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M� ZAKHARYASCHEV� F� WOLTER� AND A� CHAGROV

ADVANCED MODAL LOGIC

This chapter is a continuation of the preceding one� and we begin it at the
place where the authors of Basic Modal Logic left us about �fteen years
ago� Concluding his historical overview� Krister Segerberg wrote� �Where
we stand today is di�cult to say� Is the picture beginning to break up�
or is it just the contemporary observer�s perennial problem of putting his
own time into perspective�� So� where did modal logic of the 	
��s stand�
Where does it stand now� Modal logicians working in philosophy� computer
science� arti�cial intelligence� linguistics or some other �elds would probably
give di
erent answers to these questions� Our interpretation of the history
of modal logic and view on its future is based upon understanding it as part
of mathematical logic�

Modal logicians of the First Wave constructed and studied modal systems
trying to formalize a few kinds of necessity�like and possibility�like opera�
tors� The industrialization of the Second Wave began with the discovery
of a deep connection between modal logics on the one hand and relational
and algebraic structures on the other� which opened the door for creating
many new systems of both arti�cial and natural origin� Other disciplines�
the foundations of mathematics� computer science� arti�cial intelligence�
etc��brought �or rediscovered�� more� �This framework has had enormous
in�uence� not only just on the logic of necessity and possibility� but in other
areas as well� In particular� the ideas in this approach have been applied
to develop formalisms for describing many other kinds of structures and
processes in computer science� giving the subject applications that would
have probably surprised the subject�s founders and early detractors alike�
�Barwise and Moss 	

��� Even two or three mathematical objects may lead
to useful generalizations� It is no wonder then that this huge family of logics
gave rise to an abstract notion �or rather notions� of a modal logic� which
in turn put forward the problem of developing a general theory for it�
Big classes of modal systems were considered already in the 	
��s� say

extensions of S� �Scroggs 	
�	� or S� �Dummett and Lemmon 	
�
�� Com�
pleteness theorems of Lemmon and Scott �	
����� Bull �	
��b� and Segerberg
�	
�	� demonstrated that many logics� formerly investigated �piecewise��

�One of the celebrities in modal logic�the G�odel�L�ob provability logic GL�was �rst
introduced by Segerberg ������ as an 	arti�cial
 system under the name K�W�

�This book was written in �����
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have in fact very much in common and can be treated by the same meth�
ods� A need for a uniting theory became obvious� �There are two main
lacunae in recent work on modal logic� a lack of general results and a lack
of negative results� This or that logic is shown to have such and such a prop�
erty� but very little is known about the scope or bounds of the property�
Thus there are numerous results on completeness� decidability� �nite model
property� compactness� etc�� but very few general or negative results�� wrote
Fine �	
��c�� The creation of duality theory between relational and algebraic
semantics ��Lemmon 	
��a�b�� �Goldblatt 	
��a�b��� originated actually by
J�onsson and Tarski �	
�	�� the establishment of the connection between
modal logics and varieties of modal algebras ��Kuznetsov 	
�	�� Maksimova
and Rybakov �	
���� �Blok 	
����� and between modal and �rst and higher
order languages ��Fine 	
��b�� �van Benthem 	
���� added those mathemat�
ical ingredients that were necessary to distinguish modal logic as a separate
branch of mathematical logic�

On the other hand� various particular systems became subjects of more
special disciplines� like provability logic� deontic logic� tense logic� etc�� which
has found re�ection in the corresponding chapters of this Handbook�

In the 	
��s and 	

�s modal logic was developing both �in width�
and �in depth�� which made it more di�cult for us to select material for
this chapter� The expansion �in width� has brought in sight new interest�
ing types of modal operators� thus demonstrating again the great expres�
sive power of propositional modal languages� They include� for instance�
polyadic operators� graded modalities� the �xed point and di
erence op�
erators� We hope the corresponding systems will be considered in detail
elsewhere in the Handbook� in this chapter they are brie�y discussed in the
appendix� where the reader can �nd enough references�

Instead of trying to cover the whole variety of existing types of modal
operators� we decided to restrict attention mainly to the classes of normal
�and quasi�normal� uni� and polymodal logics and follow �in depth� the
way taken by Bull and Segerberg in Basic Modal Logic� the more so that
this corresponds to our own scienti�c interests�

Having gone over from considering individual modal systems to big classes
of them� we are certainly interested in developing general methods suitable
for handling modal logics en masse� This somewhat changes the standard
set of tools for dealing with logics and gives rise to new directions of research�
First� we are almost completely deprived of proof�theoretic methods like
Gentzen�style systems or natural deduction� Although proof theory has
been developed for a number of important modal logics� it can hardly be
extended to reasonably representative families� �Proof theory is discussed
in the chapter Sequent systems for modal logics� some references to recent
results can be found in the appendix��
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In fact� modern modal logic is primarily based upon the frame�theoretic
and algebraic approaches� The link connecting syntactical representations
of logics and their semantics is general completeness theory which stems
from the pioneering results of Bull �	
��b�� Fine �	
��c�� Sahlqvist �	
����
Goldblatt and Thomason �	
���� Completeness theorems are usually the
�rst step in understanding various properties of logics� especially those that
have semantic or algebraic equivalents� A classical example is Maksimova�s
�	
�
� investigation of the interpolation property of normal modal logics
containing S�� or decidability results based on completeness with respect to
�good� classes of frames� Completeness theory provides means for axiom�
atizing logics determined by given frame classes and characterizes those of
them that are modal axiomatic�

Standard families of modal logics are endowed with the lattice structure
induced by the set�theoretic inclusion� This gives rise to another line of
studies in modal logic� addressing questions like �what are co�atoms in the
lattice�� �i�e�� what are maximal consistent logics in the family��� �are there
in�nite ascending chains�� �i�e�� are all logics in the family �nitely axioma�
tizable��� etc� From the algebraic standpoint a lattice of logics corresponds
to a lattice of subvarieties of some �xed variety of modal algebras� which
opens a way for a fruitful interface with a well�developed �eld in universal
algebra�

A striking connection between �geometrical� properties of modal formu�
las� completeness� axiomatizability and

T
�prime elements in the lattice of

modal logics was discovered by Jankov �	
��� 	
�
�� Blok �	
��� 	
��b�
and Rautenberg �	
�
�� These observations gave an impetus to a project
of constructing frame�theoretic languages which are able to characterize
the �geometry� and �topology� of frames for modal logics ��Zakharyaschev
	
��� 	

��� �Wolter 	

�d�� and thereby provide new tools for proving their
properties and clarifying the structure of their lattices�

One more interesting direction of studies� arising only when we deal with
big classes of logics� concerns the algorithmic problem of recognizing prop�
erties of ��nitely axiomatizable� logics� Having undecidable �nitely axiom�
atizable logics in a given class ��Thomason 	
��a�� �Shehtman 	
��b��� it
is tempting to conjecture that non�trivial properties of logics in this class
are undecidable� However� unlike Rice�s Theorem in recursion theory� some
important properties turn out to be decidable� witness the decidability of
interpolation above S� ��Maksimova 	
�
��� The machinery for proving the
undecidability of various properties �e�g� Kripke completeness and decid�
ability� was developed in �Thomason 	
��� and �Chagrov 	

