and [Bellissima 1988])—
the lattice NExt(Alt; ® Alty) is rather complex: as was shown by Grefe
[1994], it contains logics without FMP (even without finite frames at all)
and uncountably many maximal consistent logics.

Some FMP results Fine’s Theorem on uniform logics can be extended
to a suitable class of polymodal logics in £, namely those logics that con-
tain <&;T, for all i € I, and are axiomatizable by formulas ¢ in which all
maximal sequences of nested modal operators coincide with respect to the
distribution of the indices ¢ of O; and <;, @ € 1.

Now consider a result of Lewis [1974] which we have not proved in its
unimodal formulation. Call a normal polymodal logic non-iterative if it is
axiomatizable by formulas without nested modalities. Examples of non-
iterative logics are T = K & Op — p, Alt,, ® Alt,, and K> & Osp — O;p.

THEOREM 2.4 (Lewis 1974) All non-iterative normal logics have FMP.

Proof Suppose the axioms of L = K,, & I' have no nested modal oper-
ators and ¢ € L. By a p-description we mean any set of subformulas of
¢ together with the negations of the remaining formulas in Subyp. For
each L-consistent (p-description © select a maximal L-consistent set Ag
containing ©. Denote by W the (finite) set of the selected Ag and define
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§=(W,(R;:i€I)) and M = (F, V) by taking
Ao RiAy iff O; [\ ¥ € Ao

and U(p) = {Ae € W : p € Ap}. It is easily proved that (9, Ag) | ¢ iff
Y € Ag, for all subformulas 1) of ¢ and Ag € W. Hence §F }£ ¢. It is also
easy to see that for all truth-functional compounds 9 of subformulas in ¢,

(S)JT, A@) ': O iff O € Ap. (14)

Consider now a model MM’ = (F, V') and x € I'. For each variable p put

o=\ {\O:26 €V}

and denote by x' the result of substituting ¢, for p, for each p in x. Then
M = x iff M = x'. In view of (14), we have M |= x’ because x’ has no
nested modalities. Therefore, § = x and so § |= L. a

Tabular Logics Needless to say that all polymodal tabular logics are
finitely axiomatizable and have only finitely many extensions. (The proof is
the same as in the unimodal case.) A more interesting observation concerns
the complexity of polymodal logics whose unimodal fragments are tabular
or pretabular. In fact, it is not difficult to construct two tabular unimodal
logics L; and L such that their fusion L; ® Lo has uncountably many
normal extensions (see e.g. [Grefe 1994]). However, those logics are DF-
persistent and so Kripke complete. Wolter [1994b] showed that the lattice

[e]
NExtT can be embedded into the lattice NExt(Log } ® S5) in such a way
that properties like FMP, decidability and Kripke completeness are reflected
under this embedding. It follows that almost all “negative” phenomena of
modal logic are exhibited by bimodal logics one unimodal fragment of which
is tabular and the other pretabular.

2.2 Fusions

The simplest way of constructing polymodal logics from unimodal ones is
to form the fusions (alias independent joins) of them. Namely, given two
unimodal logics L; and L» in languages with the same set of variables and
distinct modal operators O; and O,, respectively, the fusion L1 ® Ly of
Ly and Ly is the smallest bimodal logic to contain L; U Lo. If T and
I'y; axiomatize L; and Lo, then L; ® Lo is axiomatized by I'y U s, i.e.,
Ly ® Ly =Ky @'y ©T5. So the fusions are precisely those bimodal logics
that are axiomatizable by sets of formulas each of which contains only one
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of Oy, Oy. From the model-theoretic point of view this means that a frame
(W, Ry, R,, P) validates Ly ® Ly iff (W, R;, P) |= L; for i = 1,2.

PROPOSITION 2.5 (Thomason 1980) If logics L1 and Lo are consistent,
then L1 ® Lo is a conservative extension of both Ly and L-.

Proof Suppose for definiteness that ¢ ¢ L, for some formula ¢ in the
language of L;, and consider the Tarski-Lindenbaum algebras

Q[Ll (w) = <A7/\A7_'A; D1> and Q[Lz(w) = <B)/\B7_'B; D2>-

The Boolean reducts of them are countably infinite atomless Boolean alge-
bras which are known to be isomorphic (see e.g. [Koppelberg 1988]). So
we may assume that A = B, A = AP, =4 = =B Since 2z, (w) refutes ¢,
(A,A4,=4,0y,0,) is then an algebra for L; ® L refuting ¢. a

Having constructed the fusion of logics, it is natural to ask which of
their properties it inherits. For example, the first order theory of a single
equivalence relation has the finite model property and is decidable, but the
theory of two equivalence relations is undecidable and so does not have the
finite model property (see [Janiczak 1953]). So neither decidability nor the
finite model property is preserved under joins of first order theories. On
the other hand, as was shown by Pigozzi [1974], decidability is preserved
under fusions of equational theories in languages with mutually disjoint sets
of operation symbols.

For modal logics we have:

THEOREM 2.6 Suppose L1 and Lo are normal unimodal consistent logics
and P is one of the following properties: FMP, (strong) Kripke complete-
ness, decidability, Halldén completeness, interpolation, uniform interpola-
tion. Then L = L1 ® Lo has P iff both L and Ly have P.

Proof We outline proofs of some claims in this theorem; the reader can
consult [Fine and Schurz 1996], [Kracht and Wolter 1991], and [Wolter
1997b] for more details.

The implication (=) presents no difficulties. So let us concentrate on
(«). With each formula ¢ of the form O;i we associate a new variable
g, which will be called the surrogate of ¢. For a formula ¢ containing
no surrogate variables, denote by ¢! the formula that results from ¢ by
replacing all occurrences of formulas Oy, which are not within the scope
of another O, with their surrogate variables go,s. So ¢! is a unimodal
formula containing only 0;. Denote by ©(p) the set of variables in ¢
together with all subformulas of Oy¢) € Suby. The formula 2 and the set
O2(yp) are defined symmetrically.
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Suppose now that both L; and Lo are Kripke complete and ¢ ¢ L. To
prove the completeness of L we construct a Kripke frame for L refuting
. Since we know only how to build refutation frames for the unimodal
fragments of L, the frame is constructed by steps alternating between Oy
and Os. First, since L; is complete, there is a unimodal model 9t based
on a Kripke frame for L; and refuting ! at its root r. Our aim now is
to ensure that the formulas of the form Oy have the same truth-values as
their surrogates go,y. To do this, with each point z in 9 we can associate
the formula

pr = \{ €0 (p) : M, z) E " YA N{~0: ¢ € O (), (M, z) £ 41},

construct a model 9, based on a frame for Ly and satisfying ¢2? at its
root y, and then hook 9, to M by identifying x and y. After that we can
switch to O; and in the same manner ensure that formulas ;¢ have the
same truth-values as go, at all points in every 9,. And so forth.

However, to realize this quite obvious scheme we must be sure that ¢,
is really satisfiable in a frame for Ly, which may impose some restrictions
on the models we choose. First, one can show that in the construction
above it is enough to deal with points x accessible from r by at most m =
md(p) steps. Let X be the set of all such points. Now, a sufficient and
necessary condition for ¢, to be L- (and so Ls-) consistent can be formulated
as follows. Call a ©(yp)-description the conjunction of formulas in any
maximal L-consistent subset of ©1(p) U {-) : ¢p € ©1(p)}. It should be
clear that ¢, is L-consistent iff it is a ©1((p)-description. Denote by ¥ ()
the set of all ©!(p)-descriptions. It follows that all ¢,, for z € X, are
L-consistent iff (9, r) | Dlgm(\/ ¥1(¢))t. In other words, we should start
with a model 9 satisfying ©* A O™ (\/ £ (p))* at its root r. Of course,
the subsequent models 9, for = € X, must satisfy 2 A OS™(\/ Dy (.))?,
where X2 (¢p,) is the set of all ©2(ip,)-descriptions, etc.

In this way we can prove that Kripke completeness is preserved under
fusions. The preservation of strong completeness and FMP can be estab-
lished in a similar manner. The following lemma plays the key role in the
proof of the preservation of the four remaining properties.

LEMMA 2.7 The following conditions are equivalent for every p:
(i) p € L1 ® Ly;
(i) OF™(V S1(p)* = @' € Ly, where m = md(yp);
(i) OF™(V 2(9))? = ¢* € L.
For Kripke complete Ly and Ly this lemma was first proved by Fine and

Schurz [1996] and Kracht and Wolter [1991]; actually, it is an immediate
consequence of the consideration above. The proof for the arbitrary case is
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also based upon a similar construction combined with the algebraic proof
of Proposition 2.5; for details see [Wolter 1997b].

Now we show how one can use this lemma to prove the preservation
of the remaining properties. Define a'(y) to be the length of the longest
sequence Os, Oy, O, ... of boxes starting with Oz such that a subformula
of the form Oy(...O¢(...Oa(...... ))) occurs in . The function a?(yp) is
defined analogously by exchanging O; and Oy, and a(p) = a'(p) + a?(¢).
It is easy to see that

a(p) > a(\/ 1(p)) or a(w) > a(\/ L2(¥)).

The preservation of decidability, Halldén completeness, interpolation, and
uniform interpolation can be proved by induction on a(y) with the help
of Lemma 2.7. We illustrate the method only for Halldén completeness.
Notice first that, modulo the Boolean equivalence, we have

Vv ) =V i) AV Z1) A A\ Alp, ),

where

Ap, ) = {x1 = x2 : x1 € Z1(9), x2 € X1(¥), x1 = ~x2 € L}.

Suppose both L; and Ly are Halldén complete. By induction on n = a(¢V))
we prove that ¢ V¢ € L implies ¢ € L or ¢ € L whenever ¢ and 1 have no
common variables. The basis of induction is trivial. So suppose a(¢ V ¢) =
n > 0and ¢V € L. We may also assume that a(e V1) > a(\/ Z1(p V)).
By the induction hypothesis, it follows that A(p, ) = 0. Hence, up to the
Boolean equivalence, \/ £1(pVy) =\ E1(p) AV £1(¥) and, by Lemma 2.7,

D" (\V/ Z1@)* ADE" (/@) = (p V) € Ly,

for m = md(p V 9). Then

EF" (/i) = oY) v (O (V Z1) = v € Ly

and, by the Halldén completeness of Li, one of the disjuncts in this formula
belongs to L;. By Lemma 2.7, this means that ¢ € L or ¢ € L. o

Remark. This theorem can be generalized to fusions of polymodal logics
with polyadic modalities.

Note that in languages with finitely many variables both GL.3 and K
are strongly complete but GL.3 ® K is not strongly complete even in the
language with one variable (see [Kracht and Wolter 1991]).
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It is natural now to ask whether there exist interesting axioms ¢ contain-
ing both O; and O, and such that (L; ® L2) @ ¢ inherits basic properties of
L,,L; € NExtK. Let us start with the observation that even such a simple
axiom as Oyp <> Oap destroys almost all “good” properties because (i) we
can identify (L1 ® L) & O1p <+ Osp with the sum of the translation of L
and Ly into a common unimodal language and (ii) such properties as FMP,
decidability, and Kripke completeness are not preserved under sums of uni-
modal logics (see Example 1.64 and [Chagrov and Zakharyaschev 1997]).
Even for the simpler formula O,p — O;p no general results are available.
To demonstrate this we consider the following way of constructing a bimodal
logic L, for a given L € NExtK:

L,=(L®S5)®0;p— Oyp.

The modal operator Oy in L, is called the universal modality. Its meaning
is explained by the following lemma:

LEMMA 2.8 (Goranko and Passy 1992) For every normal unimodal logic L
and all unimodal formulas ¢ and 1,

o5 0 iff Fr, Do o 0.
Proof Follows immediately from Theorem 1.19 (ii), since
(W,R,P) |= L iff (W,R,W x W, P) |= Ly,
for every frame (W, R, P) and every unimodal logic L. a

The universal modality is used to express those properties of frames § =
(W,R,W x W) that cannot be expressed in the unimodal language. For
example, § validates Oy(p — <O1p) — —p iff it contains no infinite R-
chains. Recall that there is no corresponding unimodal axiom, since K is
determined by the class of frames without infinite R-chains. We refer the
reader to [Goranko and Passy 1992] for more information on this matter.

THEOREM 2.9 (Goranko and Passy 1992) For any L € NExtK,
(i) L is globally Kripke complete iff L, is Kripke complete;
(ii) L has global FMP iff L, has FMP.

Proof We prove only (i). Suppose that L, is Kripke complete and ¢ /5 .
Then by Lemma 2.8, Oy — ¢ € L, and so Oy — ¥ is refuted in a Kripke
frame § = (W, Ry, Ry) for L,. We may assume that R, = W x W. But
then ¢ 7 4 is refuted in (W, R;). Conversely, suppose that L is globally
Kripke complete and ¢ ¢ L,, for a (possibly bimodal) formula ¢. Using
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the properties of S5 it is readily checked that ¢ is (effectively) equivalent
in K, to a formula ¢’ which is a conjunction of formulas ¢ of the form

Y =xoV < Cax1V0Oxx2VOrx3 V...V 0Oaxy

such that xq,..., X, are unimodal formulas in the language with O;. Let
¥ be a conjunct of ¢’ such that ¢ € L,. Then —-x;1 /] x:, for every
i € {0,2,3,...,n}. Since L is globally complete, we have Kripke frames
(Wi, R;) for L refuting —x1 F} x;, for i € {0,2,...,n}. Denote by (W, R)
the disjoint union of those frames. Then (W, R, W x W) is a Kripke frame
for L, refuting . a

We have seen in Section 1.5 that there are Kripke complete logics (logics
with FMP) which do not enjoy the corresponding global property. In view
of Theorem 2.9, we conclude that neither FMP nor Kripke completeness is
preserved under the map L — L,,.

Another interesting way of adding to fusions new axioms mixing the
necessity operators is to use the so called inductive (or Segerberg’s) azioms.
First, we extend the language £; with m necessity operators by introducing
the operators E and C and then let

ind = {Ep + /\ Oip, Cp — ECp; C(p — Ep) — (p — Cp)}.
icl
Now, given L € NExtK,,, we put
LEC,, = (L ® Kg ® S4¢) @ ind,

where K¢ and S4¢ are just K and S4 in the languages with E and C, re-
spectively. The following proposition explains the meaning of the inductive
axioms.

PROPOSITION 2.10 A frame (W,Ry,...,Rn, Rg, Rc) validates LEC,,
iff (W,Ry,...,Rp) E L, Rp = Ry U...URy, and R is the transitive
reflexive closure of Rg.

EXAMPLE 2.11 The logic (Alt; ® D)EC; is determined by the frame
(w, S, <) in which S is the successor relation in w. (Here we omit writ-
ing Ry because R = S.) For details consult [Segerberg 1989].1

No general results are known about the preservation properties of the
map L — LEC,,. In fact, it is easy to extend the counter-examples for the
map L — L, to the present case (see [Hemaspaandra 1996]). However, at
least in some cases—especially those that are of importance for epistemic
logic—the logic LEC,,, enjoys a number of desirable properties.

14K rister Segerberg kindly informed us that this result was independently obtained by
D. Scott, H. Kamp, K. Fine and himself.



ADVANCED MODAL LOGIC 89

THEOREM 2.12 (Halpern and Moses 1992) For every m > 1, the logics
(®", K)EC,,, (R, S4)EC,, and (R, S5)EC,, have FMP.

Proof We consider only L = (®);~, S5)EC,,. The proof is by filtration
and so the main difficulty is to find a suitable “filter”. Suppose that ¢ € L
and let M = (W, Ry,..., R, R, Re) ,4) be the canonical model for L.
Denote by I'™ the closure of a set of formulas I under negations and define
a filter ® = &' U ®; U &3, where &; = Subyp, ®; = {0;¢ : E¢ € &7}
and ®3 = {ECy, 0;C¢p : Cyp € 7'} Certainly, ® is finite and closed under
subformulas. Now, we filter 91 through @, i.e., put W* = {[z] : « € W},
where [z] consists of all points that validate the same formulas in ® as z,
and

[z]R;[y] iff VO € @ (M, 2) = Oip — (M, y) = O0),
Ry—RIU...UR",

and R¢ is the transitive and reflexive closure of Ry. A rather tedious
inductive proof shows that (W*, R,..., R}, R}, R;.) refutes ¢ under the
valuation 4*(p) = {[z] : ¢ |= p}, p a variable in ¢. For details we refer the
reader to [Halpern and Moses 1992] and [Meyer and van der Hoek 1995].

|

It would be of interest to look for big classes of logics L for which LEC,,
inherits basic properties of L.

2.8  Simulation

In the preceding section we saw how results concerning logics in NExtK can
be extended to a certain class of polymodal logics. More generally, we may
ask whether—at least theoretically—polymodal logics are reducible to uni-
modal ones. The first to attack this problem was Thomason [1974b, 1975c]
who proved that each polymodal logic L can be embedded into a unimodal
logic L? in such a way that L inherits almost all interesting properties of
L?. Using this result one can construct unimodal logics with various “nega-
tive” properties by presenting first polymodal logics with the corresponding
properties, which is often much easier. It was in this way that Thomason
[1975c¢] constructed Kripke incomplete and undecidable unimodal calculi.
Kracht [1996] strengthened Thomason’s result by showing that his embed-
ding not only reflects but also (i) preserves almost all important properties
and (ii) induces an isomorphism from the lattice NExtK, onto the interval
[Sim, K® O], for some normal unimodal logic Sim. Thus indeed, in many
respects polymodal logics turn out to be reducible to unimodal ones.
Below we outline Thomason’s construction following [Kracht 1996] and
[Kracht and Wolter 1997a]. To define the unimodal “simulation” L?® of a



90 M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

o0

RlﬁRz i
5 b 3
Figure 11.

bimodal logic L, let us first transform each bimodal frame into a unimodal
one.

So suppose § = (W, Ry, R, P) is a bimodal frame. Construct a unimodal
frame §° = (W*, R*, P*)—the simulation of §—Dby taking

ws = W x{1,2} U{oo},
R = {{(z,1),(z,2)) :z € W} U
{{z,2) ,(z,1)) :z € W}U
{{z,1),00) :z € W} U
{{z,1),(y,1)) sz, y € W,zR1y} U
{{(z,2),(y,2)) : v,y € W,zRay},
Ps = {(Xx{2Hu(Y x{1hUZ:X,Y € P,Z C {o0}}.

This construction is illustrated by Fig. 11. One can easily prove that §° is a
Kripke (differentiated, refined, descriptive) frame whenever § is so. Notice
also that if W = () then §° = o. Now, given a bimodal logic L, define the
simulation L® of L to be the unimodal logic

Log{3°: § = L}.

To formulate the translation which embeds L into L® we require the follow-
ing formulas and notations:

v = 01 Oy = Bly—9)
a = <0OL O = Oa—p)
B = yA=Oy Dgp = 0B —9).

Oy, ©q and Og are defined dually. Observe that the formula v is true in
§° only at oo, a is true precisely at the points in the set {(z,1) : z € W},
and 3 is true at the points {(z,2) : © € W} and only at them. Put

p = D

(mp)* = aA-pt
(pAY)® = " Ay,
(Dl(p)s = Da(ps,
(D2g0)s = DBDBDDAOS'

By an easy induction on the construction of ¢ one can prove
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LEMMA 2.13 Let M = (§,V) be a bimodal model, X = {z : x = a} and
let M° = (F°,V°) be a model such that B*(p) N X = BV(p) x {1}, for all
variables p. Then for every bimodal formula o,

M,z) = iff (M, (z,1)) E ¢°,
M= iff M Ea—e°,
SkEe iff Fa—p.
Using this lemma, both consequence relations -7, and 7} can be reduced to
the corresponding consequence relations for L®.

PROPOSITION 2.14 Let L be a bimodal logic, A a set of bimodal formulas
and ¢ a bimodal formula. Then

Abrry iff a— A%kra— ¢,
AbFr o iff a—= A°F. a— ¢°,

where a —» A* = {a— 0 : 9 € A%}

To axiomatize L*, given an axiomatization of L, we require the following
formulas:

(a) a — (<>’yp A D-yp), aAN$yp — 0,0,p,
(0) a— (Opp < Osp),

() B = (Cap ¢ Qap),

(d) aAp—OgO,p, BAp— O,0sp,

(e) aA<yp— Og030,0,p.

Let Sim = K @ {(a), ..., (e)}. Obviously, §° is a frame for Sim whenever
§ is a bimodal frame. Consider now a differentiated frame § = (W, R, P)
for Sim which contains only one point where v is true. (Actually, every
rooted differentiated frame for Sim satisfies this condition.) Construct a
bimodal frame §s = (V, R, Rs, @), called the unsimulation of §, in the
following way. Put V. ={z e W:z =a}, V* ={r € W :z | 8} and
U={zeW:z =~} SinceyVaVvpeK,wehave W =V UV UU. It
is not hard to verify using (b) and (¢) (and the differentiatedness of §) that
for every x € V there exists a unique x® € V*® such that zRx*®, and for every
y € V* there exists y° € V such that yRy°. By (d), z = z*°. Finally, we
put Ry = RNV?2 Ry = {{z,y) € V?:2*Ry*}and Q = {X NV : X € P}.
It is easily proved that s is a bimodal frame. The name unsimulation is
justified by the following lemma.

LEMMA 2.15 For every differentiated bimodal frame §, (§°)s = §.

Now we have:
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THEOREM 2.16 For every bimodal logic L = Ko @ A,
L? =Sim® a — A®.

Proof Clearly, Sim @& a — A% C L*®. Assume that the converse inclusion
does not hold. Then there exists a rooted differentiated § such that § [~ L*
but § = Sim @& a — A®. By Lemma 2.15, (§5)° ¥ L°. By the definition
of L*, we then conclude that §s = L. And by Proposition 2.14, we have
(Fs)® £ a = A®, from which § £ a — A®. a

Given L € [Sim,K & O], the logic Ls = {¢ : a = ¢° € L} is called the
unsimulation of L.

LEMMA 2.17 If L is determined by a class C of frames in which v is true
only at one point then Ly, = Log{Fs : § € C}.

We are in a position now to formulate the main result of this section.

THEOREM 2.18 (Kracht 1996) The map L — L* is an isomorphism from
the lattice NExtKy onto the interval [Sim, K, @ OL1]. The inverse map
is L — Lg. Both these maps preserve tabularity, (global) FMP, (global)
Kripke completeness, decidability, interpolation, strong completeness, R-
and D-persistence, elementarity.

Proof To prove the first claim it suffices to show that (Ls)® = L for every
L € [Sim,K @ O1]. That L C (L;)® is clear. Consider the set C of all
differentiated frames §; such that § |= L and + is true only at one point in
§. By Lemma 2.17, C characterizes L,. It is not difficult to show now that
the class {§ : § € C} is closed under subalgebras, homomorphic images
and direct products; so it is a variety. Consequently, C is (up to isomorphic
copies) the class of all differentiated frames for L.

Take a differentiated frame § for (Ls)®. Then §s | Ls. So there exists
®, € C which is isomorphic to §s. Hence (§s)® =2 (65)° and § = L, since
® = L. It follows that L® is determined by {F* : § € C} whenever L is
determined by C.

The preservation of tabularity, (global) FMP, (global) Kripke complete-
ness, and strong completeness under both maps is proved with the help of
Lemma 2.17 and the observation above. It is also clear that L is decidable
whenever L? is decidable. For the remaining (rather technical) part of the
proof the reader is referred to [Kracht 1996] and [Kracht and Wolter 1997a).

o

Besides its theoretical significance, this theorem can be used to transfer
rather subtle counter-examples from polymodal logic to unimodal logic. For
instance, Kracht [1996] constructs a polymodal logic which has FMP and is
globally Kripke incomplete. By Theorem 2.18, we obtain a unimodal logic
with the same properties.



ADVANCED MODAL LOGIC 93

2.4  Minimal tense extensions

Now let us turn to tense logics which may be regarded as normal bimodal
logics containing the axioms p — 0O;<op and p — Oy$1p. Usually studies
in Tense Logic concern some special systems representing various models of
time, like cyclic time, discrete or dense linear time, branching time, rela-
tivistic time, etc. Such systems are discussed in Basic Tense Logic (see also
[Gabbay et al. 1994] and [Goldblatt 1987]). However, as before our concern
is general methods which make it possible to obtain results not only for this
or that particular system but for wide classes of logics. This direction of
studies in Tense Logic is quite new and actually not so many general results
are available. In this and the next section we consider two natural families
of tense logics—the minimal tense extensions of unimodal logics and tense
logics of linear frames. Our aim is to find out to what extent the theory
developed for unimodal logics in NExtK and especially NExtK4 can be
“lifted” to these families.

The smallest tense logic K.t is determined by the class of bimodal Kripke
frames (W, R, R™!) in which R is the accessibility relation for O; and R™!
for Os. Frames of this type are known as tense Kripke frames; general frames
of the form (W, R, R~!, P) will be called just tense frames. Notice that not
all unimodal general frames (W, R, P) can be converted into tense frames
(W,R, R™1, P) because P is not necessarily closed under the operation

O X ={xreW:3ye X zR 'y}

For instance, in the frame § of Example 1.7 we have Oo{w + 1} = {w} € P.
Each normal unimodal logic L = K&®T in the language with O; gives rise
to its minimal tense extension L.t = K.t ®T. From the semantical point of
view L.t is the logic determined by the class of tense frames (W, R, R~!, P)
such that (W, R, P) = L. The formation of the minimal tense extensions
is the simplest way of constructing tense logics from unimodal ones. Of
“natural” tense logics, minimal tense extensions are, for instance, the logics
of (converse) transitive trees, (converse) well-founded frames, (converse)
transitive directed frames, etc. The main aim of this section is to describe
conditions under which various properties of L are inherited by L.t.

Notice first that unlike fusions, L.t is not in general a conservative ex-
tension of L, witness L = Log§ where § is again the frame constructed in
Example 1.7: one can easily check that K4.t C L.t. However, if L is Kripke
complete then L.t is a conservative extension of L and so L'.t = L.t implies
L' C L. This example may appear to be accidental (as the first examples of
Kripke incomplete logics in NExtK). However, we can repeat (with a slight
modification) Blok’s construction of Theorem 1.35 and prove the following
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THEOREM 2.19 If L is a union-splitting of NExtK or L = For, then
L't = L.t implies L' = L. Otherwise there is a continuum of logics in
NExtK having the same minimal tense extension as L.

It is not known whether there exists L € NExtK4 such that L.t is not a
conservative extension of L.

Theorem 2.19 leaves us little hope to obtain general positive results for
the whole family of minimal tense extensions. As in the case of unimodal
logics we can try our luck by considering logics with transitive frames. So in
the rest of this section it is assumed that the unimodal and tense logics we
deal with contain K4 and K4.¢, respectively, and that frames are transitive.
But even in this case we do not have general preservation results: Wolter
[1996b] constructed a logic L € NExtK4 having FMP and such that L.t is
not Kripke complete. However, the situation turns out to be not so hopeless
if we restrict attention to the well-behaved classes of logics in NExtK4,
namely logics of finite width, finite depth and cofinal subframe logics. First,
we have the following results of [Wolter 1996a).

THEOREM 2.20 If L € NExtK4 is a logic of finite depth then L.t has
FMP. If L € NExtK4 is a logic of finite width then L.t is Kripke complete.

It is to be noted that tense logics of finite depth are much more complex
than their unimodal counterparts. For example, there exists an undecidable
finitely axiomatizable logic containing K4.t®0;0; 1 (for details see [Kracht
and Wolter 1997a]).

The minimal tense extensions of cofinal subframe logics were investigated
in [Wolter 1995, 1996a].

THEOREM 2.21 If L € NExtK4 is a cofinal subframe logic then
(i) L.t is Kripke complete;
(ii) L.t has FMP iff L is canonical;
(iii) L.t is decidable whenever L is finitely axiomatizable.

Before outlining the idea of the proof we note some immediate conse-
quences for a few standard tense logics.

EXAMPLE 2.22 (i) The logic of the converse well-founded tense frames is
GL.t; it does not have FMP but is decidable. (ii) The logic of the converse
transitive trees is K4.3.t; it has FMP and is decidable. (iii) The logic of
the converse well-founded directed tense frames is GL.t & K4.2.t; it does
not have FMP and is decidable.

Proof The proof of the negative part, i.e., that L.t does not have FMP if
L is not canonical, is rather technical; it is based on the characterization of
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the canonical cofinal subframe logics of [Zakharyaschev 1996]. The reader
can get some intuition from the following example: neither Grz.t nor GL.t
has FMP. Indeed, the Grzegorczyk axiom

Oy (Oz(p — Oap) = p) = p

is refuted in (w, >, <) and so does not belong to Grz.t; however, it is valid
in all finite partial orders. The argument for GL.¢ is similar: take the Lob
axiom in Oy and the frame (w, >, <).

We sketch now the proof of the positive part. For a tense Kripke frame
5= (W,R,R™1), let rp be a partial function associating with some clusters
in § one of the frames

(w, >, <) or (w, >, <).

We call it a replacement function for § and define §P to be the result of
replacing in § all clusters C' in the domain of rp by (disjoint copies of) rpC.
Our first observation is that for each cofinal subframe logic L, L.t is de-
termined by a set of frames of the form §F"? such that § is of finite depth.
Indeed, suppose ¢ ¢ L.t and consider a countermodel 9 = (F, V) for ¢
based on a descriptive finitely generated tense frame § = (W, R, R™1, P) for
L.t. Say that a point € W is non-eliminable (relative to ¢) if there are a
subformula 1 of ¢ and S € {R, R~} such that z € maxs{y € W :y = ¢}
or z € maxg{y € W : y &= —¢}. Denote by W, the set of non-eliminable
points in W and construct a new model 9, on the frame § = (W, R |
W., R~ |W.) by taking U, (p) = B (p) "W, for all variables p in . Clearly,
the Kripke frame §. is of finite depth (d(§.) < 2I(p), to be more pre-
cise). Besides, using Theorem 1.23 one can easily show that (9M.,y) E ¢ iff
(M, y) = o, for all » € Suby and y € W,. (Note that Theorem 1.23 is ap-
plicable in this case, since (W, R, P) is descriptive whenever (W, R, R™!, P)
is descriptive.) Moreover, the R-reduct (W,, R[W.) of §. is a cofinal sub-
frame of the R-reduct (W, R) of the underlying Kripke frame of §. So §. is
a frame for L.t whenever L is canonical (= D-persistent). However, this is
not so if L is not canonical.

EXAMPLE 2.23 Consider the frame § = (W, R, R~!, P), where (W, R) is
the reflexive point oo followed by the chain (w,>) and P consists of all
cofinite sets containing oo and their complements. Then § = GL.t but (for
an arbitrary ) §. contains co and so §. & GL.t.

A rather tedious proof (see [Wolter 1996a]) shows, however, that there
exists a replacement function rp for §. such that F.P validates L.t and all
points in clusters from domrp are eliminable relative to R in §. (In the
example above we put rp{oc} = (w,>,<) and oo is eliminable relative to
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R.) So let us assume that such rp is given and that its domain is empty if
L is canonical. Define a model 9P = (F7P,0"P) as follows. First we put
y € U"P(p) whenever y € V. (p) and y ¢ domrp. Consider now a cluster
C ={ag,...,am-1} in domrp. V" is defined in rpC' by unravelling C into
the chain rpC'’; more precisely, we put

U P(p)NrpC ={mj+i:j<w, a; € B(p)}.

Using the fact that domrp contains only R-eliminable points, one can show
by induction that, for every ¢ € Suby, (M,.,y) |= ¢ iff (MP,y) | ¢, if
C(y) does not belong to domrp, and

{nermpC:(MP n)Eyv={mj+i:j<w, M, a;) =1},

if a cluster C = {ag,...,am—1} is in domrp. Thus FLP refutes ¢, which
proves that L.t is Kripke complete.

To show that all canonical logics L.t do have FMP we reduce §.? once
again. Define an equivalence relation ~ on W, by induction on the R-depth
dr(z) of a point x in F.. Suppose that dr(z) = dr(y) and ~ is already
defined for all points of R-depth < dg(z) and put x ~ y if the following
conditions are satisfied: (a) z =14 iff y |= ¢, for all ¢ € Suby (z ~,, y, for
short), (b) if z is an R-successor of y and C(z) # C(y) then there exists an
R-successor 2' of x with C'(z2') # C(z) such that z ~ 2z’ and vice versa, (c)
the cluster C(z) is degenerate iff C(y) is degenerate, (d) rpC(z) = rpC(y),
(e) for each z € C(x) there exists 2z’ € C(y) such that z ~, 2’ and vice
versa.

Let [z] denote the equivalence class generated by z. Define a frame
& = (V,S,S71) by taking V = {[z] : * € W.}, and [z]S[y] iff there are
x' € [z] and y' € [y] such that 2'Ry’. Since F. is of finite depth, V is
finite. Moreover, the map x — [z] is a reduction of the unimodal frame
(We, R W) to (V,S). Tt follows that & is a frame for L.t whenever L is
canonical. Define a valuation in & by putting [z] |= p iff z | p, for all
x € W, and all variables p in . Then one can show that [z] E ¢ iff =1,
for all 1 € Suby. So & [~ ¢, as required, which means that L.t has FMP.

To prove the decidability of a finitely axiomatizable L.t we first show its
completeness with respect to a rather simple class of frames.

Define a replacement function rf for & as follows. For each cluster C in
Fe the set [C] = {[z] : « € C} is a cluster in &, and moreover, every cluster
in & can be presented in this way. So we put rf[C] = rpC, for all clusters
[C] in &. Notice that by (d), rf is well-defined. It is easily shown now that
the R-reduct of §7? is reducible to the R-reduct of &"/ and that &7/ refutes
. Thus we obtain
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LEMMA 2.24 For each cofinal subframe logic L,
L.t =Log{®&"P : 8"P |= L.t, & finite, rp a replacement function for &}.

So, to establish the decidability of a finitely axiomatizable L.t it is enough
now to present an algorithm which is capable of deciding, given an rp for a
finite & and ¢, whether & |= ¢. To this end we require the notion of a
cluster assignment t = (t1,t2) in a tense frame &, which is any function from
the set of clusters in & into the set {m,j} x {m,j} such that tC' = (m, m) if C
is degenerate (here m and j are just two symbols; m stands for “maximal”
and j for “joker”). A valuation U in & is called ¢-good for (&,t) if the
following conditions hold:

e if t;C = j then C Nmaxg(V(y)) = 0, for all 1) € Suby;
e if t2C = j then C Nmaxg-1(W(p)) = 0, for all 1 € Subyp .

EXAMPLE 2.25 Let § be the frame constructed in Example 2.23 and sup-
pose that t{oo} = (j,m). Then each valuation U in § is ¢-good for (&,t)
no matter what ¢ is, because oo is eliminable relative to R. The point oo
is not R~!-eliminable, since oo € maxp-1(T).

Given a formula ¢, a finite frame § and a replacement function rp for
J, we construct a finite frame & = (V, S, S7!) with a cluster assignment
t as follows. Let k& be the number of variables in ¢. Then & is obtained
from F"P by replacing every rpC' = (w, >, <) with a non-degenerate cluster
C" of cardinality 2%, S-followed by a chain of 2I(y) irreflexive points, and
by replacing every rpC = (w,>,<) with a non-degenerate cluster C' of
cardinality 2%, S-followed by a chain of 2I(y) reflexive points. The cluster
assignment t in & is defined by putting tC' = (j,m), for all new clusters
C' of cardinality 2%, and tC' = (m,m), for all the other clusters. It is
not difficult now to prove that F? = ¢ iff (&,4) = ¢, for all p-good for
(&,t) valuations U in &. This equivalence provides an effective procedure
for deciding whether §"? = . a

Note that a similar technique can be used to prove completeness and
decidability of various tense logics that are not minimal tense extensions.
For instance, all logics of the form L.t & $o0op — OyO0p, where L is a
cofinal subframe logic, are complete and decidable if finitely axiomatizable.

2.5 Tense logics of linear frames

One of the most important types of tense logics are logics characterized
by linear tense frames, i.e., transitive frames (W, R, R™!, P) such that, for
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all z,y € W, xRy or xR 'y or x = y. For example, Bull [1968] and
Segerberg [1970] axiomatized the logics of the frames, (Z, <,>), (Q, <, >)
and (R, <,>) (Z,Q and R are the sets of integer, rational and real numbers,
respectively).

Linear tense logics form the lattice NExtLin, where

Lin=K4.t® <>1<>2p \Y <>2<>1p —p \Y <>1p \Y <>2p

is the tense logic determined by the class of all linearly ordered Kripke
frames (W, R,R™'). As we saw in Section 1.11, even unimodal logics of
linear orders are rather non-trivial (for instance, they do not always enjoy
FMP). Yet they can be characterized by Kripke frames with a transpar-
ent structure, which yields a decision algorithm for those of them that are
finitely axiomatizable. Tense logics of linear frames turn out to be even more
complicated. In fact, one can find almost all kinds of “monsters” among
them: uncountably many logics without Kripke frames, strongly complete
logics that are not canonical, canonical logics that are not R-persistent,
incomplete subframe logics, etc. Nevertheless, in this section we show that
these logics are quite manageable. Our exposition follows [Wolter 1996¢,d],
where the reader can find the omitted details. All frames in this section are
assumed to be linear.

Given a finite sequence § = (F; = (Wi, R;, P;) : 1 <i < n) of disjoint
frames, we denote by [§] = 1 < ... <1 T, the ordered sum of them, i.e., the
frame (W, R, R, P) in which

W:CJWZ», R:CJRiU U wixw)

i=1 i=1 1<i<j<n

and P ={X; U...UX, : X; € P;}. Each finite frame can be represented
then as the ordered sum C7 < ... < (), of its clusters.

We begin our study by developing a language of “canonical formulas” for
axiomatizing logics in NExtLin and characterizing the constitution of their
frames. It will play the same role as the language of canonical formulas for
K4. With every finite frame § = (W, R,R™!) = C; <...<C, and a cluster
assignment t = (t1,ts) in it we associate the formula

Oé(g,t) = 6(37"—') A D16(37t) A D26(37t) — Pr,
where 7 is an arbitrary fixed point in § and

i(F,t) = /\{pgE — $1py xRy, ~(yRxz)} A
/\{pz — Oopy t xR Yy, —(zRy)} A
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NPz = —py 22 # y} A \{pe = =Oap, - —(zRy)} A
/\{pz = O1py N <n (t1C;=mAz,y € C; AzRy)} A

/\{pz = Copy 1 T <n (820, =mAz,y € C; A TRy} A
\/{py ty € Wh

To explain the semantical meaning of these formulas, notice first that if
tC = (m, m) for all clusters C then & [~ «o(F,t) iff & is reducible to §; so
Lin ® (3, t) is a splitting of NExtLin. Suppose now that t;C = j for some
i € {1,2} and some cluster C' in §. In this case & [~ «(F,t) iff there exist
frames &;, for 1 < i < n, such that & = &, <...<9&,, and &; £ a(C;,t [ C)
for all 1 <i < n. So it suffices to examine the situation when & = «(C, t)
for a cluster C. Assume for simplicity that & is a Kripke frame. Case 1:
tC = (j,j). Then & }= o(C,t) iff |&| > |C|. Case 2: tC = (m,j). Then C is
non-degenerate and & £~ a(C, t) iff either & contains an R-final cluster of
cardinality > |C| or it has no R-final point at all. Case 3: tC = (j, m). This
is the mirror image of Case 2. Case 4: tC' = (m,m). If C is an irreflexive
point then & is an irreflexive point as well whenever & [~ a(C,t). If C is
non-degenerate and ® [~ «a(C, t) then & satisfies the conditions of Cases 2
and 3.

EXAMPLE 2.26 Let a = a(é-+6,t) where ta = (m,j) and tb = (j,m).
Then § £ « iff there exists a non-empty upward closed set X € P such
that Vo € XJy € X yRe, W — X #D and Ve € W — X3y € W — X zRy.
Hence (Q,<,>) £ a (take X = {y € Q : V2 < y}) but (R, <,>) | a,
since the real line contains no gaps.

THEOREM 2.27 There is an algorithm which, given a formula ¢, returns
formulas a(§1,t1),...,a(Fn, tn) such that

Lin® ¢ =Lin ® a(F1,t1) ® ... D a(Fn, tn).

Proof Let (i, t;), 1 <i < n,be the collection of all finite frames with type
assignments such that, for each ¢, (a) there is a countermodel M; = (3, V;)
for ¢ in which ; is ¢-good for (F;,t;), (b) the depth of F; does not exceed
41(p) 4+ 1, and (c) no cluster in §; contains more than 2°(¥) points, where
v(¢p) is the number of variables in .

Let § refute a(®;,t;) under a valuation {{. By the definition of (§;,t;),
the model 9; refutes . Define a valuation Y’ in § by taking, for all variables
pin o,

@(p) = {4(pe) : @ € Vi(p)}-

It is not hard to show by induction that W' (¢) = J{U(ps) : = € Vi(¥)}
for all » € Subgp, and so § refutes ¢ under $'. Thus § = ¢ implies
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Ord; = Log{(¢,<,>):¢ an ordinal} =
Lin & Oé(—, (07 (J7 m)))
Et = Lin@OlT@Oﬂ' =
Lin D Oé(—, (.) (mv m))) D a((.) (mv m))) _)
0, = Log(wn,<,>) =
Ord; ® a((e, (m,j)) <... < (o, (m,})) Ba(—, (s, (m,m)))
RD = Log{®:Vz(-zRx — EIT;;+(;:Ry A{z:zRzRy} =0))} =
Lin ® a(—, (e, (m,m))) & a(—, (s, (m,m)) < (o, (m, })))
LD = the mirror image of RD
Zt = LOg(Z, <, >> =

RD & LD ® a((o, (j,j)) < (o, (j,m)))&®
a((o, (m,])) < (o, (,0))

Ds, = LinoO!p 0=
Lin ® a(—, (e, (m,m) < ... < (e, (m, m)z, -)
nt1
Q: = Log(Q <,>) =
Ds; & E;
R; = Log(R,<,>) =
Q: & a((o, (m, j)) < (o, (j,m)))
Rd; = Log{({,<,>):¢ an ordinal} =

Lin @ a(_v (@7 (J, m)))

Table 3. Axiomatizations of standard tense logics

§ E a(di,t;) for every i. The converse direction is rather technical; we
refer the reader to [Wolter 1996d). a

“Canonical” axiomatizations of some standard linear tense logics are
shown in Table 3, where we use the following abbreviations. Given a fi-
nite frame § = C; < ... < Cp, we write a((C1,tC1) < ... < (Cy, tCh))
instead of a(§,t) and a(—, (C1,tC1) <... < (Cy, tCy)) instead of

a((Ch,6C1) < ... < (Cy tC)) @ a((0, (1)) < (C1,tC1) <1 ... <1 (Cy 6Ch)).

a((Cr,tC1) <...<(Cy,tCy), —) is defined analogously.
Now we exploit the formulas a(§,t) to characterize the ()-irreducible
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logics in NExtLin. Recall that every logic L € NExtLy is represented as
L= ﬂ{L' DL:L'is ﬂ -irreducible}.

So such a characterization can open the door to a better understanding of
the structure of the lattice NExtLin. The (-irreducible logics will be de-
scribed semantically as the logics determined by certain descriptive frames.

DEFINITION 2.28 (1) Denote by () the non-degenerate cluster with & > 0
points.

(2) Let w<(0) be the strictly ascending chain (w, <,>) of natural num-
bers, w<(1) the chain {w, <,>), w<(2) the ascending chain of natural num-
bers in which precisely the even points are reflexive, w<(3) the chain in
which precisely the multiples of 3 are reflexive, and so on; w”(n) is the
mirror image of w<(n).

(3) €(0,®) is the mirror image of the frame introduced in Example 2.23,
ie., €0,®) = (w<(0) < @®, P), where P consists of all cofinite sets contain-
ing @ and their complements. We generalize this construction to chains
w<(n) and clusters (). Namely, for n < w, £k > 1 and & = {ao,...,ax_1},
we put

€(n,®) = (w<(n) <®,P),
where P is the set of possible values generated by {X; :0<i <k — 1}, for
Xi={a;}U{kj+i:jew},0<i<k—-1. €(®,n) denotes the mirror
image of €(n, ®).

(4) €(0,®,0) = (w<(0) <« @® <Qw~(0), P), where P counsists of all cofinite
sets containing (1) and their complements.

It is easy to check that the frames defined in (3) and (4) are descriptive
and a singleton {z} isin P iff z ¢ ).

For a class of frames C, we denote by C* the class of finite sequences of
frames from C and let [C*] = {[§] : § € C*}. The class of finite clusters
and the frames of the form (3) in Definition 2.28 is denoted by By; put also
B ={¢(0,®,0)} U By.

THEOREM 2.29 Each logic L € NExtLin is determined by a set C C [B*].
If L is finitely aziomatizable then L = LogC for some set C C [Bf].

Proof We explain the idea of the proof of the first claim. Suppose that
M = (F,) is a countermodel for a = a((C1,tC1) < ... < (Cy,tCy)) based
on a descriptive frame § = (W, R, R~!, P). We must show that there exists
® € [B*] refuting « and such that Log® D Logg. Consider the sets

Wi={y e W:(M,y) = \/{p. :x € Ci}}.
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One can easily show that W; are intervals in § and § = §1 <... < §p, for
the subframes §; of § induced by W;. Moreover, & = [@] is as required
if & = (&1,...,8,) is a sequence in B* such that Log®; O Logg;, and
®; £ a(C;,tC;), for 1 < i < n. Frames &; with those properties are

constructed in [Wolter96d]. a

EXAMPLE 2.30 The logic Qq is determined by the frames § € [B*] which
contain no pair of adjacent irreflexive points, and R; is determined by the
frames § € [B*] which contain neither a pair of adjacent irreflexive points
nor a pair of adjacent non-degenerate clusters.