�b�c��

Thomason �	
��� proved the undecidability of Kripke completeness �rst
in the class of polymodal logics and then transferred it to that of unimodal
ones� In fact� Thomason�s embedding turns out to be an isomorphism from
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the lattice of logics with n necessity operators onto an interval in the lat�
tice of unimodal logics� preserving many standard properties ��Kracht and
Wolter 	

�a��� Such embeddings are interesting not only from the theoret�
ical point of view but can also serve as a vehicle for reducing the study of
one class of logics to another� Perhaps the best known example of such a
reduction is the G�odel translation of intuitionistic logic and its extensions
into normal modal logics above S� ��Maksimova and Rybakov 	
���� �Blok
	
���� �Esakia 	
�
a�b��� We will take advantage of this translation to give
a brief survey of results in the �eld of superintuitionistic logics which actu�
ally were always studied in parallel with modal logics �see also Section � in
Intuitionistic Logic��

Listed above are the most important general directions in mathemati�
cal modal logic we are going to concentrate on in this chapter� They� of
course� do not cover the whole discipline� Other topics� for instance� modal
systems with quanti�ers� the relationship between the propositional modal
language and the �rst �or higher� order classical language� or proof theory
are considered in other chapters of the Handbook�

It should be emphasized once again that the reader will �nd no discus�
sions of particular modal systems in this chapter� Modal logic is presented
here as a mathematical theory analyzing big families of logics and thereby
providing us with powerful methods for handling concrete ones� �In some
cases we illustrate technically complex methods by considering concrete log�
ics� for instance Rybakov�s �	

�� technique of proving the decidability of
the admissibility problem for inference rules is explained only for GL��
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league Marcus Kracht who not only helped us with numerous advices but
also supplied us with some material for this chapter� We are grateful to
Hiroakira Ono and the members of his Logic Group in Japan Advanced
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sphere that surrounded the �rst two authors during their stay in JAIST�
where the bulk of the chapter was written� Thanks are also due to Johan
van Benthem� Wim Blok� Dov Gabbay� Silvio Ghilardi� Krister Segerberg�
Heinrich Wansing for their helpful comments and stimulating discussions�
And certainly our work would be impossible without constant support and
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Partly the work of the �rst author was �nanced by the Alexander von
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	 UNIMODAL LOGICS

We begin by considering normal modal logics with one necessity operator�
which were introduced in Section � of Basic Modal Logic� Recall that each
such logic is a set of modal formulas �in the language with the primitive
connectives �� �� �� �� �� containing all classical tautologies� the modal
axiom ��p � q� � ��p � �q�� and closed under substitution� modus
ponens and necessitation �����

��� The lattice NExtK

First let us have a look at the class of normal modal logics from a purely
syntactic point of view� Given a normal modal logic L�� we denote by
NExtL� the family of its normal extensions� NExtK is thus the class of all
normal modal logics� Each logic L in NExtL� can be obtained by adding
to L� a set of modal formulas � and taking the closure under the inference
rules mentioned above� in symbols this is denoted by

L � L� � ��
Formulas in � are called additional �or extra� axioms of L over L�� Formulas
� and � are said to be deductively equivalent in NExtL� if L��� � L����
For instance� �p � p and p � �p are deductively equivalent in NExtK�
both axiomatizing T� however ��p � p� � �p � �p� �� K� �For more in�
formation on the relation between these formulas see �Chellas and Segerberg
	

�� and �Williamson 	

����
We distinguish between two kinds of derivations from assumptions in a

logic L � NExtK� For a formula � and a set of formulas �� we write � �L �
if there is a derivation of � from formulas in L and � with the help of only
modus ponens� In this case the standard deduction theorem��� � �L � i

� �L � � ��holds� The fact of derivability of � from � in L using both
modus ponens and necessitation is denoted by � ��L �� in such a case we
say that � is globally derivable� from � in L� For this kind of derivation
we have the following variant of the deduction theorem which is proved by
induction on the length of derivations in the same manner as for classical
logic�

THEOREM 	�	 �Deduction� For every logic L � NExtK� all formulas �
and �� and all sets of formulas ��

�� � ��L � i� 	m 
 � � ��L ��m� � ��

where ��m� � ��� � � � � � �m� and �n� is � pre�xed by n boxes�

�This name is motivated by the semantical characterization of ��
L

to be given in

Theorem �����
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It is to be noted that in general no upper bound for m can be computed
even for a decidable L �see Theorem ����� However� if the formula

tran � �
�np� �

n��p

is in L�such L is called n�transitive�then we can clearly take m � n� In
particular� for every L � NExtK�� �� � ��L � i
 � ��L ��� � �� where
��� � � � ��� Moreover� a sort of conversion of this observation holds�
THEOREM 	�� The following conditions are equivalent for every logic L in
NExtK�
�i� L is n�transitive� for some n � ��
�ii� there exists a formula ��p� q� such that� for any �� � and ��

�� � ��L � i� � ��L ���� ���

Proof The implication �i� � �ii� is clear� To prove the converse� observe
�rst that ��p� q� ��L ��p� q� and so ��p� q�� p ��L q� By Theorem 	�	� we
then have ��p� q� ��L �

�np � q� for some n� Let q � �
n��p� Then

��p��n��p� ��L ��np � �n��p� And since p ��L �n��p� ��p��n��p� � L�

Consequently� tran � L� �

Remark� Note also that �i� is equivalent to the algebraic condition� the
variety of modal algebras for L has equationally de�nable principal congru�
ences� For more information on this and close results consult �Blok and
Pigozzi 	
����

The sum L��L� and intersection L� �L� of logics L�� L� � NExtL� are
clearly logics in NExtL� as well� The former can be axiomatized simply by
joining the axioms of L� and L�� To axiomatize the latter we require the
following de�nition� Given two formulas ��p�� � � � � pn� and ��p�� � � � � pm�
�whose variables are in the lists p�� � � � � pn and p�� � � � � pm� respectively��
denote by ��� the formula ��p�� � � � � pn� � ��pn��� � � � � pn�m��

THEOREM 	�� Let L� � L� � f�i � i � Ig and L� � L� � f�j � j � Jg�
Then

L� � L� � L� � f�m�i � �n�j � i � I� j � J� m� n 
 �g�
Proof Denote by L the logic in the right�hand side of the equality to be
established and suppose that � � L��L�� Then for somem�n 
 � and some
�nite I � and J � such that all ��i and �

�
j � for i � I �� j � J �� are substitution

instances of some �i� and �j� � for i
� � I � j� � J � we have

�
�m �

i�I�
��i � � � L�� �

�n �
j�J�

��j � � � L��
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from which �
i�I��j�J�

��k�l�m�n

��k��i � �l��j�� � � L�

and so � � L because �k��i��l��j is a substitution instance of �k�i���l�j� �
Thus� L� � L� 
 L� The converse inclusion is obvious� �

Although the sum of logics di
ers in general from their union� these two
operations have a few common important properties�

THEOREM 	�� The operation � is idempotent� commutative� associative
and distributes over �� the operation � distributes over �in�nite� sums� i�e��

L �
M
i�I

Li �
M
i�I
�L � Li��

It follows that hNExtL�����i is a complete distributive lattice� with L�
and the inconsistent logic� i�e�� the set For of all modal formulas� being its
zero and unit elements� respectively� and the set�theoretic 
 its correspond�
ing lattice order� Note� however� that � does not in general distribute over
in�nite intersections of logics� For otherwise we would have

�K������
�

��n��
�K��n�� �

�
��n��

�K������n���

which is a contradiction� since the logic in the left�hand side is consistent
�D� to be more precise�� while that in the right�hand side is not�
If we are interested in �nding a simple �in one sense or another� syntactic

representation of a logic L � NExtL�� we can distinguish �nite� recursive
and independent axiomatizations of L over L�� The former two notions
mean that L � L� � �� for some �nite or� respectively� recursive �� and
a set of axioms � is independent over L� if L �� L� �  for any proper
subset  of �� In the case when L� is K or any other �nitely axiomatizable
over K logic� we may omit mentioning L� and say simply that L is �nitely
�recursively� independently� axiomatizable�
It is fairly easy to see that L is not �nitely axiomatizable over L� i


there is an in�nite sequence of logics L� � L� � � � � in NExtL� such that
L �

L
i�� Li� This observation is known as Tarski	s criterion� �It is worth

noting that �nite axiomatizability is not preserved under �� For example�
using Tarski�s criterion� one can show that D � �K � �p � ��p� is not
�nitely axiomatizable�� The recursive axiomatizability of a logic L� as was
observed by Craig �	
���� is equivalent to the recursive enumerability of L�
As for independent axiomatizability� an interesting necessary condition can
be derived from �Kleyman 	
���� Suppose a normal modal logic L� has an
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independent axiomatization� Then� for every �nitely axiomatizable normal
modal logic L� � L�� the interval of logics

�L�� L�� � fL � NExtK � L� 
 L 
 L�g
contains an immediate predecessor of L�� Using this condition Chagrov and
Zakharyaschev �	

�a� constructed various logics in NExtK�� NExtS� and
NExtGrz without independent axiomatizations�
To understand the structure of the lattice NExtL� it may be useful to

look for a set � of formulas which is complete in the sense that its formulas
are able to axiomatize all logics in the class� and independent in the sense
that it contains no complete proper subsets� Such a set �if it exists� may be
called an axiomatic basis of NExtL�� The existence of an axiomatic basis
depends on whether every logic in the class can be represented as the sum
of �indecomposable� logics� A logic L � NExtL� is said to be

L
!irreducible

in NExtL� if for any family fLi � i � Ig of logics in NExtL�� L �
L

i�I Li
implies L � Li for some i � I � L is

L
!prime if for any family fLi � i � Ig�

L 
 L
i�I Li only if there is i � I such that L 
 Li� It is not hard to

see �using Theorem 	��� that a logic is
L
!irreducible i
 it is

L
!prime�

This does not hold� however� for the dual notions of
T
!irreducible and

T
!

prime logics� We have only one implication in general� if L is
T
!prime �i�e��T

i�I Li 
 L only if Li 
 L� for some i � I� then it is
T
!irreducible �i�e��

L �
T
i�I Li only if L � Li� for some i � I�� A formula � is said to be

prime in NExtL� if L� � � is
L
!prime in NExtL��

PROPOSITION 	�� Suppose a set of formulas � is complete for NExtL�
and contains no distinct deductively equivalent in NExtL� formulas� Then
� is an axiomatic basis for NExtL� i� every formula in � is prime�

Although the de�nitions above seem to be quite simple� in practice it
is not so easy to understand whether a given logic is

L
! or

T
!prime� at

least at the syntactical level� However� these notions turn out to be closely
related to the following lattice�theoretic concept of splitting for which in the
next section we shall provide a semantic characterization�
A pair �L�� L�� of logics in NExtL� is called a splitting pair in NExtL�

if it divides the lattice NExtL� into two disjoint parts� the �lter NExtL�
and the ideal �L�� L��� In this case we also say that L� splits and L� cosplits
NExtL��

THEOREM 	�� A logic L� splits NExtL� i� it is
T

prime in NExtL�� and

L� cosplits NExtL� i� it is
L


prime in NExtL�� Moreover� the following
conditions are equivalent�
�i� �L�� L�� is a splitting pair in NExtL��
�ii� L� is

T

prime in NExtL� and L� �

TfL � NExtL� � L �
 L�g�
�iii� L� is

L

prime in NExtL� and L� �

LfL � NExtL� � L �� L�g�
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Splittings were �rst introduced in lattice theory by Whitman �	
��� and
McKenzie �	
��� �see also �Day 	
���� �Jipsen and Rose 	

���� Jankov
�	
��� 	
��b� 	
�
�� Blok �	
��� and Rautenberg �	
��� started using split�
tings in non�classical logic�

A few standard normal modal logics are listed in Table 	� Note that
our notations are somewhat di
erent from those used in Basic Modal logic�
�A� was introduced by Artemov� see �Shavrukov 	

	�� The formulas Bn

bounding depth of frames are de�ned in Section 	� of Basic Modal Logic��

��� Semantics

The algebraic counterpart of a logic L � NExtK is the variety of modal
algebras validating L �for de�nitions consult Section 	� of Basic Modal
Logic�� Conversely� each variety �equationally de�nable class� V of modal
algebras determines the normal modal logic LogV � f� � �A � V A j� �g�
Thus we arrive at a dual isomorphism between the lattice NExtK and the
lattice of varieties of modal algebras� which makes it possible to exploit the
apparatus of universal algebra for studying modal logics�

It is often more convenient� however� to deal not with modal algebras
directly but with their relational representations discovered by J�onsson and
Tarski �	
�	� and now known as general frames� Each general frame F �
hW�R� P i is a hybrid of the usual Kripke frame hW�Ri and the modal algebra
F� � hP� ��W����������i in which the operations � and � are uniquely
determined by the accessibility relation R� for every X � P 
 �W �

�X � fx � W � �y �xRy � y � X�g� �X � ���X�

So� using general frames we can take advantage of both relational and alge�
braic semantics� To simplify notation� we denote general frames of the form
F �

�
W�R� �W

�
by F � hW�Ri� Such frames will be called Kripke frames�

Given a class of frames C� we write LogC to denote the logic determined by
C� i�e�� the set of formulas that are valid in all frames in C� it is called the
logic of C� If C consists of a single frame F� we write simply LogF�
Basic facts about duality between frames and algebras can be found in the

chapters Basic Modal Logic and Correspondence Theory� Here we remind
the reader of the de�nitions that will be important in what follows�

A frame G � hV� S�Qi is said to be a generated subframe of a frame
F � hW�R� P i if V 
 W is upward closed in F� i�e�� x � V and xRy imply
y � V � S � R � V and Q � fX � V � X � Pg� The smallest generated
subframe G of F containing a set X 
 W is called the subframe generated
by X � A frame F is rooted if there is x � W�a root of F�such that the
subframe of F generated by fxg is F itself�
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D � K��p � �p