It is not difficult to show now that the logics Logg, for § € [B*], coincide
with the (-irreducible logics in NExtLin. Our first aim is achieved, and
in the remaining part of this section we shall draw consequences of this
result. Using the same sort of arguments as in the proof of Theorem 2.21
and Kruskal’s [1960] Tree Theorem one can prove

COROLLARY 2.31 (i) All finitely aziomatizable logics in NExtLin are de-
cidable.

(i1) A logic L is finitely aziomatizable whenever there ezists n < w such
that L € NExtDs,,.

It follows in particular that all logics in NExtQ; and all logics of reflexive
frames are finitely axiomatizable and decidable.

Now we formulate two corollaries concerning the Kripke completeness of
linear tense logics. First, it is not hard to see that every logic in NExtLin
characterized by an infinite frame in [B*] is Kripke incomplete. Using this
observation one can prove

COROLLARY 2.32 Suppose L € NExtLin and there is a Kripke frame of
infinite depth for L. Then there exists a Kripke incomplete logic in NExtL.

This result means in particular that in Tense Logic we do not have ana-
logues of the unimodal completeness results of Bull [1966b] and Fine [1974c].
However, if a logic is complete then it is determined by a simple class of
frames. Let K be the class frames containing finite clusters and frames of
the form (2) in Definition 2.28.

THEOREM 2.33 Fach Kripke complete logic in NExtLin is determined by
a subset of [K*].

One of the main types of logics considered in conventional Tense Logic
are logics determined by strict linear orders, known also as time-lines. We
call them t-line logics. All logics in Table 3, save Rd;, are t-line logics.
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T-line logics were defined semantically, and now we are going to determine
a necessary syntactic condition for a linear tense logic to be a t-line logic.

Given a frame §, we denote by §° the frame that results from § by
replacing its proper clusters with reflexive points. Call L € NExtLin a
t-aziom logic if L is axiomatizable by a set of formulas of the form «(F,t)
in which § contains no proper clusters.

PROPOSITION 2.34 The following conditions are equivalent for all logics
L € NExtLin:

(i) L is a t-aziom logic;

(ii) §° = L implies § = L, for every § € [B*].

(iii) a(®,t) € L implies a(&°,t) € L,'5 for every finite &.

Proof The implications (i) = (ii) and (iii) = (i) are clear. To prove that
(ii) = (iii), suppose a(®°,t) ¢ L. Then there exists a frame § € [B*] for L
refuting a(®°,t). Without loss of generality we may assume that § contains
no proper clusters. By enlarging some clusters in § we can construct a frame
$ € [B*] such that H° = § and H £ a(B,t). In view of (ii), H | L and so
a(®,t) ¢ L. a

It follows that the t-axiom logics form a complete sublattice of the lattice
NExtLin.

THEOREM 2.35 (i) All finitely aziomatizable t-aziom logics are Kripke
complete.
(i1) All t-line logics are t-axiom logics.

Proof (i) Suppose that L = Lin & {a(®$,t;) : i € I}, for some finite set
I. By Theorem 2.29, L is determined by a subset of [Bj]. For § € [B{],
let k¥ be the Kripke frame that results from § by replacing all €(n,®)
and €(@,n) with w<(n) and w”(n), respectively. Then we clearly have
LogkF C Logg, and § | a(®°,t) iff k§ = o(6°,t). It follows that L is
Kripke complete. (ii) Suppose that L is a t-line logic. By Proposition 2.34
(3), it suffices to observe that § = a(®°,t) iff § = a(®,t), for all time-lines
§ and all finite &. a

So the fact that in Table 3 all t-line logics are axiomatized by canon-
ical formulas of the form a(®°,t) is no accident. Finding and verifying
axiomatizations of t-line logics becomes almost trivial now.

EXAMPLE 2.36 Let us check the axiomatization of Z; in Table 3. Put

L=RD& LD ® a((c, (j,j) < (o, (j,m))) & (e, (m,])) < (o, (), ])))-

15We assume that tC' = to whenever o replaces C in &.
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By Theorem 2.35, L is complete. By Theorem 2.33, L is then determined by
a subset of [K*]. Clearly this set contains (Z, <, >), possibly () for & > 0,

and nothing else. But the logic of () contains Z;, for all £ > 0.

We conclude this section by discussing the decidability of properties of
logics in NExtLin. In Section 4.4 it will be shown that almost all interesting
properties of calculi are undecidable in NExtK and even in NExtS4. In
NExtLin the situation is different, as was proved in [Wolter 1996d, 1997d].

THEOREM 2.37 (i) There are algorithms which, given a formula @, decide
whether Lin & ¢ has FMP, interpolation, whether it is Kripke complete,
strongly complete, canonical, R-persistent.

(ii) A linear tense logic is canonical iff it is D-persistent iff it is complete
and its frames are first order definable.

(iii) If a logic in NExtLin has a frame of infinite depth then it does not
have interpolation.

So NExtLin provides an interesting example of a rather complex lattice
of modal logics for which almost all important properties of calculi are
decidable. We shall not go into details of the proof here but discuss quite
natural criteria for canonicity and strong completeness of logics in NExtLin
required to prove this theorem. Denote by B the class of frames containing
B together with frames €(n, ), ns) defined as follows. Suppose k& > 1,
ni,ny < w are such that ny; +ns > 0 and @ = {aop,...,ar—1}. Then

Q:(n1>®;n2) = <w<(n1) < ® <1w>(n2),P>,
where P is the set of possible values generated by {X; : 0 <1i < k — 1}, for
Xi={ai}U{kj+i:jewtu{k™j"+i":jew}

and {0*,1*,...,n*,...} being the points in w~(ns).
Let F be the class of frames of the form

(0,...,m}, <, > <@©<{{0,...,n2},<,>)or ({0,...,n},<,>).

THEOREM 2.38 (i) A logic L € NExtLin is canonical iff the underlying
Kripke frame of each frame § € [B}] for L validates L as well.

(ii) A logic L € NExtLin is strongly complete iff for each frame § € [B}]
validating L, there exists a Kripke frame & for L which results from § by
replacing

o cvery €(n,®) with w<(n) or w<(n) ALH A ®, for some H € F, and

o cvery €(©,n) with w”(n) or © < H w”(n), for some H € F, and
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o every €(ny, ®),n2) with w<(n1) <H w”(n2), for some H € F.

EXAMPLE 2.39 The logic R; is not canonical because €(2, (@) = R¢ but
w<(2)<@ [~ Re. However, Ry is strongly complete, since § |= R; whenever
& € [B}] validates R; and § is obtained from & as in the formulation of
Theorem 2.38 with $ = e € F.

One can also use Theorem 2.38 to construct two strongly complete logics
L, L, € NExtLin whose sum L; @ L5 is not strongly complete (see [Wolter
1996¢]).

2.6 Bimodal provability logics

Bimodal provability logics emerge when combinations of two different prov-
ability predicates are investigated, for example, if O; is understood as “it
is provable in PA” and O, as “it is provable in ZF”. In contrast to the
situation in unimodal provability logic, where almost all provability pred-
icates behave like the necessity operator O in GL, there exist quite a lot
of different types of bimodal provability logics. Various completeness re-
sults extending Solovay’s completeness theorem for GL to the bimodal case
were established by Smorynski [1985], Montagna [1987], Beklemishev [1994,
1996] and Visser [1995]. Here we will not deal with the interpretation of
modal operators as provability predicates but sketch some results on modal
logics containing the bimodal provability logic

CSM; = (GL® GL) ® Oyp — Oop @ Oop — O Ozp

(named so by Visser [1995] after Carlson, Smorynski and Montagna). A
number of provability logics is included in this class, witness the list below.
(As in unimodal provability logic we have quasi-normal logics among them,
i.e., sets of formulas containing K> and closed under modus ponens and
substitutions (but not necessarily under ¢/0;p). Recall that we denote by
L + T the smallest quasi-normal logic containing L and T'.)

e CSM; = CSMy ¢ Oy(0yp — p). (This is PRLzp in [Smorynski
1985] and F in [Montagna 1987].)

e NB; = CSM; & (—0;p A Op) — O(01q — q).

e CSM, = CSM; + Oyp — p. (This is PRLzr + Reflectionn, in
[Smoryniski 1985] and F; in [Montagna 1987].)

e CSM; = CSM, + Oyp — p. (This is PRLzp + Reflectionn, in
[Smoryriski 1985].)
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e NB, = NB; + Osp — p+ Oop — Oip.

A remarkable feature of CSMj is that—like in GL—we have uniquely de-
termined definable fixed points.

THEOREM 2.40 (Smoryriski 1985) Let ¢(p) be a formula in which every
occurrence of p lies within the scope of some Oy or some Oy. Then

(i) there exists a formula v containing only the propositional variables of
w(p) different from p such that 1 < p() € CSMy;

(ii) Ou((p « () A (g & ¢(q))) = (p < q) € CSMy.

In the remaining part of this section we are concerned with subframe
logics containing CSMj, the main result stating that those of them that
are finitely axiomatizable are decidable. All the provability logics introduced
above turn out to be subframe logics, so we obtain a uniform proof of their
decidability. An interesting trait of subframe logics in ExtCSMj is that
(as a rule) they are Kripke incomplete; in the list above such are CSM;;,
1=1,2,3, and NB;, i = 1,2. The proof extends the techniques introduced
by Visser [1995]; for details we refer the reader to [Wolter 1997a].

First we develop—as was done for NExtK4 and NExtLin—a frame the-
oretic language for axiomatizing subframe logics in the lattice ExtCSMy.
A finite frame & = (W, Ry, R») validates CSMj iff both R; and R, are
transitive, irreflexive, Ry C Ry and

Va,y,z (tR1y ANyRez — xRy2).

In this section all (not only finite) frames are assumed to satisfy these con-
ditions, save irreflezivity.

A finite frame § is called a surrogate frame if it has precisely one root
r and all points different from r are Rp-irreflexive. Surrogate frames will
provide the language to axiomatize subframe logics in ExtCSMjy. A normal
surrogate frame (W, Ry, Rs) is a surrogate frame in which the root r is
Ry-irreflexive. We write Ry iff zR;y and —yR;z. Given a frame & =
(V, 81, 52,Q) for CSMjy and a surrogate frame § = (W, Ry, R2), a map h
from V onto W is called a weak reduction of & to § if for i € {1,2} and all
r,yeV,

o zS;y implies f(z)R;f(y),
o f(z)RYf(y) implies 3z € V (zSiz A f(2) = f(y)),
e fFIX)eQforall X CW.

(The standard definition of reduction is relaxed here in the second condi-
tion.) Each weak reduction to a CSMj-frames is a usual reduction, since in



ADVANCED MODAL LOGIC 107

this case RY = R;. A frame & is said to be weakly subreducible to a surro-
gate frame § if a subframe of & is weakly reducible to §. To describe weak
subreducibility syntactically, with each surrogate frame § = (W, Ry, Ry) we
associate the formula

() = 6(8) AD16(8) = —pr,
where r is the root of § and
(T = /\{pgE — O1py t xRy, z,y e WA
/\{pz — Oopy t xRYy, z,y e WA
Nipe >y iz £y, my € WA
N{pe = ~©1py : ~(@R1y), 2,y € W} A
/\{pm — =Capy t (zR2y), x,y € W

LEMMA 2.41 For every surrogate frame § and every CSMy-frame &, & [~
a(F) iff & is weakly subreducible to §.

It follows immediately that CSMy@ a(F) and CSMy+a(F) are subframe
logics. Conversely, we have the following completeness result.

THEOREM 2.42 (i) There is an algorithm which, given a formula ¢ such
that CSMyg + ¢ is a subframe logic, returns surrogate frames §1,...,8n for
which

CSMy + ¢ = CSMy + a(F1) + ... + a(Fn).

(ii) There is an algorithm which, given a formula ¢ such that CSMy @ ¢
is a subframe logic, returns normal surrogate frames §1,-..,3n such that

CSMy ® ¢ =CSMy ® a(F1) @ ... ® a(Fn).

Table 4 shows axiomatizations of the logics introduced above by means of
formulas of the form a(F). In this section we adopt the convention that in
figures we place the number 1 nearby an arrow from z to y if xRy and
-z Rsy. An arrow without a number means that zR»y (and therefore xR,y
as well).

The proof of decidability is based on the completeness of subframe logics
in ExtCSM, with respect to rather simple descriptive frames. With every
surrogate frame § we associate a finite set of frames E(F) = {§5: 4 €
SeqF}. Loosely, it is defined as follows. Let us first assume that the root r
of § is Ry-irreflexive. Then the frames in E(F) are the results of inserting an
infinite strictly descending R;-chain, denoted by C(w), between each non-
degenerate R;-cluster C' and its Rj-successors. This defines R; uniquely.
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Table 4. Axiomatizations of provability logics

However, R, may be defined in different ways, since a point Rs-seeing a
point in C need not (but may) Rs-see certain points in the chain C'(w).
To be more precise, the set SeqF consists of all sequences A of the form

where A, is a subset of {y € W — C : yRaz} such that for all y and z,
y € A, and zRyy imply z € A,. For each non-degenerate R;-cluster C,
: n € w}. Finally, given A € Seqg, we
construct §4 = (V, So, S1) as the frame satisfying the following conditions:

denote by C(w) the set {(n,C)

A= (A, : Ryx, € W).

e V=WUU{C(w) : C anon-degenerate R;-cluster in F};

o Ri=S;n(WxW),foriec{l,2};

e Sy is defined so that C(w) becomes an infinite descending chain be-

tween C and its immediate successors;

e for every non-degenerate R;-cluster C,

- (Clw)UC) x (Clwyul))NSy =0,
—forally e W —C and z € C(w), zSay iff CRyy,

—forallyeW-C,C={j:0<j<m—1} and z € C(w), yS2z

iff i ewdj<m—1(z=>Em+jC)ANy€ A4,
—forall z € C(w) and y € V — C, xSoy iff CSyy.

We illustrate this technical definition by a simple example.
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- O—>0—>0—>0

cLd olo olo
. . D]
a b

(a) (b) (c)

Figure 12.

EXAMPLE 2.43 Construct E(F) for the frame § in Fig. 12 (a). In this
case we have two R;-reflexive points, namely ¢ and d. So, Seq§ consists of
pairs (A., Aq). There are four different pairs and so we have four frames
in E(?{) the frame in Fig. 12 (b) is 3@7@) and that in (C) is 3({(1}7{5}).
S(0,{vy) is obtained from §(;q},{p}) by omitting the Ry-arrows starting from
a, save the arrow to ¢, and §((,},p) is obtained from s} 53y by omitting
the Ry-arrows starting from b, save the arrow to d.

Suppose now that the root r of § = (W, Ry, Ro) is Ra-reflexive. We define
87 as in the previous case, but this time we also insert an infinite strictly
descending R»-chain C'(w) between r and its R;-successors.

We have defined the relational component of our frames and now turn to
their sets of possible values. Given §4 = (V,S1,S52) and a non-degenerate
Ryi-cluster C ={j:0<j<m-—1}in §, let

Poe={{j}u{(im+jC):i€w}:j=0,...,m—1}
and denote by P the closure of
{{z} 2z € V,~axS12} U {Pc : C is a non-degenerate R;-cluster in §}

under intersections and complements in V. The resultant general frame is
denoted by &(F4) = (V, 51,52, P). One can check that it is a descriptive
frame for CSMj. The following completeness result is proved similarly to
that in Section 2.4.

THEOREM 2.44 (i) Each subframe logic in NExtCSM, is determined by
a set of frames of the form &(), in which § is a normal surrogate frame
and A € Seqg.
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(ii) Each subframe logic in ExtCSMy is determined by a set of frames
with distinguished worlds of the form (QS(SZ),T> in which § is a surrogate
frame with root r and A € Seqg.

As a consequence of Theorem 2.44 and the fact that, for each surrogate

frame § with root r and each A € Seqg, both the logics of &(F4) and
(Qﬁ(&z), r) are decidable, we obtain

THEOREM 2.45 All finitely aziomatizable subframe logics in ExtCSMj
are decidable.

We conjecture that the method above can be extended to logics without
the GL-axioms, i.e., all finitely axiomatizable subframe logics containing
(K4®K4) @ 0O;p — Oyp ® Oyp — Oy 0sp are decidable.

3 SUPERINTUITIONISTIC LOGICS

Although C.I. Lewis constructed his first modal calculus S3 in 1918, it
was Godel’s [1933] two page note that attracted serious attention of math-
ematical logicians to modal systems. While Lewis [1918] used an abstract
necessity operator to avoid paradoxes of material implication, Gédel [1933]
and earlier Orlov [1928]'¢ treated O as “it is provable” to give a classical in-
terpretation of intuitionistic propositional logic Int by means of embedding
it into a modal “provability” system which turned out to be equivalent to
Lewis” S4.

Approximately at the same time Go6del [1932] observed that there are
infinitely many logics located between Int and classical logic Cl, which—
together with the creation of constructive (proper) extensions of Int by
Kleene [1945] and Rose [1953] (realizability logic), Medvedev [1962] (logic
of finite problems), Kreisel and Putnam [1957]—gave an impetus to study-
ing the class of logics intermediate between Int and Cl, started by Umezawa
[1955, 1959]. Godel’s embedding of Int into S4, presented in an algebraic
form by McKinsey and Tarski [1948] and extended to all intermediate logics
by Dummett and Lemmon [1959], made it possible to develop the theories
of modal and intermediate logics in parallel ways. And the structural results
of Blok [1976] and Esakia [1979a,b], establishing an isomorphism between
the lattices ExtInt and NExtGrz, along with preservation results of Mak-
simova and Rybakov [1974] and Zakharyaschev [1991], transferring various
properties from modal to intermediate logics and back, showed that in many
respects the theory of intermediate logics is reducible to the theory of logics
in NExtS4.

1860rlov’s paper remained unnoticed till the end of the 1980s. It is remarkable also for
constructing the first system of relevant logic.
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For = Int+p
Cl = Int+pVv-p
SmL = Int+(~¢g—p)—=(((p—q) —p)—p

KC = Int+-pV-p
LC = Int+(p—->q)V(g—Dp)
SL = Int+ ((-—p—p) = -pVp) = -pV-p
KP = Imt+(—p—->qVr)—>(-p—=qV(-p—r)
BD, = Int + bd,, where

bdi = p1 V 1, bdyni1 = pps1 V (Pry1 — bdy)
BW, = Int+Vi,pi—V,.p)
BTW, = Int+ /\ogi<j§n =(=pi A pj) — V?:o(_‘pi — Vj;ei —p;)
T, = Int + Ailo((pi = Vi i) = Vi Pi) = Visopi
B, = Int+ /\?:0(—.1)2» Ane Vi;éj pj) - V?:o Di
NL,, = Int+nf,, where

nf():J-)nfl =D, nf2 =D, nfw =T
Nfomis = Nfomi1 VN fomis,
Nfomia =Nfomis = o

Table 5. A list of standard superintuitionistic logics

To demonstrate this as well as some features of intermediate logics is
the main aim of this part. We will use the same system of notations as
in the modal case. In particular, ExtInt is the lattice of all logics of the
form Int + I' (where T' is an arbitrary set of formulas in the language of
Int and + as before means taking the closure under modus ponens and
substitution); we call them superintuitionistic logics or si-logics for short.
Basic facts about the syntax and semantics of Int and relevant references
can be found in Intuitionistic Logic. A list of some “standard” si-logics is
given in Table 5.

3.1 Intuitionistic frames

As in the case of modal logics, the adequate relational semantics for si-logics
can be constructed on the base of the Stone representation of the algebraic
“models” for Int, known as Heyting (or pseudo-Boolean) algebras. It is hard
to trace now who was the first to introduce intuitionistic general frames—the
earliest references we know are [Esakia 1974] and [Rautenberg 1979]—but in
any case, having at hand [Jénsson and Tarski 1951] and [Goldblatt 1976a],
the construction must have been clear.
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An intuitionistic (general) frame is a triple § = (W, R, P) in which R is a
partial order on W # () and P, the set of possible values in §, is a collection
of upward closed subsets (cones) in W containing § and closed under the
Boolean N, U, and the operation D (for —) defined by

XDoOYV={zeW:Wyeat(ye X 2ycY)}

If P contains all upward closed subsets in W then we call § a Kripke frame
and denote it by § = (W, R). An important feature of intuitionistic models
M = (F,V) (U, a valuation in F, maps propositional variables to sets in P)
is that U(y), the truth-value of a formula ¢, is always upward closed.

Every intuitionistic frame § = (W, R, P) gives rise to the Heyting algebra
ST =(P,N,U,D,0) called the dual of §. Conversely, given a Heyting algebra,
A= (A,A,V,—, L), we construct its relational representation 2, = (W, R)
by taking W to be the set of all prime filters in 2 (a filter V is prime if it
is proper and a Vb € V implies a € V or b € V), R to be the set-theoretic
inclusion C and

P={{VeEW:aeV}:a€ A}

It is readily checked that 2., the dual of 2, is an intuitionistic frame,
A= (2A,)"T and 2, is differentiated, tight in the sense that

zRy it VX eP (ze€ X syeX),

and compact, i.e., for any families ¥ C P and Y C{WW - X : X € P},
XUY)={zeW:VX €AV €Y (€ XAz €Y)} £

whenever (J(X' U Y') # 0 for every finite subfamilies X' C X, )’ C ).
Frames with these three properties (actually differentiatedness follows from
tightness) are called descriptive. In the same way as in the modal case
one can prove that § is descriptive iff § & (§7),. Duality between the
basic truth-preserving operations on algebras and descriptive frames (the
definitions of generated subframes, reductions and disjoint unions do not
change) is also established by the same technique.

Since every consistent si-logic L is characterized by its Tarski-Lindenba-
um algebra 2, we conclude that L is characterized also by a class of intu-
itionistic frames, say by the dual of .

Refined finitely generated frames for Int look similarly to those for K4:
the only difference is that now all clusters are simple and the truth-sets must
be upward closed. Fig. 13 showing (a) the free 1-generated Heyting algebra
Aint (1) and (b) its dual Fne(1) will help the reader to restore the details.
At (1) was first constructed by Rieger [1949] and Nishimura [1960]; it is
called the Rieger—Nishimura lattice. The formulas nf, defined in Table 5
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oT

Figure 13.

and used for the construction are known as Nishimura formulas (see also
Section 3 of Intuitionistic Logic).

At the algebraic level the connection between Int and S4 discovered by
Godel is reflected by the fact, established in [Mckinsey and Tarski 1946],
that the algebra of open elements (i.e., elements a such that Oa = a) of
every modal algebra for S4 (known as a topological Boolean algebra; see
[Rasiowa and Sikorski 1963]) is a Heyting algebra and conversely, every
Heyting algebra is isomorphic to the algebra of open elements of a suitable
algebra for S4. We explain this result in the frame-theoretic language.

Given a frame § = (W, R, P) for S4 (which means that R is a quasi-
order on W), we denote by pW the set of clusters in §—more generally,
pX ={C(z) : z € X}—and put C(z)pC(y) iff zRy,

pP={pX: X e PAX=0X}={pX: X e PAX = X1}.

It is readily checked that the structure p§ = (pW, pR, pP) is an intuition-
istic frame (for instance, p(X) D p(Y) = p(O(-X UY))); we call it the
skeleton of §. The skeleton of a model M = (F, V) for S4 is the intuitionistic
model pINt = (pF, pV), where pU(p) = V(Op).

Denote by T the Gddel translation prefixing O to all subformulas of a
given intuitionistic formula.!” By induction on the construction of ¢ one

17The translation defined in [G6del 1933] does not prefix O to conjunctions and dis-
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can easily prove the following

LEMMA 3.1 (Skeleton) For every model I for S4, every intuitionistic for-
mula @ and every point x in 9N,

(pM, C(z)) k= ¢ iff (M,z) = T(p)-

It follows that ¢ € Int implies T'(¢p) € S4. To prove the converse we
should be able to convert intuitionistic frames § into modal ones with the
skeleton (isomorphic to) §. This is trivial if § is a Kripke frame—we can
just regard it to be a frame for S4, which in view of the Kripke completeness
of both Int and S4, shows that T really embeds the former into the latter,
ie.,

o € Int iff T(p) € S4.

In general, the most obvious way of constructing a modal frame from an
intuitionistic frame § = (W, R, P) is to take the closure o P of P under the
Boolean operations N, U and —. It is well known in the theory of Boolean
algebras (see [Rasiowa and Sikorski 1963]) that for every X C W, X is in
o P iff

X=Xiun)n...n(-X,UY,)

for some X1,Y1,...,X,, Y, € P and n > 1. It follows that if X € &P then
OX =X oYV)Nn...n(X, DY, € PCoP,

and so o P is closed under O in (W, R) and P coincides with the set of
upward closed sets in o P. Thus, (W, R, P) is a partially ordered modal
frame; we shall denote it by o§. Moreover, we clearly have § = pog§. If
M = (F,V) is an intuitionistic model then oM = (oF, V) is a modal model
having 9t as its skeleton. So by the Skeleton Lemma,

(M, z) = ¢ iff (eM, z) = T(¢p),

for every intuitionistic formula ¢ and every point z in §.

It is worth noting that if § = (W, R) is a finite intuitionistic Kripke frame
then oF is also a Kripke frame. However, for an infinite §, o§ is not in
general a Kripke frame, witness (w, <).

The operator o is not the only one which, given an intuitionistic frame §,
returns a modal frame whose skeleton is isomorphic to §. As an example, we
define now an infinite class of such operators. For Kripke frames § = (W, R)
and & = (V, S), denote by §x & the direct product of § and &, i.e., the frame
(W x V, R x S) in which the relation R x S is defined component-wise:

(z1,y1) (R % S) (z2,y2) iff 1 Rzs and y; Sys.

junctions. However this difference is of no importance as far as embeddings into logics
in NExtS4 are concerned.
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Let 0 < k < w. We will regard k to be the set {0,...,k — 1} if £ < w and
{0,1,...} if K = w. Denote by T an operator which, given an intuitionistic
frame § = (W, R, P), returns a modal frame 7§ = (kW, kR, kP) such that

(i) (KW, kR) is the direct product of the k-point cluster (k, k*) and (W, R)
(in other words, (kW, kR) is obtained from (W, R) by replacing its every
point with a k-point cluster);

(i) pri = &;

(iii) I x X € kP, for every I C k and X € oP.
For instance, we can take kP to be the Boolean closure of the set

{IxX:ICk X€oaP}

For a Kripke frame § = (W, R,UpW) we can, of course, take kP = 2¢W
and then 7§ = <k:W, kR, 2’“W>.

3.2 Canonical formulas

The language of canonical formulas, axiomatizing all si-logics and charac-
terizing the structure of their frames, can be easily developed following
the scheme of constructing the canonical formulas for K4 outlined in Sec-
tion 1.6 and using the connection between modal and intuitionistic frames
established above. We confine ourselves here only to pointing out the dif-
ferences from the modal case and some interesting peculiarities; details can
be found in [Zakharyaschev 1983, 1989] and [Chagrov and Zakharyaschev
1997].

Actually, there are two important differences. First, in the definition of
subreduction of § = (W, R, P) to & the condition (R3) does not correspond
to the fact that all sets in P are upward closed. We replace it by the
following condition

(R3') VX €Q fTH(X)leP,

where @ = {V-X: X € Qtand P = {W —-X : X € P}. For a
completely defined f satisfying (R1) and (R2) the condition (R3’) is clearly
equivalent to (R3) and so every reduction is also a subreduction. If & is a
finite Kripke frame then (R3’) is equivalent to Vz € V f~!(2){ € P. & is
a subframe of § if kK® is a subframe of k¥ and the identity map on V is a
subreduction of § to &. It is of interest to note that in the intuitionistic case
(cofinal) subreductions are dual to IC(N)-subalgebras of Heyting algebras
which preserve only implication, conjunction (and negation or L) but do
not necessarily preserve disjunction.

Second, we have to change the definition of open domains. Now we say
an antichain a (of at least two points) is an open domain in an intuitionistic

model 9 relative to a formula ¢ if there ia a pair t4 = (['y, A,) such that
'y UA, =Subp, ATy = \/ Ay € Int and
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p— qVor o P =T
Figure 14.

e el iff al=4 for all a € a.

It is worth noting that in any intuitionistic model every antichain a is open
relative to every disjunction free formula ¢. Indeed, let I'y be defined by
condition above and A, = Suby — I'y. It should be clear that v A x € Ty
iff p e’y and x €Ty, Andif v —» x € [y, ¥ € 'y but x € A, then a = ¢
for every a € a and b £ x for some b € a, whence b [£ ¢» — x, which is a
contradiction. It follows that ATy — \/ A, ¢ Int.

EXAMPLE 3.2 Let us try to characterize the class of intuitionistic refuta-
tion frames for the Weak Kreisel-Putnam Formula

wkp = (—-p — —qV —r) = (=p = —q) V (-p = 7).

First we construct its simplest countermodel; it is depicted in Fig. 14, where
by putting a formula to the left (right) of a point we mean that it is true
(not true) at the point. Then we observe that every frame § refuting wkp
is cofinally subreducible to the frame & underlying this countermodel by
the map f defined as follows:

if £ f=—p—= =gV o,z (-p = —g)V(mp = )
ifelE-p—o-qV-r,zl=-pandz =g
ifeE-p—>—qV-r,cE-pandz=r
ifrEporzl=-pA-gA-r

undefined otherwise.

flz) =

w N = O

However, the cofinal subreducibility to & is only a necessary condition for
§ ¥ wkp, witness the frame having the form of the three-dimensional
Boolean cube with the top point deleted. The reason for this is that the
antichain {1,2} is a closed domain in 91: it is impossible to insert a point
a between 0 and {1,2} and extend to it consistently the truth-sets for the
depicted formulas. Indeed, otherwise we would have a | —-p — —q V —r,
a £ —q V —r and so a £ —p, i.e., there must be a point € at such that
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x |= p, but such a point does not exist. In fact, § £ wkp iff there is a
cofinal subreduction of § to & satisfying (CDC) for {{1,2}}.

Now, as in the modal case, with every finite rooted intuitionistic frame
§ = (W,R) and a set © of antichains in it we can associate two formulas
B(F,D, L) and B(F,D), called the canonical and negation free canonical
formulas, respectively, so that & (£ 3(F,9, L) (& = 3(F,9)) iff there is a
(cofinal) subreduction of & to § satisfying (CDC) for ®. For instance, if

ao, - - -, ay are all points in § and ag is its root, then one can take
BED, L= N\ viA /\ oAt = po,
a;Raj 0ED
where
vii = (N pe—pi) = pi
ﬁa]-Rak
Yo = AN CA pe—=p)—= \ o
a; EW —01 —a; Ray a; €0

n

Y = /\( /\ pr — pi) = L.

=0 —a;Rap
B(F,D) is obtained from B(F,D, L) by deleting the conjunct ¢ .

THEOREM 3.3 There is an algorithm which, given an intuitionistic @, re-
turns canonical formulas B(§1,D1,L),...,3(Fn, Dn, L) such that

So the set of intuitionistic canonical formulas is complete for ExtInt. If
@ is negation free then one can use only negation free canonical formulas.
And if ¢ is disjunction free then all D; are empty.

Table 6 and Theorem 3.4 show canonical axiomatizations of the si-logics
in Table 5. Using this “geometrical” representation it is not hard to see, for
instance, that SmL, known as the Smetanich logic, is the greatest consistent
extension of Int different from CI; it is the logic of the two-point rooted
frame. KC, the logic of the Weak Law of the Excluded Middle, is character-
ized by the class of directed frames. It is the greatest si-logic containing the
same negation free formulas as Int (see [Jankov 1968a]). LC, the Dummett
or chain logic, is characterized by the class of linear frames (see [Dum-
mett 1959]). BD,, and BW,, are the minimal logics of depth n and width
n, respectively (see [Hosoi 1967] and [Smorynski 1973]). Finite frames for
BTW,, contain < n top points [Smoryriski 1973] and finite frames for T,
are of branching < n, i.e., no point has more than n immediate successors.
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For = Int + 3(0)
c1 — Int+4(8)
Voo
smL = Int+4( ¥ )+8(5)
KC = Int+/8(o\o/?, 1)
LC = Int+,8(o\o/?)
SL = Int+ G , 1)
A
Ql 02 o 3l 62 o
KP = Int+j( ,{{1,2}},l)+ﬂ(\l/,{{l,?}},l)
gn
o1
BD, = Int+8(30)
n+1
BW, = Int+j( \o/)
n+1
BTW, = Int+ j( \o/, 1)
T, = Int + B \o/)
n+1
B, = Int + g \o/,J_)

Table 6. Canonical axioms of standard superintuitionistic logics
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THEOREM 3.4 (Nishimura 1960, Anderson 1972) Ewvery extension L of Int
by formulas in one variable can be represented either as

L=1Int+nf,, =Int+ 3 ($H,,L)

or as
L = Int + nf2n—1 = Int + ﬂﬁ(ﬁn-i-l:l) + ﬂﬂ(j')n+2’ J—)a

where 95, Hnr1, Hnio are the subframes of the frame in Fig. 13 generated
by the points n, n+1 and n+2, respectively, and B*(F, L) is an abbreviation
for B(F, D%, L), DF the set of all antichains in F.

Jankov [1969] proved in fact that logics of the form Int + 8*(F, L) and
only them are splittings of ExtInt. However, not every si-logic is a union-
splitting of ExtInt which means that this class has no axiomatic basis.

3.8 Modal companions and preservation theorems

The fact that the Gédel translation T' embeds Int into S4 and the relation-
ship between intuitionistic and modal frames established in Section 3.1 can
be used to reduce various problems concerning Int (e.g. proving complete-
ness or FMP) to those for S4 and vice versa. Moreover, it turns out that
each logic in ExtInt is embedded by 7' into some logics in NExtS4, and for
each logic in NExtS4 there is one in ExtInt embeddable in it.

We say a modal logic M € NExtS4 is a modal companion of a si-logic L
if L is embedded in M by T, i.e., if for every intuitionistic formula ¢,

o € Liff T(¢) € M.

If M is a modal companion of L then L is called the si-fragment of M
and denoted by pM. The reason for denoting the operator “modal logic
> its si-fragment” by the same symbol we used for the skeleton operator is
explained by the following

THEOREM 3.5 For every M € NExtS4, pM = {¢ : T(p) € M}. More-
over, if M is characterized by a class C of modal frames then pM is char-
acterized by the class pC = {pF : § € C} of intuitionistic frames.

Proof It suffices to show that {¢ : T'(¢) € M} = LogpC. Suppose that
T(p) € M. Then § E T'(¢) and so, by the Skeleton Lemma, pF |= ¢ for
every § € C, i.e., ¢ € LogpC. Conversely, if pF | ¢ for all § € C then, by
the same lemma, T'(p) is valid in all frames in C and so T'(p) € M. a

Thus, p maps NExtS4 into ExtInt. The following simple observation
shows that actually p is a surjection. Given a logic L € ExtInt, we put

TL=84®{T(p): ¢ € L}.
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THEOREM 3.6 (Dummett and Lemmon 1959) For every si-logic L, 7L is
a modal companion of L.

Proof Clearly, L C pTL. To prove the converse inclusion, suppose ¢ & L,
i.e., there is a frame § for L refuting ¢. Since § = pogF, by the Skeleton
Lemma we have oF |= 7L and oF = T'(¢). Therefore, T(p) ¢ 7L and so

¢ prL. a

Now we use the language of canonical formulas to obtain a general char-
acterization of all modal companions of a given si-logic L. Our presentation
follows [Zakharyaschev 1989, 1991]. Notice first that for every modal frame
® and every intuitionistic canonical formula 3(F,9, 1),  E a(F,9, 1) iff
p® = [(F,D,L) and so S4 d T(B(F,9D,L1)) =S4 ® a(F, D, L). The same
concern, of course, the negation free canonical formulas.

THEOREM 3.7 A logic M € NExtS4 is a modal companion of a si-logic
L=1Int+ {3(Fi,D;,L): i € I} iff M can be represented in the form

M=549 {a(gi)ghl) S I} @ {Oé(&j,@j,J_) 1j € ']};
where every frame §;, for j € J, contains a proper cluster.

Proof (<) We must show that for every intuitionistic formula ¢, ¢ € L
iff T(¢) € M. Suppose that ¢ ¢ L and § = (W, R, P) is a frame separating
¢ from L. We prove that o§ separates T'(¢) from M. As was observed
above, 0§ £ T'(¢) and oF = a(Fi,D;, L) for any i € I. So it remains to
show that oF = a(F,,9;, L) for every j € J.

Suppose otherwise. Then, for some j € J, we have a subreduction f of
o8 to §j. Let a; and ay be distinct points belonging to the same proper
cluster in §;. By the definition of subreduction, f~'(a;) C f~'(az)| and
f~Y(a2) C f~(a1)}, and so there is an infinite chain z; Ry; RroRy>R. .. in
oF such that {z1,22,...} € f~(a1) and {y1,¥2,-..} € f~'(az). And since
R is a partial order, all the points z; and y; are distinct.

Since f!(ay) € o P, there are X;,Y; € P such that

fYa) = (X UuY)N...N (=X, UY,).

And since f~(a;)Nf~t(az) = 0, for every point y; there is some number n;
such that y; € X,, and y; € Y,,. But then, for some distinct [ and m, the
numbers n; and n,, must coincide, and so if, say, y; Ry, then x,, € Y, and
Tm € Xm (fOI‘ lemmRym; Xi=X; T: Y;=Y; T) Therefore, Tm Q/ fﬁl(al)a
which is a contradiction.

The rest of the proof presents no difficulties. o
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This proof does not touch upon the cofinality condition. So along with
canonical formulas in Theorem 3.7 we can use negation free canonical for-
mulas. Thus, we have:

pS4 = pS4.1 = pDum = pGrz = Int,

pS4.2 = p(S4.2 ® Grz) = KC,
pS4.3 = p(S4.3 ® Grz) = LC,

pS5 = p(S5 & Grz) = CL

COROLLARY 3.8 The set of modal companions of every consistent si-logic
L forms the interval

p Y (L) =[rL, 7L & a(©9)] = {M € NExtS4 : 7L C M C 7L ® Grz}
and contains an infinite descending chain of logics.

Proof Notice first that a(F, D, L) and a(F, D) are in Grz iff § contains

a proper cluster. So p~'(L) C [rL, 7L ® a(©2)]. On the other hand, the
si-fragments of all logics in the interval are the same, namely L. Therefore,
p Y(L) = [rL,7L & a(9)]. Now, if L is consistent then $(o) ¢ L and so

we have
TLC...CTLda(C,) C...CTL®a(C) C 7LD a(¢) = For,
where €; is the non-degenerate cluster with ¢ points. a

This result is due to Maksimova and Rybakov [1974], Blok [1976] and
Esakia [1979D].

Thus, all modal companions of every si-logic L are contained between the
least companion 7L and the greatest one, viz., 7L & «((©9)), which will be
denoted by o L. Using Theorems 3.7 and 1.44, we obtain

COROLLARY 3.9 There is an algorithm which, given a modal formula ¢,
returns an intuitionistic formula ¢ such that p(S4 ® ¢) = Int + 1.

The following theorem, which is also a consequence of Theorem 3.7, de-
scribes lattice-theoretic properties of the maps p, 7 and o. Items (i), (ii)
and (iv) in it were first proved by Maksimova and Rybakov [1974], and (iii)
is due to Blok [1976] and Esakia [1979b] and known as the Blok-Esakia
Theorem.
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THEOREM 3.10 (i) The map p is a homomorphism of the lattice NExtS4
onto the lattice ExtInt.

(ii) The map T is an isomorphism of ExtInt into NExtS4.

(iii) The map o is an isomorphism of ExtInt onto NExtGrz.

(iv) All these maps preserve infinite sums and intersections of logics.

Now we give frame-theoretic characterizations of the operators = and o .
Note first that the following evident relations between frames for si-logics
and their modal companions hold:

SEpMiffof =M, FELiffof oL,
pSELIF =70, $ELiff 3= 7L

THEOREM 3.11 (Maksimova and Rybakov 1974) A si-logic L is charac-
terized by a class C of intuitionistic frames iff oL is characterized by the

class 0C = {oF : § €C}.

Proof (=) It suffices to show that any canonical formula «(F,®, L) € oL
is refuted by some frame in oC. Since § is partially ordered, 8(F,D, L) ¢ L,
i.e., there is § € C refuting 3(3,D,L) and so 6§ £ a(F,D,L). («)i
straightforward.

0=

To characterize T we require

LEMMA 3.12 For any canonical formula a(§,D, L) built on a quasi-ordered
frame §, a(F,D, L) € S4 @ a(pF, pD, L), where pD = {pd : 0 € D} and
pd ={C(z) : z € 0}.

Proof Let & be a quasi-ordered frame refuting a(F, D, L). Then there is
a cofinal subreduction f of & to § satisfying (CDC) for ©. The map h from
§ onto pF defined by h(z) = C(z), for every z in §, is clearly a reduction
of § to p§. So the composition hf is a cofinal subreduction of & to pg§, and
it is easy to verify that it satisfies (CDC) for p®. a

THEOREM 3.13 A si-logic L is characterized by a class C of frames iff TL
is characterized by the class Ug.j., TkC, where 71,C = {T4F : T €C}.

Proof (=) As was noted above, if § is a frame for L then 7§ is a frame for
7L. So suppose that a formula «a(F,®, L), built on a quasi-ordered frame
§ = (W, R), does not belong to 7L and show that it is refuted by some frame
in Jycpep TC. By Lemma 3.12, a(p3, pD, L) ¢ 7L and so B(p3, pD, L) ¢
L. Hence there is a frame & = (V, S, Q) in C which refutes (pg, p®,L).
But then o® |= 7L and 0® [~ a(pF,pD,L). Let f be a subreduction
of 06 to pF satisfying (CDC) for p® and let k = max{|C(z)| : z € W}.
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Define a partial map h from 7, ® = (kV, kS, kQ) onto § as follows: if z € V|

yo € W, f(z) = C(yo) and C(yo) = {yo,---,yn} then we put h((i,z)) = y;,
for i =0,...,n. By the definition of 7, for any i € {0,...,n} we have

h=Hyi) = {(,2) + @ € f7(Clyo)} = {i} x f7H(Clyo)) € kQ.

Now, one can readily prove that h is a cofinal subreduction of 7;,® to §
satisfying (CDC) for ©. So 716 £ a(F,D, L). (<) is obvious. a

It is worth noting that this proof will not change if we put in it £ = w.

COROLLARY 3.14 A logic L € ExtInt is characterized by a class C of
frames iff TL is characterized by the class T,C.

The following theorem provides a deductive characterization of the maps
T and o.

THEOREM 3.15 For every si-logic L and every modal canonical formula
a(F,D, L) built on a quasi-ordered frame §,

(i) a(3,D,L1) € TL iff B(p3,pD, L) € L;

(i) a(F,D, L) € oL iff either § is partially ordered and 3(F,D, L) € L
or § contains a proper cluster.

Proof (i) The implication (=) was actually established in the proof of
Theorem 3.13, and the converse one follows from Lemma 3.12.

(ii) Suppose a(F,D, L) € o L. Then either § is partially ordered, and so
B(%,D,L1) € L, or § contains a proper cluster. The converse implication
follows from (i) and the fact that a(F,D, L) € Grz for every frame § with
a proper cluster. ]

The results obtained in this section not only establish some structural
correspondences between logics in ExtInt and NExtS4 and their frames,
but may be also used for transferring various properties of modal logics
to their si-fragments and back. A few results of that sort are collected in
Table 7; we shall cite them as the Preservation Theorem. The preservation
of decidability follows from the definition of p and Theorem 3.15. That
p preserves Kripke completeness, FMP and tabularity is a consequence of
Theorem 3.5. The map 7 preserves Kripke completeness and FMP, since
we can define 7y in Theorem 3.13 so that T (W, R) = (kW, kR); however,
T does not in general preserve the tabularity, because 7Cl = S5 is not
tabular. The preservation of FMP and tabularity under o follows from
Theorem 3.11. On the other hand, Shehtman [1980] proved that o does not
preserve Kripke completeness (since 7 preserves it and Grz is complete,
this means in particular that Kripke completeness is not preserved under
sums of logics in NExtS4). Some other preservation results in Table 7 will
be discussed later. For references see [Chagrov and Zakharyaschev 1992,
1997].
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Property of logics Preserved under
p T o
Decidability Yes Yes Yes
Kripke completeness Yes Yes No
Strong completeness Yes Yes No
Finite model property Yes Yes Yes
Tabularity Yes No Yes
Pretabularity Yes No Yes
D-persistence Yes Yes No
Local tabularity Yes No No
Disjunction property Yes Yes Yes
Halldén completeness Yes No No
Interpolation property Yes No No
Elementarity Yes Yes No

Independent axiomatizability No Yes Yes

Table 7. Preservation Theorem

3.4 Completeness

In this section we briefly discuss the most important results concerning
completeness of si-logics with respect to various classes of Kripke frames.

Kripke completeness That not all si-logics are complete with respect
to Kripke frames was discovered by Shehtman [1977], who found a way
to adjust Fine’s [1974b] idea to the intuitionistic case (which was not so
easy because intuitionistic formulas do not “feel” infinite ascending chains
essential in Fine’s construction; see Section 20 of Basic Modal Logic). Note
however that Kuznetsov’s [1975] question whether all si-logics are complete
with respect to the topological semantics (see Intuitionistic Logic) is still
open.

As to general positive results, notice first that the Preservation Theorem
yields the following translation of Fine’s [1974c] Theorem on finite width
logics (si-logics of finite width were studied by Sobolev [1977a]).

THEOREM 3.16 Ewvery si-logic of width n (i.e., a logic in ExtBW,,; see
Table 5) is characterized by a class of Noetherian Kripke frames of width
<n.

The translation of Sahlqvist’s Theorem gives nothing interesting for si-
logics. A sort of intuitionistic analog of this theorem has been recently
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proved by Ghilardi and Meloni [1997]. Here is a somewhat simplified variant
of their result in which p, g, 7, 5 denote tuples of propositional variables
and 1, ¥ tuples of formulas of the same length as 7 and 3, respectively.