T � K��p � p

KB � K� p� ��p

K� � K��p � ��p

K� � K���p� �p

Altn � K��p� � ��p� � p�� � � � � � ��p� � � � � � pn � pn���

D� � K����
S� � K���p � p

GL � K�����p � p�� �p

Grz � K�����p � �p�� p�� p

K��� � K����p� ��p

K��� � K����p ��q�� ��p ��q�
K��� � K������p � q� �����q � p�

S��� � S����p� ��p

S��� � S����p� ��p

S��� � S�����p � q� ����q � p�

Triv � K���p � p

Verum � K���p
S� � S�� p� ��p

K�B � K�� p � ��p

A� � GL���p � ����p � q� � ����q � p�

Dum � S������p � �p�� p�� ���p� p�

K�BWn � K��Vn
i���pi �

W
��i��j�n��pi � �pj ��pj��

K�BDn � K��Bn

K�n�m � K���np� �mp� for 	 � m � n

Table 	� A list of standard normal modal logics�
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A map f from W onto V is a reduction �or p�morphism� of a frame
F � hW�R� P i to G � hV� S�Qi if the following three conditions are satis�ed
for all x� y � W and X � Q

�R	� xRy implies f�x�Sf�y��

�R�� f�x�Sf�y� implies 	z � W �xRz � f�z� � f�y���

�R�� f���X� � P �

The operations of reduction and generating subframes are relational coun�
terparts of the algebraic operations of forming subalgebras and homomor�
phic images� respectively� and so preserve validity�
A frame F � hW�R� P i is di�erentiated if� for any x� y � W �

x � y i
 �X � P �x � X � y � X��

F is tight if
xRy i
 �X � P �x � �X � y � X��

Those frames that are both di
erentiated and tight are called re�ned� A
frame F is said to be compact if every subset X of P with the �nite in�
tersection property �i�e�� with

TX � �� � for any �nite subset X � of X � has
non�empty intersection� Finally� re�ned and compact frames are called de�
scriptive� A characteristic property of a descriptive F is that it is isomorphic
to its bidual �F���� The classes of all di
erentiated� tight� re�ned and de�
scriptive frames will be denoted by DF � T � R and D� respectively�
When representing frames in the form of diagrams� we denote by � ir�

re�exive points� by � re�exive ones� and by
�� ���� two�point clusters� An arrow

from x to y means that y is accessible from x� If the accessibility relation
is transitive� we draw arrows only to the immediate successors of x�

EXAMPLE 	�� �Van Benthem 	
�
� Let F � hW�R� P i be the frame whose
underlying Kripke frame is shown in Fig� 	 �� " 	 sees only � and the
subframe generated by � is transitive� and X 
 W is in P i
 either X is
�nite and � �� X or X is co�nite in W and � � X � It is easy to see that
P is closed under �� � and �� Clearly� F is re�ned� Suppose X is a subset
of P with the �nite intersection property� If X contains a �nite set then
obviously

TX �� �� And if X consists of only in�nite sets then � � TX �
Thus� F is descriptive�

A frame F is said to be ��generated� � a cardinal� if its dual F� is
a ��generated algebra�� Each modal logic L is determined by the free
�nitely generated algebras in the corresponding variety� i�e�� by the Tarski!
Lindenbaum �or canonical� algebras AL�n� for L in the language with n �

�An algebra is said to be ��generated if it contains a set X of cardinality � � such
that the closure of X under the algebra�s operations coincides with its universe�
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� � � � �� � �� " 	 � � 	 �� � �
transitive

nontransitive

Figure 	�

� variables� Their duals are denoted by FL�n� � hWL�n�� RL�n�� PL�n�i
and called the universal frames of rank n for L� Analogous notation and
terminology will be used for the free algebras AL��� with � generators�
Note that hWL���� RL���i is �isomorphic to� the canonical Kripke frame
for L with � variables �de�ned in Section 		 of Basic Modal Logic� and
PL��� is the collection of the truth�sets of formulas in the corresponding
canonical model� Unless otherwise stated� we will assume in what follows
that the language of the logics under consideration contains � variables�

An important property of the universal frame of rank � for L is that
every descriptive ���generated frame for L� �� � �� is a generated subframe
of FL���� Thus� the more information about universal frames for L we have�
the deeper our knowledge about the structure of arbitrary frames for L and
thereby about L itself�

Although in general universal frames for modal logics are very compli�
cated� considerable progress was made in clarifying the structure of the
upper part �points of �nite depth� of the universal frames of �nite rank
for logics in NExtK�� The studies in this direction were started actually
by Segerberg �	
�	�� Shehtman �	
��a� presented a general method of con�
structing the universal frames of �nite rank for logics in NExtS� with the
�nite model property� Later similar results were obtained by other authors�
see e�g� �Bellissima 	
���� The structure of free �nitely generated algebras
for S� was investigated by Blok �	
����

Let us try to understand �rst the constitution of an arbitrary transitive
re�ned frame F � hW�R� P i with n generators G�� � � � � Gn � P � De�ne V
to be the valuation of the set of variables # � fp�� � � � � png in F such that
x j� pi i
 x � Gi� Say that points x and y are #�equivalent� x �� y in
symbols� if the same variables in # are true at them� for X�Y 
 W we
write X �� Y if every point in X is #�equivalent to some point in Y and
vice versa� Let d�F� denote the depth� of F� if F is of in�nite depth� we
write d�F� ��� For d � d�F�� W�d and W�d are the sets of all points in F
of depth d and � d� respectively� W�d� W�d� etc� are de�ned analogously�
F�d is the subframe of F generated by W�d� The set of all successors
�predecessors� of points in a set X 
 W is denoted by X � �respectively�

�In Section �� of Basic Modal Logic d�F� was called the rank of F�
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X��� in the transitive case X� � X� �X and X� � X� �X are then the
upward and downward closure operations� A set X is said to be a cover for
a set Y in F if Y 
 X�� A point x is called an atom in F if fxg � P �

THEOREM 	�� Suppose F � hW�R� P i is a transitive re�ned n�generated
frame� for some n � �� Then
�i� each cluster in F contains � �n points�
�ii� for every �nite d � d�F�� W�d is a cover for W�d and contains at

most cn�d� distinct clusters� where

cn�	� � �
n " ��

n � 	� cn�m" 	� � cn�	� � �cn	�
�����cn	m
�

�iii� every point of �nite depth in F is an atom�

Proof �i� follows from the di
erentiatedness of F and the obvious fact that
precisely the same formulas �in p�� � � � � pn� are true under V at #�equivalent
points in the same cluster�
The proof of �ii� proceeds by induction on d� Let x � W�d� Since F is

transitive and W�d is �nite �by the induction hypothesis�� there exists a
non�empty upward closed in W�d set X �i�e�� X � X� �W�d� such that

x � X�� points in X see exactly the same points of depth � d and either

�u� v � X	w � u� �X w �� v �	�

or
�u� v � X �u �� v � �uRv�� ���

Such a setX is called d�cyclic� it is nondegenerate if �	� holds and degenerate
otherwise� One can readily show that the same formulas are true at #�
equivalent points in X � Since F is re�ned� X is then a cluster of depth
d"	� Thus� W�d 
W�d���� The upper bound for the number of distinct
clusters of depth d " 	 follows from the di
erentiatedness of F and the
de�nition of d�cyclic sets�
To establish �iii�� for every point x of depth d " 	 one can construct

by induction on d a formula �expressing the de�nition of the d�cyclic set
containing x� which is true in F under V only at x� For details consult