THEOREM 3.17 (Ghilardi and Meloni 1997) Suppose ©(p,q,T,3) is an in-
tuitionistic formula in which the variables T occur positively and the vari-
ables s occur negatively, and which does not contain any —, except for
negations and double negations of atoms, in the premise of a subformula of
the form ' — ¢". Assume also that ¢(p,q) and X(p,q) are formulas such
that P occur positively in ¢ and negatively in X, while § occur negatively in
1 and positively in X. Then the logic

Int + (5, 7,4 (P, 7), X(P, 7))

18 canonical.

The preservation of D-persistence under p (see [Zakharyaschev 1996])
and the fact (discovered by Chagrova [1990]) that 7L is characterized by an
elementary class of Kripke frames whenever L is determined by such a class
provide us with an intuitionistic variant of the Fine—van Benthem Theorem.

THEOREM 3.18 If a si-logic is characterized by an elementary class of
Kripke frames then it is D-persistent.

As in the modal case, it is unknown whether the converse of this theo-
rem holds. All known non-elementary si-logics, for instance the Scott logic
SL and the logics T, of finite n-ary trees (see [Rodenburg 1986]) are not
canonical and even strongly complete either, as was shown by Shimura
[1995]. (Actually he proved that no logic in the intervals [SL, SL + bds] and
[Int, T5], save of course Int, is strongly complete.)

As far as we know, there are no examples of si-logics separating canonicity,
D-persistence and strong completeness. (Ghilardi, Meloni and Miglioli have
recently showed that SL in any language with finitely many variables is
canonical). Theorem 1.40 which holds in the intuitionistic case as well gives
an algebraic counterpart of strong Kripke completeness.

The finite model property The first example of an infinitely axiomati-
zable si-logic without FMP was constructed by Jankov [1968b]—that was in
fact the starting point of a long series of “negative” results in modal logic.
A finitely axiomatizable logic without FMP appeared two years later in
[Kuznetsov and Gerchiu 1970]. The reader can get some impression about
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this and other examples of that sort by proving (it is really not hard) that

12? IZT
A\ A\

p=p( © )¢L=Int+bws+p( © ,{{1,2}})

but no finite frame can separate ¢ from L. (Notice by the way that 7L
is axiomatizable by Sahlqvist formulas; see [Chagrov and Zakharyaschev
1995b].)

FMP of a good many si-logics was proved using various forms of filtration;
see e.g. [Gabbay 1970], [Ono 1972], [Smoryniski 1973], [Ferrari and Miglioli
1993]. As an illustration of a rather sophisticated selective filtration we
present here the following

THEOREM 3.19 (Gabbay and de Jongh 1974) The logic T, (see Table 5)
is characterized by the class of finite n-ary trees.

Proof First we prove that T,, is characterized by the class of finite frames
of branching < n. Suppose ¢ ¢ T, and M = (F,V) is a model for T,
refuting . Without loss of generality we may assume that § = (W, R) is a
tree. Let ¥ = Subp and I, = {¢ € ¥ : z |= ¢}, for every point z in §.

Given z in §, put rg(z) = {[y] : y € 21} and say that z is of minimal range
if rg(x) = rg(y) for every y € [z] N zt. Since there are only finitely many
distinct Y-equivalence classes in 9, every y € [z] sees a point z € [z] of
minimal range. Now we extract from 9t a finite refutation frame & = (V, S)
for ¢ of branching < n. To begin with, we select some point z of minimal
range at which ¢ is refuted and put Vp = {z}.

Suppose V}, has already been defined. If [rg(z)| = 1 for every « € V%, then
we put & = (V,S), where V = Uf:o Vi and S is the restriction of R to V.
Otherwise, for each x € V}, with |rg(z)| > 1 and each [y] € rg(z) different
from [#] and such that ', C T, for no [z] € rg(z) — {[z]}, we select a point
u € [y] Nt of minimal range. Let U, be the set of all selected points for z
and Vy41 = U, U,. It should be clear that I', C T', (and rg(z) D rg(u)), for
every u € U,, and so the inductive process must terminate. Consequently
& = .

It remains to establish that & = T, i.e., & is of branching < n. Suppose
otherwise. Then there is a point x in & with m > n+1 immediate successors
Zg,---,Tm, which are evidently in U, because § is a tree. We are going to
construct a substitution instance of T,,’s axiom bb,, which is refuted at =
in 9.

Denote by d; the conjunction of the formulas in I';,. Since all of them
are true at x; in 9, we have z; |= ¢;; and since I'; C T'; for no distinct ¢ and
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J, wehave x; £ x; if i #£j. Put x; =6;, for 0<i<n, xn =0, V...V0n
and consider the truth-value of the formula ¢ = bb,{x0/po,- .-, Xn/Pn} at
z in M.

Since zRz; for every i = 0,...,m, we have = [~ \/|_, x;- Suppose that
z Nl — \/i;éj Xi) = \/i;éj xj)- Theny E xi — \/i;éj x; and
y \/i# Xj, for some y € z1 and some i € {0,...,n}, and hence y }~ x;.
Since z; = x; and z; &V, ; X, y sees no point in [z;] and so y #x z (for
otherwise  would not be of minimal range). Therefore, I',; C I, for some
j€{0,...,m}, and then y |= x; if j < n and y = x5, if j > n, which is a
contradiction.

It follows that = = Ai_o((xi = Vi X4) = Vg X4), from which z f ¢,
contrary to 91 being a model for bb,,. It remains to notice that every finite
frame of branching < n is a reduct of a finite n-ary tree, which clearly
validates T,,. ]

Another way of obtaining general results on FMP of si-logics is to trans-
late the corresponding results in modal logic with the help of the Preserva-
tion Theorem.

THEOREM 3.20 Ewvery si-logic of finite depth (i.e., every logic in ExtBD,,,
for n < w) is locally tabular.

Note, however, that unlike NExtK4, the converse does not hold: the
Dummett logic LC, characterized by the class of finite chains (or by the
infinite ascending chain), is locally tabular. As we saw in Section 1.7, every
non-locally tabular in NExtS4 logic is contained in Grz.3, the only pre-
locally tabular logic in NExtS4. But in ExtInt this way of determining
local tabularity does not work:

THEOREM 3.21 (Mardaev 1984) There is a continuum of pre-locally tab-
ular logics in ExtInt.

Besides, it is not clear whether every locally tabular logic in ExtInt (or
NExtK4) is contained in a pre-locally tabular one.

An intuitionistic formula is said to be essentially negative if every occur-
rence of a variable in it is in the scope of some —. If ¢ is essentially negative
then T'(p) is a OC-formula, which yields

THEOREM 3.22 (McKay 1971, Rybakov 1978) If a si-logic L is decidable
(or has FMP) and ¢ is an essentially negative formula then L+ is decidable
(has FMP).

Originally this result was proved with the help of Glivenko’s Theorem
(see Section 7 in Intuitionistic Logic). Say that an occurrence of a variable
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in a formula is essential if it is not in the scope of any —. A formula
@ is mild if every two essential occurrences of the same variable in ¢ are
either both positive or both negative. Kuznetsov [1972] claimed (we have
not seen the proof) that all si-logics whose extra axioms do not contain
negative occurrences of essential variables have FMP. And Wroriski [1989]
announced that if L is a decidable si-logic and ¢ a mild formula then L + ¢
is also decidable.

Subframe and cofinal subframe si-logics—that is logics axiomatizable by
canonical formulas of the form §(§) and 3(§, L), respectively—can be char-
acterized both syntactically and semantically (see [Zakharyaschev 1996]).

THEOREM 3.23 The following conditions are equivalent for every si-logic
L:

(i) L is a (cofinal) subframe logic;

(ii) L is axiomatizable by implicative (respectively, disjunction free) for-
mulas;

(iii) L is characterized by a class of finite frames closed under the forma-
tion of (cofinal) subframes.

That all si-logics with disjunction free axioms have FMP was first proved
by McKay [1968] with the help of Diego’s [1966] Theorem according to which
there are only finitely many pairwise non-equivalent in Int disjunction free
formulas in variables py, ..., py (see also [Urquhart 1974]).

Since frames for Int contain no clusters, Theorem 1.58 and its analog
for cofinal subframe logics reduce in the intuitionistic case to the following
result which is due to Chagrova [1986], Rodenburg [1986], Shimura [1993]
and Zakharyaschev [1996].

THEOREM 3.24 All si-logics with disjunction free axioms are elementary
(definable by Y3-sentences) and D-persistent.

Theorem 1.68 is translated into the intuitionistic case simply by replacing
K4 with Int, & with + and « with 8. As a consequence we obtain, for
instance, that Ono’s [1972] B,, and all other logics whose canonical axioms
are built on trees have FMP. Moreover, we also have

THEOREM 3.25 (Sobolev 1977b, Nishimura 1960) All si-logics with extra
azioms in one variable have FMP and are decidable.

In fact Sobolev [1977b] proved a more general (but rather complicated)
syntactical sufficient condition of FMP and constructed a formula in two
variables axiomatizing a si-logic without FMP (Shehtman’s [1977] incom-
plete si-logic has also axioms in two variables).



ADVANCED MODAL LOGIC 129

Tabularity By the Blok—Esakia and Preservation Theorems, the situation
with tabular logics in ExtInt is the same as in NExtGrz. In particular,
L € ExtInt is tabular iff BD,, + BW,, C L for some n < w iff L is not a
sublogic of one of the three pretabular logics in ExtInt, namely LC, BD,
and KC + bds. (The pretabular si-logics were described by Maksimova
[1972].) The tabularity problem is decidable in ExtInt.

3.5 Disjunction property

One of the aims of studying extensions of Int, which may be of interest
for applications in computer science, is to describe the class of constructive
si-logics. At the propositional level a logic L € ExtInt is regarded to be
constructive if it has the disjunction property (DP, for short) which means
that for all formulas ¢ and v,

wV € L implies p € L or ¢ € L.

That intuitionistic logic itself is constructive in this sense was proved in a
syntactic way by Gentzen [1934-1935]. However, Lukasiewicz (1952) con-
jectured that no proper consistent extension of Int has DP.

A similar property was introduced for modal logics (see e.g. [Lemmon
and Scott 1977]): L € NExtK has the (modal) disjunction property if, for
every n > 1 and all formulas ¢1, ..., ¢n,

Op1 V...V Op, € Limplies p; € L, for some i € {1,...,n}.

The following theorem (in a somewhat different form it was proved in
[Hughes and Cresswell 1984] and [Maksimova 1986]) provides a semantic
criterion of DP.

THEOREM 3.26 Suppose a modal or si-logic L is characterized by a class C
of descriptive rooted frames closed under the formation of rooted generated
subframes. Then L has DP iff, for every n > 1 and all §1,...,3n € C with
T00ts X1, ..., Ty, there is a frame § for L with root x such that the disjoint
union F1 + ...+ Fn is a generated subframe of § with {x1,...,x,} C zt.

Proof We consider only the modal case. (=) Let §1, = (Wy, Rr, Pr) be
a universal frame for L, big enough to contain §; + ...+, as its generated
subframe. Assuming that § is associated with a suitable canonical model
for L, we show that there is a point z in § such that 1t = Wp. The set

A'={-Op:3y e Wy y ¢}

is L-consistent (for otherwise Oy V...V Oy, € L for some ¢1,...,0, € L).
Let A be a maximal L-consistent extension of A’ and z the point in §j,
where A is true. Then zRpy, for every y € Wr,.
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(<) Suppose otherwise. Then there are formulas ¢1,...,p, ¢ L such
that Opy V...V Oy, € L. Take frames §1,...,F, € C refuting ¢1,..., 0,
at their roots, respectively, and let § be a rooted frame for L containing
$1+...+3, as a generated subframe and such that its root x sees the roots
of F1,...,8n. Then all the formulas Oy, ...,dp, are refuted at x and so
Op; V...V Oy, € L, which is a contradiction. a

It should be clear that if we use only the sufficient condition of Theo-
rem 3.26, the requirement that frames in C are descriptive is redundant.
Furthermore, it is easy to see that for L € NExtK4 we may assume n < 2.
And clearly a logic L € NExtS4 has DP iff, for all ¢ and ¢, Op vV Oy € L
implies Op € L or Oy € L.

As a direct consequence of the proof above we obtain

COROLLARY 3.27 A modal or si-logic L has DP iff the canonical frame
S = (WL, RyL) contains a point = such that zt = Wi,.

Using the semantic criterion above it is not hard to show that DP is
preserved under p, 7 and o. It is also a good tool for proving and disproving
DP of logics with transparent semantics.

EXAMPLE 3.28 (i) Let §1,-..,3, be serial rooted Kripke frames. Then
the frame obtained by adding a root to §1 +. ..+ 3 is also serial. Therefore,
D has DP. In the same way one can show that K, K4, T, S4, Grz, GL
and many other modal logics have DP.

(ii) Since no rooted symmetrical frame can contain a proper generated
subframe, no consistent logic in NExtKB has DP.

The first proper extensions of Int with DP were constructed by Kreisel
and Putnam [1957]: these were KP (now called the Kreisel-Putnam logic
and SL (known as the Scott logic). We present here Gabbay’s [1970] proof
that KP has DP.

THEOREM 3.29 (Kreisel and Putnam 1957) KP has DP.

Proof Using filtration one can show that KP is characterized by the class
of finite rooted frames § = (W, R) satisfying the condition

Vz,y,z (xRy AN xRz A ~yRz A =zRy — Ju (xRu A uRy ANuRz A
Vo (uRv = Jw (vRw A (yRw V zRw))))). (15)

If § is such a frame then for each non-empty X C W<=! the generated
subframe of § based on the set W — (W<! — X)| is rooted; we denote its
root by r(X).
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Let §1 = (W1, Ry) and &y = (W2, R2) be finite rooted frames satisfying
(15). We construct from them a frame § = (W, R) by taking

W=W,UW,UU,
where U = {X; U Xy : X; C WS Xy CWSY, X1, Xy # 0}, and

zRy iff (z,ye WiAzRy)V(z,ye UNzDy)V
(1‘ =X1UXo,eUAye Wz/\T‘(Xz)Rzy)

It follows from the given definition that §; + §» is a generated subframe of
§, W1 U Ws is a cover for § and ngl U W;l is its root. So our theorem
will be proved if we show that (15) holds.

Suppose x,y,z € W satisfy the premise of (15). Since (15) holds for F;
and Fo, we can assume that ¢ = X; U X, € U. Let Y7 UY; and Z; U Z5 be
the sets of final points in y1 and zf, respectively, with Y;, Z; C W;. By the
definition of R, we have Y;, Z; C X;. Consider u = (Y1 U Z1) U (Y2 U Z5).
Clearly, zRu, uRy and uRz. Suppose now that v € uf. Let w be any final
point in vf. Then v € (Y7 U Z;) U (Y2 U Z2) and so either yRw or zRuw.

a

Other examples of constructive si-logics were constructed by Ono [1972]
and Gabbay and de Jongh [1974], namely, B,, and T,. Anderson [1972]
proved that among the consistent si-logics with extra axioms in one variable
only those of the form Int + nf,, ., for n > 5, have DP (for n = 6 the
proof was found by Wroriski [1974]; see also [Sasaki 1992]). Finally, Wroriski
[1973] showed that there is a continuum of si-logics with DP.

The additional axioms of logics in all these examples contained occur-
rences of V; on the other hand, known examples of si-logics with disjunction
free extra axioms, say LC, KC, Cl, BW, or BD,,, were not constructive.
This observation led Hosoi and Ono [1973] to the conjecture that the dis-
junction free fragment of every consistent si-logic with DP coincides with
that of Int. We present a proof of this conjecture following [Zakharyaschev
1987].

First we describe the cofinal subframe logics in NExtS4 with DP, as-
suming that every such logic L is represented by its independent canonical
axiomatization

L=8S4&{a(3i L) i€} (16)

All frames in the rest of this section are assumed to be quasi-ordered.

Say that a finite rooted frame § with > 2 points is simple if its root cluster
and at least one of the final clusters are simple. Suppose § = (W, R) is a
simple frame, ag,ay,...,@mn,@mi1,---,a0, are all its points, with ag being
the root, C'(a1),...,C(an) all the distinct immediate cluster-successors of
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ap, and a,, a final point with simple C(a,,). For every k = 1,...,n, define a
formula v, by taking

n
b= N\ i N N\eineL =i
a; Raj ,i#0 i=1

where ¢;;, ¢; were defined in Section 3.2 and ¢/, = O(A, Op; — 1).
Now we associate with § the formula v(§) = Opg V O¢ if m = 1, and the
formula v(F) = Oty V...V Oy, if m > 1.

LEMMA 3.30 For every simple frame §, v(§) € S4 & a(F, L).

Proof It is enough to show that & [~ +(F) implies & = a(F, L), for any
finite &. So suppose v(5§) is refuted in a finite frame ® under some valuation.
Define a partial map f from & onto § by taking

ap if ¢ = v(F)
flx) =12 a ifelEy,1<i<n
undefined otherwise.

One can readily check that f is a subreduction of & to §. However it is not
necessarily cofinal. So we extend f by putting f(z) = a,, for every z of
depth 1 in & such that f(z]) = {a¢}. Clearly, the improved map is still a

subreduction of & to §, and ¢'| ensures its cofinality. a

Using the semantical properties of the canonical formulas it is a matter
of routine to prove the following

LEMMA 3.31 Supposei € {1,...,m} and & is the subframe of § generated
by a;. Then a(®, L) € S4® 1);.

We are in a position now to prove a criterion of DP for the cofinal sub-
frame logics in NExtS4.

THEOREM 3.32 A consistent cofinal subframe logic L € NExtS4 has the
disjunction property iff no frame §; in its independent aziomatization (16)
is simple, for i € I.

Proof (=) Suppose, on the contrary, that §; is simple, for some i € I.
Since the axiomatization (16) is independent, every proper generated sub-
frame of §; validates L. By Lemma 3.30, v(§;) € L and so either py € L or
¥; € L. However, both alternatives are impossible: the former means that
L is inconsistent, while the latter, by Lemma 3.31, implies a(®, 1) € L,
where & is the subframe of §; generated by an immediate successor of §;’s
root.
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Figure 15.

(<) Given two finite rooted frames &; and &, for L, we construct the
frame § as shown in Fig. 15 and prove that § = L. Suppose otherwise, i.e.,
there exists a cofinal subreduction f of § to §;, for some i € I. Let z; be the
root of §;. Since &; and &, are not cofinally subreducible to §; and since
L is consistent, f~!(z;) = {z}. By the cofinality condition, it follows in
particular that y € domf. But then §; is simple, which is a contradiction.
Thus, by Theorem 3.26, L has DP. o

Note that in fact the proof of (=) shows that if L € NExtS4, § is
a simple frame, a(F, L) € L and a(®, L) ¢ L for any proper generated
subframe & of § then L does not have DP. Transferring this observation to
the intuitionistic case, we obtain

THEOREM 3.33 (Minari 1986, Zakharyaschev 1987) If a si-logic is consis-
tent and has DP then the disjunction free fragments of L and Int are the
same.

Sufficient conditions of DP in terms of canonical formulas can be found
in [Chagrov and Zakharyaschev 1993, 1997].

Since classical logic is not constructive, it is of interest to find maximal
consistent si-logics with DP. That they exist follows from Zorn’s Lemma.
Here is a concrete example of such a logic.

Trying to formalize the proof interpretation of intuitionistic logic, Med-
vedev (1962) proposed to treat intuitionistic formulas as finite problems.
Formally, a finite problem is a pair (X,Y) of finite sets such that ¥ C X
and X # (; elements in X are called possible solutions and elements in YV
solutions to the problem. The operations on finite problems, corresponding
to the logical connectives, are defined as follows:

(X1, Y1) A (X, Ya) = (X x Xo, Y1 x V3),

(X1,Y1) V (X2, Ys) = (X5 U X», Y1 UYs),
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Figure 16.

(X1,Y1) = (X2,¥8) = (X9, {F € X3 f(V1) S Va}).

1 =(X,0).

Here X UY = (X x {1})U(Y x {2}) and XY is the set of all functions from
X into Y. Note that in the definition of L the set X is fixed, but arbitrary;
for definiteness one can take X = {(}.

Now we can interpret formulas by finite problems. Namely, given a for-
mula ¢, we replace its variables by arbitrary finite problems and perform
the operations corresponding to the connectives in . If the result is a
problem with a non-empty set of solutions no matter what finite problems
are substituted for the variables in ¢, then ¢ is called finitely valid. One
can show that the set of all finitely valid formulas is a si-logic; it is called
Medvedev’s logic and denoted by ML.

In fact, ML can be defined semantically. Medvedev (1966) showed that
ML coincides with the set of formulas that are valid in all frames B,, having
the form of the n-ary Boolean cubes with the topmost point deleted; for
n =1,2,3,4, the Medvedev frames are shown in Fig. 16. Since 9B, + B, is
a generated subframe of ®B,,,,, ML has DP. Moreover, Levin [1969] proved
that it has no proper consistent extension with DP. The following proof of
this result is due to Maksimova [1986].

THEOREM 3.34 (Levin 1969) ML is a mazimal si-logic with DP.

Proof Suppose, on the contrary, that there exists a proper consistent ex-
tension L of ML having DP. Then we have a formula ¢ € L — ML. We
show first that there is an essentially negative substitution instance ¢* of
¢ such that ¢* ¢ ML. Since ¢(p1,...,pn) € ML, there is a Medvedev
frame B, refuting ¢ under some valuation . With every point z in B,
we associate a new variable ¢, and extend U to these variables by taking
U (q,) to be the set of final points in 9B, that are not accessible from x. By
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the construction of %B,,, we have y | —¢, iff y € 21, from which

B\ ) =B).

z€B(p:)

Let p* = @(\/zem(m) /T \/zE‘B(pn) —q,). It follows that U(¢*) = V(p)
and so ¢* ¢ ML.

Thus, we may assume that ¢ is an essentially negative formula. Since
KP C ML, ML contains the formulas

nd,=(-p—=>-qV...Vog) = (-p—= @) V...V (=p = —q)
which, as is easy to see, belong to KP. Let us consider the logic
ND =1Int + {nd; : k> 1}.

Using the fact that the outermost — in ndy, can be replaced with <+ and that
(=p = —q) < =(—p A q) € Int, one can readily show that every essentially
negative formula is equivalent in ND to the conjunction of formulas of the
form —x1V...V-x;. So L—ML contains a formula of the form —x1 V.. .V-y;.
Since L has DP, —x; € L for some i. But then, by Glivenko’s Theorem,
—x; € ML, which is a contradiction. o

Remark. ML is not finitely axiomatizable, as was shown by Maksimova
et al. [1979]. Nobody knows whether it is decidable.

It turns out, however, that ML is not the unique maximal logic with DP
in ExtInt. Kirk [1982] noted that there is no greatest consistent si-logic
with DP. Maksimova [1984] showed that there are infinitely many maximal
constructive si-logics, and Chagrov [1992a] proved that in fact there are
a continuum of them; see also Ferrari and Miglioli [1993, 1995a, 1995b)].
Galanter [1990] claims that each si-logic characterized by the class of frames
of the form

{W:WwC{l,...,n}, W#£0, W[ €N}, 2),

where n = 1,2,... and N is some fixed infinite set of natural numbers, is a
maximal si-logic with DP.

3.6 Intuitionistic Modal Logics

All modal logics we have dealt with so far were constructed on the classical
non-modal basis. It can be replaced by logics of other types. For instance,
one can consider modal logics based on relevant logic (see e.g. [Fuhrmann
1989]) or many-valued logics (see e.g. [Segerberg 1967], [Morikawa 1989],
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[Ostermann 1988]), and many others. In this section we briefly discuss
modal logics with the intuitionistic basis.

Unlike the classical case, the intuitionistic O and < are not supposed to
be dual, which provides more possibilities for defining intuitionistic modal
logics. For a non-empty set M of modal operators, let Ly be the stan-
dard propositional language augmented by the connectives in M. By an
intuitionistic modal logic in the language Ly we understand any subset of
Ly containing Int and closed under modus ponens, substitution and the
regularity rule ¢ — ¥/ O ¢ = O, for every O € M.

There are three ways of defining intuitionistic analogues of (classical)
normal modal logics. First, one can take the family of logics extending the
basic system IntKp in the language Lo which is axiomatized by adding to
Int the standard axioms of K

O(pAq)«< OpAOgand OT.

An example of a logic in this family is Kuznetsov’s [1985] intuitionistic
provability logic I# (Kuznetsov used A instead of O), the intuitionistic
analog of the provability logic GL. It can be obtained by adding to IntKn
(and even to Int) the axioms

p—Op, (Op—p) = p, ((p = q) = p) — (Og = p).

A model theory for logics in NExtIntKo was developed by Ono [1977],
Bozi¢ and Dosen [1984], Dogen [1985a], Sotirov [1984] and Wolter and Za-
kharyaschev [1997a,b]; we discuss it below. Font [1984, 1986] considered
these logics from the algebraic point of view, and Luppi [1996] investigated
their interpolation property by proving, in particular, that the superamal-
gamability of the corresponding varieties of algebras is equivalent to inter-
polation.

A possibility operator < in logics of this sort can be defined in the classical
way by taking & = —O-p. Note, however, that in general this & does not
distribute over disjunction and that the connection via negation between O
and < is too strong from the intuitionistic standpoint (actually, the situation
here is similar to that in intuitionistic predicate logic where 3 and V are not
dual.)

Another family of “normal” intuitionistic modal logics can be defined in
the language Lo by taking as the basic system the smallest logic in Lo to
contain the axioms

O(pVg) « OpV Ogand =OL;

it will be denoted by IntK.. Logics in NExtIntK. were studied by Bozi¢
and Dosen [1984], Dosen [1985a], Sotirov [1984] and Wolter [1997c].
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Finally, we can define intuitionistic modal logics with independent O and
&. These are extensions of IntK e, the smallest logic in the language Loo
containing both IntKg and IntK. Fischer Servi [1980, 1984] constructed a
logic in NExtIntK e by imposing a weak connection between the necessity
and possibility operators:

FS =IntKoo ® O(p— q) = (Op — <q) @ (Op — Og) — O(p — q).

A remarkable feature of F'S is that the standard translation ST of modal
formulas into first order ones (see Correspondence Theory) not only embeds
K into classical predicate logic but also FS into intuitionistic first order
logic: ¢ belongs to the former iff ST () is a theorem of the latter. According
to Simpson [1994], this result was proved by C. Stirling; see also Grefe [1997].

Various extensions of F'S were studied by Bull [1966a], Ono [1977], Fischer
Servi [1977, 1980, 1984], Amati and Pirri [1994], Ewald [1986], Wolter and
Zakharyaschev [1997b], Wolter [1997c]. The best known one is probably the
logic

MIPC = FS¢®Op—paOp— O0pd Op— O0pd
p—=OpdOOp - Op®d Sp — Op

introduced by Prior [1957]. Bull [1966a] noticed that the translation * de-
fined by

(pi)* = Pi(z), L* =1,

Wox) =¢*ox", for © €{A,V,—},

(Oy)" =Vz ¢*, (O¢)* =Tz ¢
is an embedding of MIPC into the monadic fragment of intuitionistic pred-
icate logic. Ono [1977], Ono and Suzuki [1988], Suzuki [1990], and Bezhan-
ishvili [1997] investigated the relations between logics in NExtMIPC and
superintuitionistic predicate logics induced by that translation.

In what follows we restrict attention only to the classes of intuitionistic
modal logics introduced above. An interesting example of a system not
covered here was constructed by Wijesekera [1990]. A general model theory
for such logics is developed by Sotirov [1984] and Wolter and Zakharyaschev
[1997D].

Let us consider first the algebraic and relational semantics for the logics
introduced above. All the semantical concepts to be defined below turn
out to be natural combinations of the corresponding notions developed for
classical modal and si-logics. For details and proofs we refer the reader to
Wolter and Zakharyaschev [1997a,b].

From the algebraic point of view, every logic L € NExtIntKy, for M C
{3, <}, corresponds to the variety of Heyting algebras with one or two
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operators validating L. The variety of algebras for IntKy will be called the
variety of M-algebras.

To construct the relational representations of M-algebras, we define a O-
frame to be a structure of the form (W, R, Rg, P) in which (W, R, P) is an
intuitionistic frame, Rg a binary relation on W such that

RoRpoR =Rg
and P is closed under the operation
OX ={zeW: :VyeW (zRoy -y € X)}.

A O-frame has the form (W, R, Re, P), where (W, R, P) is again an intu-
itionistic frame, R¢ a binary relation on W satisfying the condition

R 'o Re o R ' = Ro
and P is closed under
OX ={xeW:3Jy € X zRoy}.

Finally, a OO-frame is a structure (W, R, Ra, Ro, P) the unimodal reducts
(W,R, Ra, P) and (W,R, Ro,P) of which are O- and <-frames, respec-
tively. (To see why the intuitionistic and modal accessibility relations are
connected by the conditions above the reader can construct in the standard
way the canonical models for the logics under consideration. The important
point here is that we take the Leibnizean definition of the truth-relation for
the modal operators. Other definitions may impose different connecting
conditions; see below.)

Given a OO-frame § = (W, R, Ro, Ro, P), it is easy to check that its dual

3T =(P,n,U,—,0,0,0)

is a O<-algebra. Conversely, for each O<-algebra 2 = (4, A,V, —, 1,0, )
we can define the dual frame

Q»[+ = (W,R, R[],R(),P)

by taking (W, R, P) to be the dual of the Heyting algebra (4,A,V,—, L)
and putting
ViRoVs iff Vae A (D(l eV, —>ac V2),

ViReVs iff Va € A (a €Vy = Cae Vl).

21, is a OO-frame and, moreover, A = (2 )*. Using the standard technique
of the model theory for classical modal and si-logics, one can show that a
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OO-frame § is isomorphic to its bidual (1), iff § = (W, R, Ro, Ro, P) is
descriptive, i.e., (W, R, P) is a descriptive intuitionistic frame and, for all
z,y €W,

xRoy iff VX € P (x € OX — y € X),

zRoy it VX eP (ye X =2 € OX).

Thus we get the following completeness theorem.

THEOREM 3.35 Every logic L € NExtIntKqgo is characterized by a suit-
able class of (descriptive) OO -frames, e.g. by the class {4 : A = L}.

Similar results hold for logics in NExtIntKg and NExtIntKo.

As usual, by a Kripke frame we understand a frame (W, R, Rn, Ro, P)
in which P consists of all R-cones; in this case we omit P. An intuition-
istic modal logic L is D-persistent if the underlying Kripke frame of each
descriptive frame for L validates L. For example, F'S as well as the logics

L(k,I,m,n) = IntKpo & OFOlp — O™O"p, for k,I,m,n >0

are D-persistent and so Kripke complete (see Wolter and Zakharyaschev
[1997b]). Descriptive frames validating F'S satisfy the conditions

xRoy — 3z (yRz AxRoz A xRoz),

xRoy — 3z (xRz A zRay A zRoy),
and those for L(k,l,m,n) satisfy

tREy A xRy — Ju (yRLu A zR%u).

It follows, in particular, that MIPC is D-persistent; its Kripke frames have
the properties: Rp is a quasi-order, Ro = Rg! and Rg = Ro(RaNRs). On
the contrary, I” is not D-persistent, although it is complete with respect to
the class of Kripke frames (W, R, Rg) such that (W, Rp) is a frame for GL
and R the reflexive closure of Rg.

The next step in constructing duality theory of M-algebras and M-frames
is to find relational counterparts of the algebraic operations of forming ho-
momorphisms, subalgebras and direct products. Let § = (W, R, Ra, Ro, P)
be a OO-frame and V' a non-empty subset of W such that

Ve e VVy e W (zRayVzRy -y € V),

Ve e VVy € W (zRoy = 3z € V (zRoz AyRz)).

Then & = (V,R|V,Ra [V,Ro [V,{X NV : X € P}) is also a OO-frame
which is called the subframe of § generated by V. The former of the two
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Y r % z
Ro Ro TRO
T 8z ® ox
Figure 17.
0 1 g, 4 01 g, 4
S 45—
R Re R s oS s
o
2 ¥ 3 ® 2 3
Figure 18.

conditions above is standard: it requires V' to be upward closed with respect
to both R and Rn. However, the latter one does not imply that V' is upward
closed with respect to R¢: the frame & in Fig. 17 is a generated subframe
of §, although the set {z,z} is not an Re-cone in §. This is one difference
from the standard (classical modal or intuitionistic) case. Another one arises
when we define the relational analog of subalgebras.

Given OO-frames § = (W, R, Ra, Ro, P) and & = (V| S, Sq, So,Q), we
say a map f from W onto V is a reduction of § to & if f=1(X) € P for
every X € Q and, for all z,y € W andu € V,

xRy implies f(2)Sf(y),

xRy implies f(z)So f(y), for O € {0, O},

f(z)Su implies 3z € f~(u) xRz,

f(x)Sgu implies 3z € f~1(u) zRpz,

f(x)Sou implies 3z € W (zRoz AuSf(2)),
Again, the last condition differs from the standard one: given f(x)So f(y),
in general we do not have a point z such that v Rez and f(y) = f(z), witness
the map gluing 0 and 1 in the frame § in Fig. 18 and reducing it to &.

Note that both these concepts coincide with the standard ones in classical

modal frames, where R and S are the diagonals. The relational counterpart
of direct products—disjoint unions of frames—is defined as usual.

THEOREM 3.36 (i) If & is the subframe of a OO-frame § generated by V
then the map h defined by h(X) = X NV, for X an element in I, is a
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homomorphism from I+ onto &7,

(ii) If h is a homomorphism from a O<$-algebra A onto a OO -algebra B
then the map hy defined by h (V) = h=1(V), V a prime filter in B, is an
isomorphism from B4 onto a generated subframe of A .

(iii) If f is a reduction of a OO-frame § to a OO-frame & then the map
f+ defined by fH(X) = fY(X), X an element in &, is an embedding of
&1 into Ft.

(iv) If B is a subalgebra of a O<O-algebra A then the map f defined by
f(V)=VnNB, V a prime filter in 2 and B the universe of B, is a reduction
Of Q»[+ to %4_.

This duality can be used for proving various results on modal definability.
For instance, a class C of O<O-frames is of the form C = {§ : § = I'}, for some
set I' of Lao-formulas, iff C is closed under the formation of generated sub-
frames, reducts, disjoint unions, and both C and its complement are closed
under the operation § — (F1)+ (see Wolter and Zakharyaschev [1997b]).
Moreover, one can extend Fine’s Theorem connecting the first order defin-
ability and D-persistence of classical modal logics to the intuitionistic modal
case:

THEOREM 3.37 If a logic L € NExtIntKge is characterized by an ele-
mentary class of Kripke frames then L is D-persistent.

These results may be regarded as a justification for the relational seman-
tics introduced in this section. However, it is not the only possible one. For
example, Bozi¢ and Dosen [1984] impose a weaker condition on the con-
nection between R and Rgp in O-frames. Fisher Servi [1980] interprets F'S
in birelational Kripke frames of the form (W, R, S) in which R is a partial
order, RoS C So R, and

Ry A Sz — Ju (ySu A zRu).

The intuitionistic connectives are interpreted by R and the truth-conditions
for O and < are defined as follows

OX ={zeW:Vy,z (zRySz — z € X},
OX ={xr e W :Jy € X zSy}.
In birelational frames for MIPC S is an equivalence relation and

xSyRz — Ju zRuSz.

These frames were independently introduced by L. Esakia who also estab-
lished duality between them and “monadic Heyting algebras”.
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There are two ways of investigating various properties of intuitionistic
modal logics. One is to continue extending the classical methods to logics
in NExtIntKy. Another one uses those methods indirectly via embeddings
of intuitionistic modal logics into classical ones. That such embeddings
are possible was noticed by Shehtman [1979], Fischer Servi [1980, 1984],
and Sotirov [1984]. Our exposition here follows Wolter and Zakharyaschev
[1997a,b]. For simplicity we confine ourselves only to considering the class
NExtIntKg and refer the reader to the cited papers for information about
more general embeddings.

Let T be the translation of L£n into Ln,n prefixing O; to every subfor-
mula of a given Lg-formula. Thus, we are trying to embed intuitionistic
modal logics in NExtIntKy into classical bimodal logics with the necessity
operators Oy (of S4) and O. Say that T embeds L € NExtIntKg into
M € NExt(S4® K) (S4 in Lo, and K in £Ln) if, for every ¢ € Lg,

¢ € Liff T(p) € M.

In this case M is called a bimodal (or BM-) companion of L.
For every logic M € NExt(S4 ® K) put

pM = {p € Lo T(p) € M},
and let o be the map from NExtIntKpg into NExt(S4 ® K) defined by
o(IntKg ®T) = (Grz ® K) @ mix & T'(T),

where I' C L5 and mixz = 0;00;p + Op. (The axiom mix reflects the
condition R o Rg o R = Rp of O-frames.) Then we have the following
extension of the embedding results of Maksimova and Rybakov [1974], Blok
[1976] and Esakia [1979a,b]:

THEOREM 3.38 (i) The map p is a lattice homomorphism from the lattice
NExt(S4 ® K) onto NExtIntKg preserving decidability, Kripke complete-
ness, tabularity and the finite model property.

(ii) Each logic IntKg ® T is embedded by T into any logic M in the
interval

(S4®K)a T(I') C M C (Grz ® K) & mixz & T(T).

(iii) The map o is an isomorphism from the lattice NExtIntKqo onto the
lattice NExt(Grz ® K) @ mix preserving FMP and tabularity.

Note that Fischer Servi [1980] used another generalization of the Godel
translation. She defined
T(O¢p) = OT(p),



ADVANCED MODAL LOGIC 143

T(By) = 0,87 (p)
and showed that this translation embeds F'S into the logic

It is not clear, however, whether all extensions of F'S can be embedded into
classical bimodal logics via this translation.

Let us turn now to completeness theory of intuitionistic modal logics. As
to the standard systems I®, FS, and MIPC, their FMP can be proved
by using (sometimes rather involved) filtration arguments; see Muravit-
skij [1981], Simpson [1994] and Grefe [1997], and Ono [1977], respectively.
Further results based on the filtration method were obtained by Sotirov
[1984] and Omno [1977]. However, in contrast to classical modal logic, only a
few general completeness results covering interesting classes of intuitionistic
modal logics are known. The proofs of the following two theorems are based
on the translation into classical bimodal logics discussed above.

THEOREM 3.39 Suppose that a si-logic Int + T' has one of the properties:
decidability, Kripke completeness, FMP. Then the logics IntKg & I' and
IntKn &' @ Op — p also have the same property.

Proof It suffices to show that there is a BM-companion of each of these
systems satisfying the corresponding property. Notice that

p(S4eTM))®K)=IntKn &T,

p(S4eTM) @ (KaeOp—p) =IntKgdI' ® Op — p.

So it remains to use the fact that if Int + I' has one of the properties
under consideration then its smallest modal companion S4 @ T'(T') has this
property as well (Table 7), and if Ly, Lo are unimodal logics having one
of those properties then the fusion L; ® Ly also enjoys the same property
(Theorem 2.6). a

Such a simple reduction to known results in classical modal logic is not
available for logics containing IntK4p = IntKg & Op — OOp. However,
by extending Fine’s [1974] method of maximal points to bimodal compan-
ions of extensions of IntK45 Wolter and Zakharyaschev [1997a] proved the
following:

THEOREM 3.40 Suppose L O IntK4g has a D-persistent BM-companion
M D (S4® K4) @ mix whose Kripke frames are closed under the formation
of substructures. Then

(i) for every set T’ of intuitionistic negation and disjunction free formulas,
L&T has FMP;
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ii) for every set I' of intuitionistic disjunction free formulas and every
n>1,

LoTa \/(pi— \/p)
i=0 i

has the finite model property.

One can use this result to show that the following (and many other)
intuitionistic modal logics enjoy FMP:

(1) IntK4p;

(2) IntS4g = IntK4g & Op — p (Ro is reflexive);

(3) IntS4.30 = IntS45 @ O(Op — ¢) V O(O¢ — p) (Rao is reflexive and
connected);

(4) IntK4g @ p VvV O-0p (R is symmetrical);

(5) IntK45 @ Op vV O-0p (Rg is Euclidean);

(6) IntK4g ¢ Op VvV —~Op (xRy A xRaz — yRaz);

We conclude this section with some remarks on lattices of intuitionis-
tic modal logics. Wolter [1997c| uses duality theory to study splittings of
lattices of intuitionistic modal logics. For example, he showed that each
finite rooted frame splits NExt(L @ O<"p — O"*1p), for L = IntKy and
L = FS, and each Rp-cycle free finite rooted frame splits the lattices of
extensions of IntKn and FS. No positive results are known, however, for
the lattice NExtIntK . In fact, the behavior of &-frames is quite different
from that of frames for FS. For instance, in classical modal logic we have
RGF = GRZF, for each class of frames (or even O-frames) F, where G and R
are the operations of forming generated subframes and reducts, respectively.
But this does not hold for <¢-frames. More precisely, there exists a finite
O-frame & such that RG{®} 2 GR{®}. In other terms, the variety of modal
algebras for K has the congruence extension property (i.e., each congruence
of a subalgebra of a modal algebra can be extended to a congruence of the
algebra itself) but this is not the case for the variety of ¢-algebras.

Vakarelov [1981, 1985] and Wolter [1997c] investigate how logics having
Int as their non-modal fragment are located in the lattices of intuitionistic
modal logics. It turns out, for instance, that in NExtIntK the inconsistent
logic has a continuum of immediate predecessors all of which have Int as
their non-modal fragment, but no such logic exists in the lattice of extensions
of IntKp.

4 ALGORITHMIC PROBLEMS

All algorithmic results considered in the previous sections were positive:
we presented concrete procedures for deciding whether an arbitrary given
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formula belongs to a given logic in some class or whether it axiomatizes
a logic with a certain property. What is the complexity of those decision
algorithms? Do there exist undecidable calculi'® and properties? These are
the main questions we address in this chapter.

4.1 Undecidable calculi

The first undecidable modal and si-calculi were constructed by Thomason
[1975¢] (polymodal and unimodal), Isard [1977] (unimodal) and Shehtman
[1978b] (superintuitionistic). However, we begin with the very simple exam-
ple of [Shehtman 1982] which is a modal reformulation of the undecidable
associative calculus T' of [Tseitin 1958]. The axioms of T are

ac = ca, ad = da,
bc = cb, bd = db,
edb = be, eca = ae,

abac = abace.

The reader will notice immediately an analogy between them and the axioms
of the following modal calculus with five necessity operators:

L=Ks © 0;03p « O30;p® O, 04p <> O0401p ©
O203p ¢ U3Uap @ UaUyp <> O40ap @
Us0402p 2 Oa05p & UsU30p <> D01 05p &
0, 0,0, O3p <> 0,020, O303p.

Moreover, it is not hard to see that words z, y in the alphabet {a,b,c,d, e}
are equivalent in 719 iff f(z)p « f(y)p € Ks, where f is the natural
one-to-one correspondence between such words and modalities in language
{04, ...,05} under which, for instance, f(cadedb) = O30,0,0;0,0,. Tt
follows immediately that L is undecidable. Using the undecidable associa-
tive calculus of Matiyasevich [1967], one can construct in the same way an
undecidable bimodal calculus having three reductions of modalities as its
axioms. It is unknown whether there is an undecidable unimodal calculus
axiomatizable by reductions of modalities.

Thomason’s simulation and the undecidable polymodal calculi mentioned
above provide us with examples of undecidable calculi in NExtK. However,
to find axioms of undecidable unimodal calculi with transitive frames, as
well as undecidable si-calculi, a more sophisticated construction is required.

8By a calculus we mean a logic with finitely many axioms (inference rules in our case
are fixed).

191.e., they can be obtained from each other by a finite number of transformations of
the form wjwws — wivws, where w = v or v = w is an axiom of 7'.
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Figure 19.

Instead of associative calculi, let us use now Minsky machines with two
tapes (or register machines with two registers). A Minsky machine is a
finite set (program) of instructions for transforming triples (s, m,n) of nat-
ural numbers, called configurations. The intended meaning of the current
configuration (s, m,n) is as follows: s is the number (label) of the current
machine state and m, n represent the current state of information. Each
instruction has one of the four possible forms:

s —(t,1,0), s — (¢,0,1),

s — (t,—1,0) ((¢',0,0)), s — (t,0,—1) ((t',0,0)).

The last of them, for instance, means: transform (s, m,n) into (t,m,n — 1)
if n > 0 and into (t',m,n) if n = 0. For a Minsky machine P, we shall
write P : (s,m,n) — (t,k,1) if starting with (s,m,n) and applying the
instructions in P, in finitely many steps (possibly, in 0 steps) we can reach
(t, k,1).

We shall use the well known fact (see e.g. [Mal’cev 1970]) that the fol-
lowing configuration problem is undecidable: given a program P and con-
figurations (s, m,n), (¢, k,l), determine whether P : (s,m,n) — (¢, k,1).

With every program P and configuration (s, m,n) we associate the transi-
tive frame § depicted in Fig. 19. Its points e(t, k,[) represent configurations
(t, k,1) such that P : (s,m,n) — (t,k,1); e(t, k,1) sees the points a?, a}, a7
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representing the components of (¢, k,1). The following variable free formulas
characterize points in § in the sense that each of these formulas, denoted by
Greek letters with subscripts and/or superscripts, is true in § only at the
point denoted by the corresponding Roman letter with the same subscript
and/or superscript:

a=0TADOCT, =01, y=3aAOB A0,

§ ==y AOBA=OB, 6 = OO A 028, dy = 06 A—O26y,
11 = Oy A Oy A =06, o = Oy A Oy A =06,
ad = Oy A OF A =02y A 20?6,

ap = Oy A Odp A =02y A =06,

ag = Oya A Oy A 2Oy A 2026,

a§+1 = <>o¢§~ A —|<>2a§ A /\ ~Oak,

i#k

where i € {0,1,2}, j > 0. The formulas characterizing e(t, k, 1) are denoted
by €(t, oy, af), where

t
e(t,p, 1) = [\ Oaf A=Oaly A Op A =02 A Y A=,

=0

We require also formulas characterizing not only fixed but arbitrary config-
urations:
m = (Cag V ag) A ~Cag A ~0ag Apr A —~Opy,

Ty = <>a(1) A —|<>a8 A —|<>a% AOpr A —|<>2p1,
1 = (Cag Vad) A =0ad A =~Oag A pe A =Op,
Ty = Oa% A —|<>a8 A —|<>a(1) A Opa A —r<>2p2.