�Chagrov and Zakharyaschev 	

��� �

It is fairly easy now to construct the �generated� subframe F��
K�
�n� of the

universal frame of rank n for K� consisting of �nite depth points� Indeed�
FK��n� is n�generated� re�ned and so has the form as described in Theo�
rem 	��� On the other hand� it is universal and contains any n�generated
descriptive frame as a generated subframe� which means roughly that it con�
tains all possible points of �nite depth that can exist in n�generated re�ned
frames�
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More precisely� assuming that each point is assigned the set of variables
in # that are true at it� we begin constructing a frame GK��n� by putting
at depth 	 in it �n non�#�equivalent degenerate clusters and ��

n � 	 non�
#�equivalent non�degenerate clusters with � �n non�#�equivalent points�
Suppose that G�d

K�
�n� is already constructed� Then for every antichain a of

clusters in G�d
K�
�n� containing at least one cluster of depth d and di
erent

from a singleton with a non�degenerate cluster� we add to G�d
K�
�n� copies

of all �n " ��
n � 	 clusters of depth 	 so that they would be inaccessible

from each other and could see only the clusters in a and their successors�
And for every singleton a � fCg with a non�degenerate cluster C� we add
to G�d

K�
�n� copies of those clusters of depth 	 which are not #�equivalent to

any subset of C �otherwise the frame will not be re�ned� so that again they
would be mutually inaccessible and could see only C and its successors in
G
�d
K�
�n��

Let NK��n� � hGK��n��UK��n�i be the resulting model �the relational
component of GK��n� is completely determined by the construction and its
set of possible values is the collection of the truth�sets of formulas in GK��n�
under UK��n��� It is not hard to show that GK��n� is atomic� Moreover� for
every point x in this frame one can construct a formula ��p�� � � � � pn� such
that x �j� � and� for any frame F� F �j� � i
 there is a generated subframe of F
reducible to the subframe of GK��n� generated by x� It follows in particular

that GK��n� is re�ned� Thus� every G
�d
K�
�n� is a generated subframe of

FK��n�� On the other hand� by Theorem 	��� FK��n� contains no clusters

of depth � d di
erent from those in G�d
K�
�n� and so F��

K�
�n� is isomorphic to

GK��n�� It worth noting also that� since K� has the �nite model property�
it is characterized by F��

K�
�n�� and so FK��n� is isomorphic to the bidual of

F��
K�
�n��

The universal frame FL�n� for an arbitrary consistent logic L in NExtK�
is a generated subframe of FK��n�� It can be constructed by removing
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from FK��n� those points at which some formulas in L are refuted �under
VK��n��� For example� F

��
S�
�n� is obtained by removing from F��

K�
�n�

all irre�exive points and their predecessors� In other words� F��
S�
�n� can

be constructed in the same way as F��
K�
�n� but using only non�degenerate

clusters� F��
S�
�	� �the corresponding model� to be more exact� is shown in

Fig� �� where � denotes the cluster with two points at one of which p� is
true� To construct F��

Grz
�n� and F��

GL
�n�� we take only simple clusters and

degenerate clusters� respectively�
In general� this method of constructing universal frames does not work

for logics with nontransitive frames� However� using the fact that K is
characterized by the class of �nite intransitive irre�exive trees �see Section
	� of Basic Modal Logic�� in the same manner as above one can construct
an intransitive irre�exive model characterizing K and such that FK�n� is
isomorphic to the bidual of the frame associated with this model�
Let us consider now the semantical meaning of splittings� In view of the

following observation we focus attention only on splittings by the logics of
�nite rooted frames�

THEOREM 	�
 If L� splits NExtL� and L� has the �nite model property
then L� � LogF� for some �nite rooted frame F validating L��

Proof Since L� in the splitting pair �L�� L�� is a proper extension of L��
there is a �nite frame G such that G j� L� and G �j� L�� It follows that
LogG 
 L�� As we shall see later �Corollary 	����� every extension of a
tabular logic is also tabular� So L� � LogF for some �nite F j� L�� And

since L� is
T
!prime� F must be rooted� �

We say that a frame F splits NExtL� if LogF splits NExtL�� The logic L�
of the splitting pair �LogF� L�� is denoted by L��F and called the splitting
of NExtL� by F� This notation re�ects the fact that L� is the smallest logic
in NExtL� which is not validated by F�

EXAMPLE 	�	� We show that D � K��� Recall that D � K � �� is
characterized by the class of serial frames �in which every point has a suc�
cessor�� So if � j� L then L 
 Log�� otherwise no frame for L has a dead
end� which means that �� � L and D 
 L� The inconsistent logic For can
be represented as D���
To illustrate some applications of splittings we require a few de�nitions�

Given L � NExtL�� we say that the axiomatization problem for L above
L� is decidable if the set f� � L� � � � Lg is recursive� L is strictly
Kripke complete above L� if no other logic in NExtL� has exactly the same
Kripke frames as L� If all frames in a set F split NExtL�� we call the logicLfL��F � F � Fg the union�splitting of NExtL� and denote it by L��F �
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EXAMPLE 	�		 Grz is not a splitting of NExtS�� However� it is a union�

splitting� Grz � S��f
�� ���� �
�� ����
�
�
g� S��� � S��

�� ���� � A frame may split the
lattice NExtL��F but not NExtL�� e�g� � splits NExtK�� but does not
split NExtK�

THEOREM 	�	� Suppose L � NExtL� and L � �� � � �L��F��� � � ���Fn� for
a sequence F�� � � � �Fn of sets of �nite rooted frames�
�i� If F �

Sn
i�� Fi is �nite and L is decidable then the axiomatization

problem for L above L� is decidable� More precisely�

f� � L� � � � Lg � f� � L � �F � F F �j� �g�
�ii� If L is Kripke complete then L is strictly Kripke complete above L��
�iii� The immediate predecessors of L in NExtL� are precisely the logics

L � LogF� for F � F such that F is not a reduct of a generated subframe of
another frame in F �

Proof �i� is left to the reader as an easy exercise�
�ii� Let L� be a logic in NExtL� with the same Kripke frames as L� Then

obviously L� 
 L� On the other hand� the frames in F do not validate L�

and so L 
 L��
�iii� If L� is an immediate predecessor of L in NExtL� then F j� L�� for

some F � F � Therefore� L� 
 L�LogF � L and so L� � L�LogF� Suppose
now that F is not a reduct of a generated subframe of another frame in F
and L � LogF 
 L� � L� Then L� 
 LogF� for some F� � F � and hence
F� � F� L� � L � LogF� �

As follows from Theorem 	�	� and Example 	�	�� For has exactly two
immediate predecessorsVerum � Log� and Triv � Log� �and each consis�
tent normal modal logic is contained in one of them�� This result is known
as Makinson�s �	
�	� Theorem� Moreover� the axiomatization problem for
For is decidable� i�e�� there is an algorithm which decides� given a formula
� whether K � � is consistent� Likewise� since D � K ��� is decidable�
there is an algorithm recognizing� given �� whether D � K � �� We shall
see later in Section ��� that in fact not so many properties of logics are
decidable �e�g� the axiomatization problem for K � ��� is undecidable�
see Theorem ��	�� and that Theorem 	�	� �i� provides the main method for
proving decidability results of this type�
To determine whether a �nite rooted frame F � hW�Ri splits NExtL��

we need the formulas de�ned below�

 F � fpx � �py � x� y � W� xRyg �
fpx � ��py � x� y � W� �xRyg �
fpx � �py � x� y � W� x �� yg�
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	F �
�
 F� 
F � 	F �

�
fpx � x � Wg�

The meaning of 
F is explained by the following lemma� in which

�
��� � f�n� � n � �g�

LEMMA 	�	� For any �nite F with root r� the set of formulas fprg����
F
is satis�able in a frame G i� there is a generated subframe H of G reducible
to F� Moreover� if F is cycle free �i�e�� contains no path from a point to
itself� then � can be replaced by n � d�F� " 	�

Proof ��� Suppose fprg � ���
F is satis�ed at a point u in G� It is not
hard to check that the map f de�ned by f�v� � x i
 v j� px is a reduction of
the subframe H of G generated by u to F� If F is cycle free and fprg����
F
is satis�ed at u then d�H� � d�F�� For otherwise an ascending chain of n"	
points starts from u and so F must contain a cycle�
��� Let f be a reduction of H to F� De�ne a valuation in G so that

v j� px i
 v � f���x�� The reader can readily verify that under this
valuation fprg � ���
F is true at any point in f���r�� �

LEMMA 	�	� For every logic L � NExtK and every �nite rooted frame F�
F j� L i� �n � � ��n
F � �pr �� L�

Proof The implication ��� follows from Lemma 	�	�� Suppose now that
�
�n
F � �pr �� L� for every n � �� Then the set fprg � ���
F is L�
consistent and so it is satis�ed in a frame G for L� By Lemma 	�	�� a
generated subframe of G is reducible to F� and hence F j� L� �

We are now in a position to characterize �nite frames that split NExtL�
and to axiomatize splittings�

THEOREM 	�	� Suppose F is a �nite frame with root r and L� � NExtK�
Then F splits NExtL� i� there is n � � such that� for every frame G j� L��
��n
F�pr is satis�able in G only if ��m
F�pr is satis�able in G for every
m � n� In this case L��F � L� ���n
F � �pr�

Proof ��� Suppose otherwise and consider a sequence fGn � n � �g of
frames for L� such that �

�n
F � pr is satis�able in Gn but �
�m
F � pr is

not satis�ed� for somem � n� By Lemma 	�	�� the former condition impliesT
n�� LogGn 
 LogF� while the latter means that F �j� LogGn� for every

n � �� contrary to LogF being
T
!prime�

��� We show that L��F � L� � ��n
F � �pr� Suppose L �
 LogF�
Then� by Lemma 	�	�� there is m � � such that ��m
F � �pr � L� It

follows that ��n
F � �pr � L and so L� ���n
F � �pr 
 L� �
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For more general versions of this criterion consult �Kracht 	

�� and
�Wolter 	

���

COROLLARY 	�	� �Rautenberg 	
��� Suppose that L� � NExt�K�tran��
for some n � �� Then every �nite rooted frame F for L� splits NExtL� and
L��F � L� ���n
F � �pr�

In particular� every transitive �nite rooted frame splits NExtK�� This
result may also be obtained using the fact that all �nite subdirectly irre�
ducible algebras split the lattice of subvarieties of a variety with equationally
de�nable principal congruences �see �Blok and Pigozzi 	
����� However� not
every frame splits NExtK�

THEOREM 	�	� �Blok 	
��� A �nite rooted frame F splits NExtK i� it is
cycle free� In this case K�F �K���n
F � �pr� where n � d�F��

Proof That frames with cycles do not split NExtK follows from the fact
that K is characterized by cycle free �nite rooted frames� And the converse
is an immediate consequence of Lemma 	�	� and Theorem 	�	�� �

An element x �� � of a complete lattice L is called an atom in L if the zero
element � in L is the immediate predecessor of x� i�e�� there is no y such that
� � y � x� Splittings turn out to be closely related to the existence of atoms
in �nitely generated free algebras� see �Blok 	
���� �Bellissima 	
��� 	

	�
and �Wolter 	

�c�� We demonstrate the use of splittings by the following

THEOREM 	�	� �Blok 	
��a� The lattice NExtK has no atoms�

Proof If a logic L is an atom in NExtK� it is
L
!prime� It follows that

L cosplits NExtK and the logic L� � LogF in the splitting pair �L�� L�
has no proper predecessor that splits NExtK� Add a new irre�exive root
to F� By Theorem 	�	�� the resulting frame G splits NExtK� and clearly
LogG � LogF� which is a contradiction� �

A logic is linked with its semantics via completeness theorems� The most
general completeness theorem states that every consistent normal modal
logic is characterized by the class of �descriptive� frames validating it� Or�
if we want to characterize the consequence relations �L and ��L� we can use
the following

THEOREM 	�	
 �i� For L � NExtK� � �L � i� for any model M based on
a frame for L and any point x in M� x j� � implies x j� ��
�ii� For L � NExtK� � ��L � i� for any model M based on a frame for

L� M j� � implies M j� ��
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However� usually more speci�c completeness results are required� What
is the �geometry� of frames for a given logic� Are Kripke or even �nite
frames enough to characterize it� Questions of this sort will be addressed
in the next several sections�

��� Persistence

The structure of Kripke frames for many standard modal logics can be
described by rather simple conditions on the accessibility relation which
are expressed in the �rst order language with equality and a binary �ac�
cessibility� predicate R� �This observation was actually the starting point
of investigations in Correspondence Theory studying the relation between
modal and �rst �or higher� order languages� see Chapter � of this volume��
Moreover� in many cases it turns out that the universal frame FL��� for such
a logic L also satis�es the corresponding �rst order condition �� Since � says
nothing about sets of possible values in PL���� it follows immediately that
the canonical �Kripke� frame �FL��� also satis�es � and so characterizes
L� Thus we obtain a completeness theorem of the form�

� � L i
 F j� � for every Kripke frame F satisfying ��

This method of establishing Kripke completeness� known as the method
of canonical models� is based essentially upon two facts� �rst� that L is
characterized by its universal frame FL��� and second� that L is �persistent�
under the transition from FL��� to its underlying Kripke frame� Of course�
instead of FL��� we can take any other class of frames C with respect to
which L is complete and try to show that L is C!persistent in the sense
that� for every F � hW�R� P i in C� if F j� L then �F � hW�Ri validates L
as well�

PROPOSITION 	��� If a logic is both C
complete and C
persistent� then it
is complete with respect to the class f�F � F � Cg of Kripke frames�

It follows in particular that L is Kripke complete whenever it is DF!�
or R!� or D!persistent� Since every descriptive frame for L is a generated
subframe of a suitable universal frame for L� L is D!persistent i
 it is
persistent with respect to the class of its universal frames� It is an open
problem� however� whether canonicity� i�e�� FL���!persistence� implies D!
persistence� Here are two simple examples�

THEOREM 	��	 �van Benthem 	
��� A logic is persistent with respect to
the class of all general frames i� it is axiomatizable by a set of variable free
formulas�
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It is easily checked that a Kripke frame validates Altn i
 no point in it
has more than n distinct successors �see �Segerberg 	
�	���

THEOREM 	��� �Bellissima 	
��� Every L � NExtAltn is DF
persistent�
for any n � ��

Proof The proof is based on the fact that� for any di
erentiated frame
F � hW�R� P i� any �nite X 
 W � and any y � X � there is Y � P such
that X � Y � fyg� It follows that at most n distinct points are accessible
from every point in a di
erentiated frame for L� in particular� Altn is DF!
persistent� Suppose now that a formula � � L is refuted at a point x under a
valuation V in �F� F a di
erentiated frame for L� Let X be the set of points
accessible from x in � md��� steps�� Since X is �nite� there is a valuation
U in F such that U�p� �X � V�p�� for every variable p� Consequently� � is

false in F at x under U� which is a contradiction� �

The proof of Fine�s �	
��c� Theorem that all logics of �nite width� i�e��
logics in NExtK�BWn� for n � �� are Kripke complete �a sketch can be
found in Section 	� of Basic Modal Logic� may also be regarded as a proof
of persistence� Recall that a point x in a transitive frame F � hW�R� P i
is called non�eliminable �relative to R� if there is X � P such that x � X
but no proper successor of x is in X �in other words� x is maximal in
X�� in this case we write x � maxRX � Denote by Wr the set of all non�
eliminable points in F and put Fr � hWr � Rr� Pri� where Rr � R � Wr�
Pr � fX �Wr � X � Pg� �Fine called the frame Fr reduced��
THEOREM 	��� �Fine 	
��� Let F � hW�R� P i be a transitive descriptive
frame and x � X � P � Then �i� there exists a point y � maxRX � x� and
�ii� Fr is a re�ned frame whose dual F�r is isomorphic to F��

Proof �i� Suppose otherwise� i�e�� there is no maximal point in X � x��
Let Y be a maximal chain of points in X � x� �that it exists follows from
Zorn�s Lemma� and X � fZ � P � 	y � Y y� � Y 
 Zg� Clearly� X is
non�empty and has the �nite intersection property �because X � x� has no
maximal point�� By compactness� we then have a point z in

TX which� by
tightness� is maximal in Y � contrary to X � x� having no maximal point�
�ii� is a consequence of �i�� �

It follows that to establish the Kripke completeness of a logic L � NExtK�
it is enough to show that it is persistent with respect to the class

RE � fFr � F a �nitely generated descriptive frameg�
That is what Fine �	
��c� actually did for logics of �nite width�

�Here md���� the modal degree of �� is the length of the longest chain of nested modal
operators in ��
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THEOREM 	��� �Fine 	
��c� All logics of �nite width are RE
persistent
and so Kripke complete�

Let us return� however� to the method of canonical models� Having tried
it for a number of standard systems� Lemmon and Scott �	
��� found a
rather general su�cient condition for its applicability and put forward a
conjecture concerning a further extension �which was proved by Goldblatt
�	
��b��� This direction of completeness �and correspondence� theory culmi�
nated in the theorem of Sahlqvist �	
��� who proved an optimal �in a sense�
generalization of the condition of �Lemmon and Scott 	
���� To formulate it
we require the following de�nition� Say that a formula is positive �negative�
if it is constructed from variables �negated variables� and the constants ��
� using �� �� � and ��

THEOREM 	��� �Sahlqvist 	
��� Suppose � is a formula which is equiva�
lent in K to a formula of the form �k�� � ��� where k 
 �� � is positive
and � is constructed from variables and their negations� � and � with the
help of �� �� � and � in such a way that no �	s subformula of the form
�� ��� or ���� containing an occurrence of a variable without �� is in the
scope of some �� Then one can e�ectively construct a �rst order formula
��x� in R and � having x as its only free variable and such that� for every
descriptive or Kripke frame F and every point a in F�

�F� a� j� � i� F j� ��x��a��

�Here �F� a� j� � means that � is true at a in F under any valuation��

Proof We present a sketch of the proof found by Sambin and Vaccaro
�	
�
�� Given a formula ��p�� � � � � pn�� a frame F � hW�R� P i and sets
X�� � � � � Xn � P � denote by ��X�� � � � � Xn� the set of points in F at which �
is true under the valuation V de�ned by V�pi� � Xi� i�e�� ��X�� � � � � Xn� �
V���� Using this notation� we can say that

�F� x� j� ��p�� � � � � pn� i
 �X�� � � � � Xn � P x � ��X�� � � � � Xn��

EXAMPLE 	��� Let us consider the formula �p � p and try to extract
a �rst order equivalent for it in the class of tight frames directly from the
equivalence above and the condition of tightness� For every tight frame
F � hW�R� P i we have�

�F� x� j� �p � p i
 �X � P x � ��X � X�
i
 �X � P �x � �X � x � X�
i
 �X � P �x� 
 X � x � X��
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To eliminate the variable X ranging over P � we can use two simple obser�
vations� The �rst one is purely set�theoretic�

�X � P �Y 
 X � x � X� i
 x �
�

fX � P � Y 
 Xg� ���

And the second one is just a reformulation of the characteristic property of
tight frames� �

fX � P � x� 
 Xg � x�� ���

With the help of ��� and ��� we can continue the chain of equivalences above
with two more lines�

�F� x� j� �p � p i
 � � �
i
 x � TfX � P � x� 
 Xg
i
 x � x��

Thus� F j� �p � p i
 �x x � x� i
 �x xRx�

The proof of Sahlqvist�s Theorem is a �by no means trivial� generalization
of this argument� De�ne by induction x��� fxg� x�n��� �x�n��� and notice
that in ��� we can replace x� by any term of the form x��n� � � � � � xk�nk �
thus obtaining the equality�

fX � P � x��n� � � � � � xk�nk
 Xg � x��n� � � � � � xk�nk ���

which holds for every tight frame F � hW�R� P i� all x�� � � � � xk � W and all
n�� � � � � nk 
 ��
A frame�theoretic term x��n� � � � ��xk�nk with �not necessarily distinct�

world variables x�� � � � � xk will be called an R�term� It is not hard to see
that for any R�term T � the relation x � T on F � hW�R� P i is �rst order
expressible in R and �� Consequently� we obtain

LEMMA 	��� Suppose ��p�� � � � � pn� is a modal formula and T�� � � � � Tn are
R�terms� Then the relation x � ��T�� � � � � Tn� is expressible by a �rst order
formula �in R and �� having x as its only free variable�

Syntactically� R�terms with a single world variable correspond to modal
formulas of the form �m�p� � � � � � �mkpk with not necessarily distinct
propositional variables p�� � � � � pk� Such formulas are called strongly positive�
By induction on the construction of �� one can prove the following