Now we are fully equipped to simulate the behavior of Minsky machines by
means of modal formulas. Let us consider for simplicity only tense logics
and observe that § satisfies the condition

VaVy3z (zRzR™'y V2R 2Ry V xRy V xR 'y vV =y).

So, for every valuation in §, a formula ¢ is true at some point in § iff the
formula
Qp =007t v o topvop v oTlp vy

is true at all points in §, i.e., the modal operator () can be understood
as “omniscience”. Let x be a formula which is refuted in § and does not
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contain p; and pe. With each instruction I in P we associate a formula
Azl by taking:

Azl = —x A Qe(t, m,m1) = x AQe(t', w2, 1)
if I has the form ¢ — (¢',1,0),

Azl = =x A Qe(t,m,m) = x ANQe(t', 71, 72)
if Tist— (¢,0,1),

Azl = (—=x AN Qe(t,m2, 1) = x AN Qe(t',m1,71)) A
(=x A OCe(t,ad, 1) = —x A Qe(t", ad, 1))

if Tist — (', —1,0) ((¢",0,0)),

Azl = (-x AQe(t,m,12) = ~x AQe(t',m1,7m1)) A
(_'X A Oé(t, 1, a(Q)) — X A OE(tH7 1, a(Z)))

if I'ist— (¢',0,—1)((¢",0,0)). The formula simulating P as a whole is

AzP = /\ Axl.

IeP

Now, by induction on the length of computations and using the frame § in
Fig. 19 one can show that for every program P and configurations (s, m,n),
(t,k, 1), we have P : (s,m,n) — (t, k,1) iff

-x A Qe(s,al,,a2) = =x A Qe(t, a;,af) € Kd.t & AxP.

Thus, if the configuration problem is undecidable for P then the tense
calculus K4.t @ Az P is undecidable too. In the same manner (but using
somewhat more complicated frames and formulas) one can construct unde-
cidable calculi in NExtK4 and even ExtInt; for details consult [Chagrova
1991] and [Chagrov and Zakharyaschev 1997]. The following table presents
some ”quantitative characteristics” of known undecidable calculi in various
classes of logics. Its first line, for instance, means that there is an undecid-
able si-calculus with axioms in 4 variables and the derivability problem in
it is undecidable in the class of formulas in 2 variables; = means that the
number of variables is optimal, and < indicates that the optimal number is
still unknown.
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The number of variables in
Class of logics undecidable calculi separated formulas

ExtInt <4, >2 =2
NExtS4 <3 >2 =1
ExtS4 <3 =1
NExtGL =1 =1
ExtGL =1 =1
ExtS =1 =1
NExtK4 =1 =0
ExtK4 =1 =0

These observations follow from [Anderson 1972], [Chagrov 1994], [Sobolev
1977b], and [Zakharyaschev 1997a]. Say that a formula v is undecidable in
(N)ExtL if no algorithm can determine for an arbitrary given ¢ whether
¥ € L+ ¢ (respectively, 1) € L ® ). For example, formulas in one variable,
the axioms of BW,, and BD,, are decidable in ExtInt. On the other hand,
there are purely implicative undecidable formulas in ExtInt, and

~(pAQ)Va(=pAg)V(pA=g)V=(=pA-g)

is the shortest known undecidable formula in this class. Here are some modal
examples: the formula O(O0*1 — Op V O-p) is undecidable in NExtGL,
Ot-Ofpv Ot-0F-O%p in ExtS, 1 in ExtK4 and NExtK4.t; in NExtK
and NExtK4.t undecidable is the conjunction of axioms of any consistent
tabular logic in these classes. However, no non-trivial criteria are known for
a formula to be decidable; it is unclear also whether one can effectively
recognize the decidability of formulas in the classes ExtInt, (N)ExtS4,
(N)ExtGL, ExtS, (N)ExtK4.

4.2 Admassibility and derivability of inference rules

Another interesting algorithmic problem for a logic L is to determine whether

an arbitrary given inference rule p1,...,p,/p is derivable in L, i.e., @ is
derivable in L from the assumptions @1, ..., @,, and whether it is admissi-
ble in L, i.e., for every substitution s, ¢s € L whenever ¢1s,...,9,s € L.

(Note that derivability depends on the postulated inference rules in L,
while admissibility depends only on the set of formulas in L.) Admissible
and derivable rules are used for simplifying the construction of derivations.
Derivable rules, like the well known rule of syllogism

oY, Y= x
e—=x

may replace some fragments of fixed length in derivations, thereby short-
ening them linearly. Admissible rules in principle may reduce derivations
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more drastically. Since ¢ € L iff the rule T /¢ is derivable (or admissible)
in L, the derivability and admissibility problems for inference rules may be
regarded as generalizations of the decidability problem.

If the only postulated rules in L are substitution and modus ponens, the
Deduction Theorem reduces the derivability problem for inference rules in
L to its decidability:

P1y---,¥Pn
(G

However, if the rule of necessitation ¢/Oy is also postulated in L, we have
only

is derivable in L iff o1 A ... A, = ¢ € L.

(p17"'7(pn
(4

For n-transitive L this is equivalent to O<" (o1 A...Ap,) — 4 € L, and so
the derivability problem for inference rules in n-transitive logics is decidable
iff the logics themselves are decidable. In general, in view of the existential
quantifier in Theorem 1.1, the situation is much more complicated.

Notice first that similarly to Harrop’s Theorem, a sufficient condition for
the derivability problem to be decidable in a calculus is its global FMP (see
Section 1.5). Thus we have

is derivable in L iff ¢1,...,¢p, F] 9.

THEOREM 4.1 The derivability problem for inference rules in K, T, D,
KB is decidable.

Moreover, sometimes we can obtain an upper bound for the parameter m
in the Deduction Theorem, which also ensures the decidability of the deriv-
ability problem for inference rules. One can prove, for instance, that for K
it is enough to take m = 2/SuP¥USubY| 1y general, however, the derivability
problem for inference rules in a logic L turns out to be more complex than
the decidability problem for L. (Recall, by the way, that there are logics
with FMP but not global FMP.)

THEOREM 4.2 (Spaan 1993) There is a decidable calculus in NExtK the
derivability problem for inference rules in which is undecidable.

Spaan proves this result by simulating in F}, L a decidable logic defined
below, the following undecidable tiling problem: given a finite set of tiles
T, can T tile N x N? The logic L is surprisingly simple:

L=Alt® [\ oopi—» \/ ©0minp).
1<i<4 1<i<j<4

It is a subframe logic, so it is D-persistent and has FMP (because Alt, C L;
see Theorem 1.22 and Proposition 1.59). Note also that the bimodal logic
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L, (see Section 2.2) is a complete and elementary subframe logic which
is undecidable because I} is undecidable. Using this observation one can
construct a unimodal subframe logic in NExtK with the same properties.

Let us turn now to the admissibility problem. It is not hard to see that
the rules

(=——p = p) = pV-p -p—=qVr
—pV —p (p—=qV(p—r)

are admissible but not derivable in Int and Op A O—p/L is admissible but
not derivable in any extension of S4.3 save those containing OOp — <$Op,
in which it is derivable. (Recall that a logic L is said to be structurally
complete if every admissible inference rule in L is derivable in L. We have
just seen that Int as well as S4.3 are not structurally complete. For more
information on structural completeness see e.g. [Tsytkin 1978, 1987] and
[Rybakov 1995].) The following result strengthens Fine’s [1971] Theorem
according to which all logics in ExtS4.3 are decidable.

THEOREM 4.3 (Rybakov 1984a) The admissibility problem for inference
rules is decidable in every logic containing S4.3.

An impetus for investigations of admissible inference rules in various
logics was given by Friedman’s [1975] problem 40 asking whether one can
effectively recognize admissible rules in Int. This problem turned out to be
closely connected to the admissibility problem in suitable modal logics. We
demonstrate this below for the logic GL following [Rybakov 1987, 1989].

First we show that dealing with logics in NExtK, it is sufficient to consider
inference rules of a rather special form. Let ¢(q1,...,¢ant+2) be a formula
containing no O and < and represented in the full disjunctive normal form.
Say that an inference rule is reduced if it has the form

(P(pO) <+ -3 Pn, OPO: AR <>pn)/pO

THEOREM 4.4 For every rule /v one can effectively construct a reduced
rule @' /" such that p /v is admissible in a logic L € NExtK iff ¢'/¢' is
admissible in L.

Proof Observe first that if ¢ and ¢ do not contain p then ¢/ is admissible
in Liff oA (¢ <> p)/p is admissible in L. So we can consider only rules of
the form ¢/py. Besides, without loss of generality we may assume that ¢
does not contain 0. With every non-atomic subformula y of ¢ we associate
the new variable p,. For convenience we also put p, = p; if x = p; and
py = L if x = L. We show now that the rule

Po A \{Py © Pxi O Pxs 1 X = X1 © X2 € Subgp, © € {A,V,5}} A

Adpx © Opy, = x = Ox1 € Subg}/po
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is admissible in L iff ¢/po is admissible in L. For brevity we denote the
antecedent of that rule by ¢".

(=) Since every substitution instance of ¢"/py is admissible in L, the
rule o A A\ ¢ suby, (X € X)/Po and so ¢/po are also admissible in L.

(<) Suppose ¢/po is admissible in L and ¢"s is in L, for some substi-
tution s = {a,/py : X € Subp}. By induction on the construction of x
one can readily show that o, < xs € L. Therefore, a, < ¢s € L. Since
¢"s € L, we must have p,s = a, € L, from which ¢s € L and so pps € L.
Thus ¢ /py is admissible in L.

The rule ¢"/pg is not reduced, but it is easy to make it so simply by
representing ¢ in its full disjunctive normal form ¢'; treating subformulas
Op; as variables. o

From now on we will deal with only reduced rules different from L /pg
(which is clearly admissible in any logic). Let V;¢;/po be a reduced rule
in which every disjunct ¢; is the conjunction of the form

=000 A - AP A =Opo A .. AP, (17)

where each —; and =/ is either blank or =. We will identify such conjunc-
tions with the sets of their conjuncts. Now, given a non-empty set W of
conjunctions of the form (17), we define a frame § = (W, R) and a model
M = (F,V) by taking

piRp; iff Vke {0,...,m}(=Cpy € @i = —Opy € pi Nk € (,0]') A
Jk € {0,. . .,m}(—l<>pk € p; NOpy € ©vi),

V(pr) = {pi €W : pr € pi}.

It should be clear that § is finite, transitive and irreflexive.

THEOREM 4.5 A reduced rule \/; ;/po is not admissible in GL iff there
is a model M = (§, V) defined as above on a set W of conjunctions of the
form (17) and such that

(i) —po € w; for some p; € W;

(i) o: = i for every o; € W,

(iii) for every antichain a in § there is w; € W such that, for every
k€ {0,...,m}, o; E Opr iff i | O pi for some p; € a.

Proof (=) We are given that there are formulas vy, ..., ¢, in variables
@,---,qn such that \V,;¢7 € GL and p; ¢ GL, where by x* we de-
note X{¥o/po;--.,¥m/pm}. This is equivalent to Mar(n) = V,¢; and
Mer(n) £ ps- Define W to be the set of those disjuncts ; in \/; ¢; whose
substitution instances ¢; are satisfied in Mgy (n). Clearly W # 0. Let us
check (i) — (iii).
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(i) Take a point z in Mar(n) at which p§ is false. Since MaL(n) =
V; ¢}, we must have z |= ¢} for some i. One of the formulas p or —pj is a
conjunct of 7. Clearly it is not pj. Therefore, —py € ;.

(ii) It suffices to show that, for all p; € W and k € {0,...,m}, ¢; |E Opx
iff Opr € @;. Suppose ¢; = Opg. Then there is ¢; € W such that p;Rp;
and ¢; = pr. By the definition of ¥ and R, this means that py € ¢;
and Opg € ;. Conversely, suppose Opr € ;. Then z |= ¢f and in
particular z |= Opj; for some z in Mgy, (n). Let y be a final point in the set
{z € 11 z |= p;}. Since Mar(n) is irreflexive, we have y |= pj;, y = Opj;
and y | @7 for some p; € W. It follows that ¢;Rp; and ¢; = pi, from
which ¢; E Opy.

(iii) Let a be an antichain in §. For every ¢; € a, let ; be a final point
in the set {y € WgL(n) : y E ¢f}. It should be clear that the points
{z; : ¢i € a} form an antichain b in Fer(n) and so, by the construction of
Scr(n), there is a point y in Fer(n) such that yt = b7. Then the formula
w; € W we are looking for is any one satisfying the condition y = ©j, as
can be easily checked by a straightforward inspection.

(<) The proof in this direction is rather technical; we confine ourselves
to just a few remarks. Let 9t be a model satisfying (i)—(iii). To prove that
V; ®j/po is not admissible in GL we require once again the n-universal
model Mar,(n), but this time we take n to be the number of symbols in the
rule. By induction on the depth of points in 9t one can show that 91 is a
generated submodel of Mgy, (n).

Our aim is to find formulas o, . .., ¥m such that Mgr(n) =V, ¢} and
Mar(n) FE p§ (here again x* = x{¢o/po; .., ¥m/Pm}). Loosely, we need
to extend the properties of 9t to the whole model Mg (n). To this end
we can take the sets {y;} in FeL(n) and augment them inductively in such
a way that we could embrace all points in Fgr(n). At the induction step

we use the condition (iii), and the required vy, . . . , ¥, are constructed with
the help of (i) and (ii); roughly, they describe in Mg (n) the analogues of
the truth-sets in 9 of the variables in our rule. o

A remarkable feature of this criterion is that it can be effectively checked.
Thus we have

THEOREM 4.6 There is an algorithm which, given an inference rule, can
decide whether it is admissible in GL.

In a similar way one can prove

THEOREM 4.7 (Rybakov 1987) The admissibility problem in Grz is de-
cidable.
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We show now that the admissibility problem in Int can be reduced to
the same problem in Grz and so is also decidable. To this end we require
the following

THEOREM 4.8 (Rybakov 1984b) A rule ¢/v is admissible in Int iff the
rule T'(¢)/T () is admissible in Grz.

As a consequence of Theorems 4.7 and 4.8 we obtain

THEOREM 4.9 (Rybakov 1984b) The admissibility problem in Int is de-
cidable.

Although there are many other examples of logics in which the admis-
sibility problem is decidable and the scheme of establishing decidability is
quite similar to the argument presented above, proofs are rather difficult
and only in few cases they work for big families of logics as in [Rybakov
1994]. Besides, all these results hold only for extensions of K4 and Int.
For logics with non-transitive frames, even for K, the admissibility problem
is still waiting for a solution. The same concerns polymodal, in particular
tense logics. Chagrov [1992b] constructed a decidable infinitely axiomatiz-
able logic in NExtK4 for which the admissibility problem is undecidable.
It would be of interest to find modal and si-calculi of that sort.

A close algorithmic problem for a logic L is to determine, given an ar-
bitrary formula ¢(p1,-..,pn), whether there exist formulas ¢1,.. ., ¥, such
that ¢(11,...,%,) € L. Note that an "equation” ¢(p1,...,p,) has a so-
lution in L iff the rule ¢(p1,...,pn)/L is not admissible in L. This obser-
vation and Theorem 4.3 provide us with examples of logics in which the
substitution problem is decidable (see e.g. [Rybakov 1993]). We do not
know, however, if there is a logic such that the substitution problem in it is
decidable, while the admissibility one is not.

The inference rules we have dealt with so far were structural in the sense
that they were “closed” under substitution. An interesting example of a
nonstructural rule was considered by Gabbay [1981a]:

@V (Op — p), where p ¢ Suby
” .

It is readily seen that this rule holds in a frame § (in the sense that for every
formula ¢ and every variable p not occurring in ¢, ¢ is valid in § whenever
(Op — p) V ¢ is valid in §) iff § is irreflexive and that K is closed under
it (since K is characterized by the class of irreflexive frames). We refer the
reader to [Venema 1991] for more information about rules of this type.
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4.3 Properties of recursively axiomatizable logics

Dealing with infinite classes of logics, we can regard questions like “Is a
logic L decidable?”, “Does L have FMP?”, etc., as mass algorithmic prob-
lems. But to formulate such problems properly we should decide first how
to represent the input data of algorithms recognizing properties of logics.
One can, for instance, consider the class of recursively axiomatizable log-
ics (which, by Craig’s [1953] Theorem, coincides with that of recursively
enumerable ones) and represent them as programs generating their axioms.
However, this approach turns out to be too general because the following
analog of the Rice-Uspenskij Theorem holds.

THEOREM 4.10 (Kuznetsov) No nontrivial property of recursively aziom-
atizable si-logics is decidable.

Of course, nothing will change if we take some other family of logics, say
NExtK4. The proof of this theorem (Kuznetsov left it unpublished) is very
simple; we give it even in a more general form than required.

PROPOSITION 4.11 Suppose Ly and Lo are logics in some family £, Ly
is recursively aziomatizable, Ly C Lo, Lo is finitely aziomatizable (say, by
a formula 7y), and a property P holds for only one of L1, Lo. Then no

algorithm can recognize P, given a program enumerating azioms of a logic
in L.

Proof Let ag,a1,... be a recursive sequence of axioms for L;. Given an
arbitrary (Turing, Minsky, Pascal, etc.) program P having natural numbers
as its input, we define the following recursive sequence of formulas (where
(n); and (n)2 are the first and second components of the pair of natural
numbers with code n under some fixed effective encoding):

g, ={ on if P does not come to a stop on input (n); in (n)2 steps
"7 v otherwise.

This sequence axiomatizes Ly if P does not come to a stop on any input and
L, otherwise. It is well known in recursion theory that the halting problem
is undecidable, and so the property P is undecidable in £ as well. o

The reader must have already noticed that this proof has nothing to
do with modal and si-logics; it is rather about effective computations. To
avoid this unpleasant situation let us confine ourselves to the smaller class
of finitely axiomatizable modal and si-logics and try to find algorithms rec-
ognizing properties of the corresponding calculi. However, even in this case
we should be very careful. If arbitrary finite axiomatizations are allowed
then we come across the following
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THEOREM 4.12 (Kuznetsov 1963) For every finitely aziomatizable si-logic
L (in particular, Int, Cl, inconsistent logic), there is no algorithm which,
giwven an arbitrary finite list of formulas, can determine whether its closure
under substitution and modus ponens coincides with L.

Needless to say that the same holds for (normal) modal logics as well.
Fortunately, the situation is not so hopeless if we consider finite axiom-
atizations over some basic logics. For instance, by Makinson’s Theorem,
one can effectively recognize, given a formula ¢, whether the logic K & ¢
is consistent. Other examples of decidable properties in various lattices of
modal logics were presented in Theorems 1.89, 1.93, 1.101, and 2.37. In the
next section we consider those properties that turn out to be undecidable
in various classes of modal and si-calculi.

4.4 Undecidable properties of calculi

The first “negative” algorithmic results concerning properties of modal cal-
culi were obtained by Thomason [1982] who showed that FMP and Kripke
completeness are undecidable in NExtK, and consistency is undecidable in
NExtK.t. Later Thomason’s discovery has been extended to other proper-
ties and narrower classes of logics. In fact, a good many standard properties
of modal and si-calculi (in reasonably big classes) proved to be undecidable;
decidable ones are rather exceptional.

In this section we present three known schemes of proving such kind of
undecidability results. Each of them has its advantages (as well as disad-
vantages) and can be adjusted for various applications. The first one is due
to Thomason [1982].

Let L(n) be a recursive sequence of normal bimodal calculi such that no
algorithm can decide, given n, whether L(n) is consistent. Such sequences,
as we shall see a bit later, exist even in NExtK4.t. Suppose also that L* is
a normal unimodal calculus which does not have some property, say, FMP,
decidability or Kripke completeness. Consider now the recursive sequence of
logics L(n) ® L* with three necessity operators. If L(n) is inconsistent then
the fusion L(n)® L* is inconsistent too and so has the properties mentioned
above. And if L(n) is consistent then, in accordance with Proposition 2.5,
L(n) ® L* is a conservative extension of both L(n) and L*, which means
that it is Kripke incomplete, undecidable and does not have FMP whenever
L* is so. Consequently, the three properties under consideration cannot be
decidable in the class NExtKg3, for otherwise the consistency of L(n) would
be decidable. By Theorem 2.18, these properties are undecidable in NExtK
as well. Note however that, since Thomason’s simulation embeds polymodal
logics only into “non-transitive” unimodal ones, this very simple scheme
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does not work if we want to investigate algorithmic aspects of properties of
calculi in NExtK4 and ExtInt.

To illustrate the second scheme let us recall the construction of the un-
decidable calculus in NExtK4.t discussed in Section 4.1. First, we choose a
Minsky program P and a configuration a = (s, m,n) so that no algorithm
can decide, given a configuration b, whether P : a — b. (That they exist is
shown in [Chagrov 1990b].) Then we put x = L and add to K4.t & AzP
one more axiom

(_'X A 06(57 a:n>a$z) — XA Oe(tv ak)alz)) - X,

where ¢ = (¢, k,1) is an arbitrary fixed configuration. The resulting calculus
is denoted by L(c). Suppose that P : a 4 c¢. Then one can readily check
that the new axiom is valid in the frame § shown in Fig. 19 and prove that
P:(s,m,n) — (t' k' 1"y iff

X A Qe(s,ap,, ) = = A Qe(t', aj,af) € L(c).

Therefore, L(c) is undecidable, consistent and does not have FMP. And if
P : a — c then L(c) is clearly inconsistent. It follows by the choice of P and
a that consistency, decidability and FMP are undecidable in NExtK4.t. In
fact, the argument will change very little if we take as x the axiom of some
tabular logic in NExtK4.t. So we obtain

THEOREM 4.13 The properties of tabularity and coincidence with an ar-
bitrary fized tabular logic (in particular, inconsistent) are undecidable in
NExtK4.t

Moreover, these results (except the consistency problem, of course) can
be transferred to logics in NExtK. We demonstrate this by an example;
complete proofs can be found in [Chagrov 1996].

We require the frame which results from that in Fig. 19 by adding to it
a reflexive point ¢g and an irreflexive one ¢; so that ¢; sees all other points
save a and b and is seen itself only from a and b. As before, we denote the
frame by §.

PROPOSITION 4.14 Let x be a formula refutable at some point in § dif-
ferent from co and OT € K @ x. Then the problem of deciding, for an
arbitrary formula o, whether K ® ¢ = K @ x is undecidable.

Proof It should be clear that x contains at least one variable, say r, and
there are points in § at which r has distinct truth-values (under the valua-
tion refuting x); co and ¢; are then the only points in § where the formulas
oo = 03r v O%=r and

o1 = 0o A (rVOrV o) A(—r Vv oar v O2ar)
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are true, respectively. Observe that from every point in § save ¢y we can
reach all points in § by < 3 steps. So we can take () = ¢=3. The formulas
a and 3 should be replaced with a = Goy A O%01, 8 = Gop A ~<O20; which
(under the valuation refuting ) are true only at a and b, respectively. Now
consider the logic

L(C) =Ko AzP o (_'X A Oe(s,ain,ai) — XA Oe(tvak>al2)) - X-

If P:a— cthen L(c) =K ® x. And if P : a 4 c then, using the fact that
the set of points in § where y is refutable coincides with the set of points
from which every point of the form e(z,y,z) is accessible by three steps,

one can show that § = L(c) and so L(c) # K & x. a

Putting, for instance, Y = Op <> p, we obtain then that the problem of
coincidence with Logo is undecidable in NExtK. Likewise one can prove the
following

THEOREM 4.15 (i) If a consistent finitely aziomatizable logic L is not a
union-splitting of NExtK then the axiomatization problem for L above K is
undecidable.

(ii) The properties of tabularity and coincidence with an arbitrary fized
consistent tabular logic are undecidable in NExtK.

(iii) The problem of coincidence with an arbitrary fived consistent calculus
in NExtD4 or in NExtGL is undecidable in NExtK.

(iv) The properties of tabularity and coincidence with an arbitrary fized
tabular (in particular, inconsistent) logic are undecidable in ExtK4.

Of the algorithmic problems concerning tabularity that remain open the
most intriguing are undoubtedly the tabularity and local tabularity prob-
lems in NExtK4. Note that a positive solution to the former implies a
positive solution to the latter.

Now we present the second scheme in a more general form used in [Cha-
grov 1990b] and [Chagrov and Zakharyaschev 1993]. Assume again that the
second configuration problem is undecidable for P and a, and let x be a
formula such that Ly@® x has some property P, where Lg is the minimal logic
in the class under consideration. Associate with P, a and a configuration
b formulas AzP and ¢(a,b) such that ¢(a,b) € Lo ® AzP iff P :a — b.
Besides, x and Az P are chosen so that AxP € Lo ® x. Now consider the
calculus

L(b) = Lo ® AzP ® ¢¥(a,b) = x ® v,

where v is some formula such that v € Lo ® x. If P : a — b then we clearly
have L(b) = Lo @ x and so L(b) has P; but if P : a /4 b then the fact
that L(b) does not have P must be ensured by an appropriate choice of ~.
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(In the considerations above we did not need 7, i.e., it was sufficient to put
v = T). With the help of this scheme one can prove the following

THEOREM 4.16 (i) The properties of decidability, Kripke completeness as
well as FMP are undecidable in the classes ExtInt, (N)ExtGrz, (N)ExtGL.
(ii) The interpolation property is undecidable in (N)ExtGL.
(iii) Halldén completeness is undecidable in ExtInt, (N)ExtGrz, ExtS.

These and some other results of that sort can be found in [Chagrov
1990b,c, 1994, 1996], [Chagrova 1991], [Chagrov and Zakharyaschev 1993,
1995b)].

The third scheme was developed in [Chagrova 1989, 1991] and [Chagrov
and Chagrova 1995] for establishing the undecidability of certain first order
properties of modal calculi (or formulas). The difference of this scheme from
the previous one is that now we use calculi of the form

L(b) = Lo ® AzP ® ¢(a,b) V7,

where Az P satisfies one more condition besides those mentioned above:
it must be first order definable on Kripke frames for Lg. If P : a — b
then the formula AzP A (¢(a,b) V ) is equivalent to AzP in the class of
Kripke frames for Ly and so is first order definable on that class or its any
subclass. And if P : a 4 b then by choosing an appropriate v one can
show that AxzP A (¢(a,b) V) is not first order definable on, say, countable
Kripke frames for Ly, as in [Chagrova 1989], or on finite frames for Ly, as in
[Chagrov and Chagrova 1995]. In this way the following theorem is proved:

THEOREM 4.17 (i) No algorithm is able to recognize the first order defin-
ability of modal formulas on the class of Kripke frames for S4 and even the
first order definability on countable (finite) Kripke frames for S4. The prop-
erties of first order definability and definability on countable (finite) Kripke
frames of intuitionistic formulas are undecidable as well.

(ii) The set of modal or intuitionistic formulas that are first order de-
finable on countable (finite) frames but are not first order definable on the

class of all (respectively, countable) Kripke frames mentioned in (i) is un-
decidable.

We conclude this section with two remarks. First, all undecidability
results above can be formulated in the stronger form of recursive insepa-
rability. For instance, the set of inconsistent calculi in NExtK4.t and the
set of calculi without FMP are recursively inseparable. And second, some
properties are not only undecidable but the families of calculi having them
are not recursively enumerable; for example, the set of consistent calculi in
NExtK4.t is not enumerable. However, for the majority of other properties
the problem of enumerability of the corresponding calculi is open.
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4.5 Semantical consequence

So far we have dealt with only syntactical formalizations of logical entail-
ment. However, sometimes a semantical approach is preferable. Say that a
formula ¢ is a semantical consequence of a formula ¢ in a class of frames
C if ¢ is valid in all frames in C validating 1. (One can consider also the
local, i.e., point-wise variant of this relation.) Note that ¢ is a consequence
of ¢ in the class of, say, Kripke frames for S4 iff ¢ is a consequence of
(Op — O2%p) A (Op — p) A% in the class of all Kripke frames. But the
consequence relation on finite frames is not expressible by modal formulas
(as was shown in [Chagrov 1995], if (Op — O%p) A ¢ is valid in arbitrarily
large finite rooted frames then it is valid in some infinite rooted frame as
well).

In parallel with constructing and proving the undecidability of modal and
si-calculi we can obtain the following

THEOREM 4.18 The semantical consequence relation in the class of all
(K4-, S4-, Int-) Kripke frames is undecidable. Moreover, if = denotes one

of these relations then there is a formula v (a formula @) such that the set
{¢: ¢ |E ¢} is undecidable.

In a sense, formulas ¢ and ¢, for which {p : ¢ |E= ¢} is undecidable are
analogous to undecidable calculi and formulas, respectively. However, this
analogy is far from being perfect: for every formula v, the sets {p : ¢ I ¢}
and {¢ : ¥ F* ¢} are recursively enumerable, which contrasts with

THEOREM 4.19 (Thomason 1975a) There exists a formula ¢ such that
{p: 9 |= p} is a complete I} set.

Unfortunately, Thomason’s [1974b, 1975b, 1975¢] results have not been
transferred so far to transitive frames, although this does not seem to be
absolutely impossible.

Chagrov [1990a] (see also [Chagrov and Chagrova 1995]) developed a tech-
nique for proving the analog of Theorem 4.18 for the consequence relation
on all (K4-, S4-, GL-, Int-) finite frames. Moreover, since this relation is
clearly enumerable, instead of “undecidable” one can use “not enumerable”.

4.6 Complexity problems

Having proved that a given logic is decidable, we are facing the problem of
finding an optimal (in one sense or another) decision algorithm for it. The
complexity of decision algorithms for many standard modal and si-logics is
determined by the size of minimal frames separating formulas from those
logics. For instance, as was shown by Jaskowski (1936) and McKinsey
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(1941), for every ¢ ¢ S4 (or ¢ ¢ Int) there is a frame § | S4 with
< 208ubsl hoints such that § = . The same upper bound is usually
obtained by the standard filtration. Is it possible to reduce the exponential
upper bound to the polynomial one? This question was raised by Kuznetsov
[1975] for Int. It turned out, however, that it concerns not only Int. First,
Kuznetsov observed (for the proof see [Kuznetsov 1979]) that if the answer
to his question is positive, i.e., Int has polynomial FMP, then the problem
“Are Int and CI polynomially equivalent?” has a positive solution as well.
(Logics Ly and Lo are polynomially equivalent if there are polynomial time
transformations f and g of formulas such that p € Ly iff f(p) € Lo and
€ Ly iff g(p) € Ly.) Then Statman [1979] showed that the problem “p €
Int?” is PSP AC E-complete and so Kuznetsov’s problem is equivalent to
one of the “hopeless” complexity problems, namely “NP = PSPACE?”.

Complezity function

For a logic L with FMP, we introduce the complezity function

fu(n) = max min |§],
YEL  FlEe
where [(p), the length of ¢, is the number of subformulas in ¢ and |§| the

number of points in §. If there is a constant ¢ such that
fr(n) <2°" (or fr,(n) <nor fr(n) <c-n),

L is said to have the exponential (respectively, polynomial or linear) finite
model property. The following result shows that Int does not have polyno-
mial FMP.

THEOREM 4.20 (Zakharyaschev and Popov 1979) log, fint(n) < n.

Proof The exponential upper bound is well known and to establish the
lower one it is sufficient to use the formulas

n—1

Bn= N\ (pis1 = @ir)) V 0ir1 = @i1) = @) = (-o1 = @) V (01 = @)
i=1

It is not hard to see that §,, ¢ Int and every refutation frame for j3,, contains
the full binary tree of depth n as a subframe. a

Likewise the same result can be proved for many other standard super-
intuitionistic and modal logics whose FMP is established by the usual fil-
tration and whose frames contain full binary trees of arbitrary finite depth.
Such are, for instance, KC, SL, K4, S4, GL. In the case of K the length of
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formulas that play the role of 3,, is not a linear but a square function of n,
which means that fx(n) > 2V°", for some constant ¢ > 0, and so K does
not have polynomial FMP either. As was shown in [Zakharyaschev 1996],
all cofinal subframe modal and si-logics have exponential FMP. It seems
plausible that log, fr,(n) < n for every consistent si-logic L different from
Cl and axiomatizable by formulas in one variable.

The construction of Theorem 4.20 does not work for logics whose frames
do not contain arbitrarily large full binary trees. Such are, for instance,
logics of finite width or of finite depth, and the following was proved in
[Chagrov 1983].

THEOREM 4.21 (i) The minimal logics of widthn < w in NExtK4, NExtS4,
NExtGrz, NExtGL, ExtInt have polynomial FMP.

(ii) Lin and all logics containing S4.3 have linear FMP.

(iii) The minimal logics of depth n in NExtGrz, NExtGL, ExtInt have
polynomial FMP, with the power of the corresponding polynomial <n — 1.

(iv) The minimal logics of depth n in NExtK4, NExtS4 have polynomial
FMP, with the power of the corresponding polynomial < n.

Proof (i) is proved by two filtrations. First, with the help of the standard
filtration one constructs a finite frame separating a formula ¢ from the given
logic L and then, using the selective filtration, extracts from it a polynomial
separation frame: it suffices to take a point refuting ¢ and all maximal
points at which ¢ is false, for some Oy € Subyp (in the intuitionistic case
1 — x € Subyp should be considered). (ii) is proved analogously.

To illustrate the proof of (iii) and (iv), we consider the minimal logic L of
depth 3 in NExtGL. Suppose ¢ ¢ L. Then there is a transitive irreflexive
model 9 of depth < 3 refuting ¢ at its root r. Let O, for 1 < i < m, be
all “boxed” subformulas of . For every i € {1,...,m}, we choose a point
refuting 1;, if it exists. And then we do the same in the set =1, for every
chosen point z. Let 9V be the submodel formed by the selected points and
r. Clearly, it contains at most 1 +m + m? points. And by induction on the
construction of formulas in Suby one can easily show that 9t refutes ¢ at
r.

To prove the lower bound one can use the formulas

n n

an = (D@1 = p) A N\ Olgis = @) A
i=1 i=1
n

N\ C(OTATF (=pirs Ap) AD(OL = A O(=git1 A i)

i=1 =1

which are not in L and every separation frame for which contains the full
n-ary tree of depth 3, i.e., at least 1 + n + n? points. o
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a ax  az  ap bi by by

Figure 20.

However, even if frames for a logic with FMP do not contain full finite
binary trees its complexity function can grow very fast, witness the following
result of [Chagrov 1985a].

THEOREM 4.22 For every arithmetic function f(n), there are logics L of
width 1 in NExtK4 and of width 2 in ExtInt, NExtGrz, NExtGL having
FMP and such that fr.(n) > f(n).

Proof We construct a logic L € NExtK4.3 whose complexity function
grows faster than a given increasing arithmetic function f(n). Define L to
be the logic of all frames of the form shown in Fig. 20. To see that L satisfies
the property we need, consider the sequence of formulas

B1 =p1 Vv O(@Op: — (O(Op — p) — p)),

Bit1 = pit1 V O(Opip1 = Bi).
Since these formulas are refuted at points of the form a; in sufficiently large
frames depicted in Fig. 20, they are not in L. And since L contains the

formulas
—Bp = (O A/ )

)

Bn cannot be separated from L by a frame with < f(n) points. a

For logics of finite depth this theorem does not hold, since according
to the description of finitely generated universal frames in Section 1.2, for
every L € NExtK4BDy, (k > 3), we have

_2c-n
fL(n) S 22 } k—2

for some constant ¢ > 0. And as was shown in [Chagrov 1985a], one cannot
in general reduce this upper bound.

THEOREM 4.23 For every k > 3, there are logics L of depth k in NExtGrz,
NExtGL, ExtInt such that

.'2n
fi(n) > 22 } k=2
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Proof We illustrate the proof for ¥ = 3 in NExtGL. Let L be the logic
characterized by the class of rooted frames §,, for GL of depth 3 defined
as follows. §,, contains m dead ends, every non-empty set of them has a
focus, i.e., a point that sees precisely the dead ends in this set, and besides
the root there are no other points in §,,. It should be clear that L does not
contain the formulas

n

O(pit1 — pi) = /\ O0(pi = pit1)-
1 i=1

~.

Ym =

2

On the other hand -, is not refutable in a frame for L with < 2™ points
because the following formulas are in L:

A — A O(N\osin N\ =08,

XC{l,.,m},X#0 i€X igX,1<i<m
where 6; =p1 A ... AP ATPIE1 Ao APt |

Note, however, that the logics constructed in the proofs of the last two
theorems are not finitely axiomatizable. We know of only one “very com-
plex” calculus with FMP.

THEOREM 4.24 log, log, fkp(n) < n.

For the proof see [Chagrov and Zakharyaschev 1997], where the reader
can find also some other results in this direction.

Relation to complexity classes

Let us return to the original problem of optimizing decision algorithms for
the logics under consideration. First of all, it is to be noted that there is
a natural lower bound for decision algorithms which cannot be reduced—
we mean the complexity of decision procedures for Cl. This is clear for
(consistent) modal logics on the classical base; and by Glivenko’s Theorem,
every si-logic “contains” Cl in the form of the negated formulas. Thus,
if we manage to construct an effective decision procedure for some of our
logics then Cl can be decided by an equally effective algorithm. (We remind
the reader that all existing decision algorithms for Cl require exponential
time (of the number of variables in the tested formulas). On the other
hand, only polynomial time algorithms are regarded to be acceptable in
complexity theory.)

So, when analyzing the complexity of decision algorithms for modal and
si-logics, it is reasonable to compare them with decision algorithms for CI.
For example, if a logic L is polynomially equivalent to Cl then we can regard
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these two logics to be of the same complexity. Moreover, provided that
somebody finds a polynomial time decision procedure for Cl, a polynomial
time decision algorithm can be constructed for L as well. The following
theorem lists results obtained by [Ladner 1977], [Ono and Nakamura 1980],
[Chagrov 1983], and [Spaan 1993].

THEOREM 4.25 All logics mentioned in the formulation of Theorem /.21
are polynomially equivalent to Cl.

Proof We illustrate the proof only for the minimal logic L of depth 3 in
NExtGL using the method of [Kuznetsov 1979]. Suppose ¢ is a formula
of length n. By Theorem 4.21, the condition ¢ ¢ L means that 9 [~ ¢,
for some model M = (F,V) based on a frame § for GL of depth < 3 and
cardinality < ¢ -n?. We describe this observation by means of classical
formulas, understanding their variables as follows. Let x, y, z be names
(numbers) of points in §, for 1 < z,y,z < ¢-n?. With every pair (x,y) of
points in § we associate a variable p,, whose meaning is “z sees y”. And
with every ¢ € Subyp and every x we associate a variable ¢¥ which means
“ep is true at ”. Denote by a the conjunction

G NG N NG

cn?2®

It means that ¢ is true in 9. And let 8 be the conjunction of the following
formulas under all possible values of their subscripts:

WPexy Py NDPyz = Pzz, q;1/1 A4 _|q1z/)7

C"I’L2

@Yo ngY, Vet v, Ve N (pay > a)).
y=1
(The first two formulas say that R is irreflexive and transitive and the rest
simulate the truth-relation in 90t.) Finally, we define a formula saying that
our frame is of depth < 3:

Y= /\ _‘(pzy A Dy /\pzu)-

1<z,y,z,u<c-n?

The formula 3AyA—a is of length < 50(¢-n?)® and can be clearly constructed
by an algorithm working at most linear time of the length of ¢. It is readily
seen that ¢ ¢ L iff BAyA—a is satisfiable in Cl. Thus we have polynomially
reduced the derivability problem in L to that in Cl. Since the converse
reduction is trivial, L and Cl are polynomially equivalent. a

The reader must have noticed that Theorem 4.25 lists almost all logics
known to have polynomial FMP. Kuznetsov [1975] conjectured that every
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calculus having polynomial FMP is polynomially equivalent to Cl. This
conjecture is closely related to some problems in the complexity theory of
algorithms. We remind the reader that NP is the class of problems that
can be solved by polynomial time algorithms on nondeterministic (Turing)
machines. An IN P-complete problem is a problem in N P to which all other
problems in N P are polynomially reducible. (For more detailed definitions
consult [Garey and Johnson 1979].) The most popular N P-complete prob-
lem is the satisfiability problem for Boolean formulas, i.e., the nonderiv-
ability problem for Cl. So the nonderivability problem for all logics listed
Theorem 4.25 is IN P-complete and Kuznetsov’s conjecture is equivalent to
a positive solution to the problem whether the nonderivability problem for
every calculus with polynomial FMP is IN P-complete.

Note that if coNP = NP (for the definition of the class coN P see
[Garey and Johnson 1979]; we just mention that the derivability problem
in Cl is coN P-complete) then Kuznetsov’s conjecture does hold. But
since “coNP = INP?” belongs to the list of “unsolvable” problems un-
der the current state of knowledge, it may be of interest to find out whether
Kuznetsov’s conjecture implies coN P = N P.

Another complexity class we consider here is the class PSPACE of
problems that can be solved by polynomial space algorithms. A typical
example of a PSP AC E-complete problem is the truth problem for quan-
tified Boolean formulas. The following theorem (which summarizes results
obtained by Ladner [1977], Statman [1979], Chagrov [1985a], Halpern and
Moses [1992] and Spaan [1993]) lists some PSP AC E-complete logics.

THEOREM 4.26 The nonderivability problem (and so the derivability prob-
lem) in the following logics is PSP AC E-complete: Int, KC, K, K® K,
S4, S4® S4, S5® S5, GL, Grz, K.t and K4.t.

It follows in particular that complexity is not preserved under the for-
mation of fusions of logics (under the assumption NP # PSPACE),
since nonderivability in S5 is N P-complete. For more information on the
preservation of complexity under fusions consult [Spaan 1993].

Finally we note that the nonderivability problem in logics with the univer-
sal modality or common knowledge operator is mostly even EX PTIM E-
complete, witness K,, [Spaan 1993] and S4EC, [Halpern and Moses 1992].

5 APPENDIX
We conclude this chapter with a (by no means complete) list of references for
those directions of research in modal logic that were not considered above:

e Congruential logics. These are modal logics that do not necessar-
ily contain the distribution axiom O(p — ¢) — (Op — Og) but are
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closed under modus ponens and the congruence rule p <» ¢/0Op + Ogq.
Segerberg [1971] and Chellas [1980] define a semantics for these logics;
Lewis [1974] proves FMP of all congruential non-iterative logics and
Surendonk [1996] shows that they are canonical. Dosen [1988] consid-
ers duality between algebras and neighbourhood frames and Kracht
and Wolter [1997a] study embeddings into normal bimodal logics.

Modal logics with graded modalities. The truth-relation for their pos-
sibility operators <,, is defined as follows: z = <,,p iff there exist at
least n points accessible from z at which p holds. An early reference
is [Fine 1972]; more recent are [van der Hoek 1992] (applications to
epistemic logic) and [Cerrato 1994] (FMP and decidability).

Modal logics with the difference operator or with nominals (or names).
The semantics of nominals is similar to that of propositional variables;
the difference is that a nominal is true at exactly one point in a frame.
For the difference operator [#], we have z |= [#]p iff p is true every-
where except z. De Rijke [1993], Blackburn [1993] and Goranko and
Gargov [1993] study the completeness and expressive power of systems
of that sort. Closely related to the difference operator is the modal
operator [i] for inaccessible worlds: z |= [i]p iff p is true in all worlds
which are not accessible from z, see [Humberstone 1983] and [Goranko
1990a].

Modal logics with dyadic or even polyadic operators. For duality theory
in this case see [Goldblatt 1989]. An extensive study of Sahlqvist-
type theorems with applications to polyadic logics is [Venema 1991].
For connections with the theory of relational algebras see [Mikulas
1995] and [Marx 1995]. In those dissertations the reader can find also
recent results on arrow logic, i.e., a certain type of polyadic logic which
is interpreted in Kripke frames built from arrows. An embedding
of polyadic logics into polymodal logics is discussed in [Kracht and
Wolter 1997b].

Bisimulations. Bisimulations were introduced in modal logic by van
Benthem [1983] to characterize its expressive power; see also [de Rijke
1996]. Visser [1996] used bisimulations to prove uniform interpolation.
Recently, bisimulations have attracted attention because they form a
common tool in modal logic and process theory. We refer the reader
to collection [Ponse et al. 1996] for information on this subject.

Modal logics with fixed point operators, i.e., modal logics enriched by
operators forming the least and greatest fixed points of monotone
formulas. These systems are also called modal p-calculi. Under this
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name they were introduced and studied by Kozen [1983, 1988]; see
also [Walukiewicz 1993, 1996] and [Bosangue and Kwiatkowska 1996].

e Proof theory. Early references to studies of sequent calculi and natural
deduction systems for a few modal logics can be found in Basic Modal
Logic. More recently, (non-standard) sequent calculi for modal log-
ics have been considered by Dosen [1985b], Masini [1992] and Avron
[1996]; see also collection [Wansing 1996] and the chapter Sequent
systems for modal logics in this Handbook. For natural deduction
systems see Borghuis [1993]; tableau systems for modal and tense
logics were constructed in [Fitting 1983], [Rautenberg 1983], [Gore
1994] and [Kashima 1994]. Orlowska [1996] develops relational proof
systems. Display calculi for modal logics were introduced by Belnap
[1982]; see also [Wansing 1994] and collection [Wansing 1996].
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