LEMMA 	��� Suppose ��p�� � � � � pn� is a strongly positive formula contain�
ing all the variables p�� � � � � pn and F � hW�R� P i is a frame� Then one
can e�ectively construct R�terms T�� � � � � Tn �of one variable x� such that
for any x � W and any X�� � � � � Xn � P �

x � ��X�� � � � � Xn� i� T� 
 X� � � � � � Tn 
 Xn�
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Now� trying to extend the method of Example 	��� to a wider class of
formulas� we see that it still works if we replace the antecedent �p in �p � p
with an arbitrary strongly positive formula �� As to generalizations of the
consequent� let us take �rst an arbitrary formula � instead of p and see
what properties it should satisfy to be handled by our method�
Thus� for a modal formula �� � ���p�� � � � � pn� with strongly positive �

and a tight frame F � hW�R� P i� we have�
�F� x� j� � � � i
 �X�� � � � � Xn � P �x � ��X�� � � � � Xn��

x � ��X�� � � � � Xn��

i
 �X�� � � � � Xn � P �T� 
 X� � � � � � Tn 
 Xn �
x � ��X�� � � � � Xn��

i
 �X�� � � � � Xn�� � P �T� 
 X� � � � � � Tn�� 
 Xn�� �
�Xn � P �Tn 
 Xn � x � ��X�� � � � � Xn����

��� does not help us here� but we can readily generalize it to

�X � P �Y 
 X � x � ��� � � � X� � � ��� i


x �
�

f��� � � � X� � � �� � Y 
 X � Pg� ���

So

�F� x� j� � � � i
 �X�� � � � � Xn�� � P �T� 
 X� � � � � � Tn�� 
 Xn�� �
x �

�
f��X�� � � � � Xn� � Tn 
 Xn � Pg��

But now ��� and ��� are useless� In fact� what we need is the equality�
f��� � � � X� � � �� � T 
 X � Pg �

��� � � �
�

fX � P � T 
 Xg� � � �� ���

which� with the help of ���� would give us�
f��� � � � X� � � �� � T 
 X � Pg � ��� � � � T� � � ��� ���

Of course� ��� is too good to hold for an arbitrary �� but suppose for a
moment that our � satis�es it� Then we can eliminate step by step all the
variables X�� � � � � Xn like this�

�F� x� j� � � � i
 �X�� � � � � Xn�� � P �T� 
 X� � � � � � Tn�� 
 Xn�� �
x � ��X�� � � � � Xn��� Tn��

i
 � � � �by the same argument�

i
 x � ��T�� � � � � Tn��
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And the last relation can be e
ectively rewritten in the form of a �rst order
formula ��x� in R and � having x as its only free variable� So� �nally we
shall have F j� � � � i
 �x ��x��
Now� to satisfy ���� � should have the property that all its operators

distribute over intersections� Clearly�� and � are not suitable for this goal�
But all the other operators turn out to be good enough at least in descriptive
and Kripke frames� So we can take as � any positive modal formula� The
main property of a positive formula ��� � � � p� � � �� is its monotonicity in every
variable p which means that� for all sets X � Y of worlds in a frame� X 
 Y
implies ��� � � � X� � � �� 
 ��� � � � Y� � � ���
To prove that all positive formulas satisfy ��� in Kripke frames and de�

scriptive frames� recall that � distributes over arbitrary intersections in
any frame� As to �� we have the following lemma in which a family X of
non�empty subsets of some space W is called downward directed if for all
X�Y � X there is Z � X such that Z 
 X � Y �

LEMMA 	��
 �Esakia 	
��� Suppose F � hW�R� P i is a descriptive frame�
Then for every downward directed family X 
 P �

�

�
X�X

X �
�
X�X

�X�

Using Esakia�s Lemma� by induction on the construction of � one can
prove

LEMMA 	��� Suppose that F � hW�R� P i is a Kripke or descriptive frame
and ��p� � � � � q� � � � � r� is a positive formula� Then for every Y 
 W and all
U� � � � � V � P ��

f��U� � � � � X� � � � � V � � Y 
 X � Pg �
��U� � � � �

�
fX � P � Y 
 Xg� � � � � V �� �
�

It follows from this lemma and considerations above that Sahlqvist�s The�
orem holds for formulas � � � � � with strongly positive � and positive
�� The remaining part of the proof is purely syntactic manipulations with
modal and �rst order formulas�
Notice that using the monotonicity of positive formulas� equivalence ���

can be generalized to the following one� for every F � hW�R� P i� every
positive �i�� � � � p� � � �� and every xi � W �

�X � P �Y 
 X �
�
i�n

xi � �i�� � � � X� � � ��� i


�
i�n

xi �
�

f�i�� � � � X� � � �� � Y 
 X � Pg� �	��
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Say that a modal formula � is untied if it can be constructed from negative
formulas and strongly positive ones using only � and �� If ��p�� � � � � pn� is
negative then ���p�� � � � � pn� is clearly equivalent inK to a positive formula�
we denote it by ����p�� � � � ��pn��

LEMMA 	��	 Let ��p�� � � � � pn� be an untied formula and F � hW�R� P i a
frame� Then for every x � W and all X�� � � � � Xn � P �

x � ��X�� � � � � Xn� i� 	y�� � � � � yl�
�
�
i�n

Ti 
 Xi�
�
j�m

zj � �j�X�� � � � � Xn��

where the formula in the right�hand side� e�ectively constructed from �� has
only one free individual variable x� 
 is a conjunction of formulas of the form
uRv� Ti are suitable R�terms and �j�p�� � � � � pn� are negative formulas�

We are ready now to prove Sahlqvist�s Theorem� To construct a �rst order
equivalent for �k�� � �� supplied by the formulation of our theorem� we
observe �rst that one can equivalently reduce � to a disjunction ���� � ���m
of untied formulas� and hence �k�� � �� is equivalent in K to the formula
�k��� � �� � � � � � �k��m � ��� So all we need is to �nd a �rst order
equivalent for an arbitrary formula �k�� � �� with untied � and positive ��
Let p�� � � � pn be all the variables in � and � and F � hW�R� P i a descriptive
or Kripke frame� Then� for any x � W � we have�

�F� x� j� �k�� � �� i
 �X�� � � � � Xn � P x � �k�� � ���X�� � � � � Xn�

�by Lemma 	��	� i
 �X�� � � � � Xn � P �y �xRky � �	y�� � � � � yl �
 ��
i�n

Ti 
 Xi �
�
j�m

zj � �j�X�� � � � � Xn���

y � ��X�� � � � � Xn���

i
 �X�� � � � � Xn � P �y� y�� � � � � yl �
� �
�
i�n

Ti 
 Xi �
�
j�m

zj � �j�X�� � � � � Xn�� y � ��X�� � � � � Xn��

where 
� � xRky � 
� Let �j�p�� � � � � pn� � ��j ��p�� � � � ��pn�� We continue
this chain of equivalences as follows�

i
 �y� y�� � � � � yl �
� � �X�� � � � � Xn � P �
�
i�n

Ti 
 Xi �
�

j�m��

zj � �j�X�� � � � � Xn���
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�where �m���p�� � � � � pn� � ��p�� � � � � pn� and zm�� � y�

i
 �y� y�� � � � � yl �
� �
�

j�m��

zj � �j�T�� � � � � Tn���

as follows from �	��� Lemma 	��� and equality ���� It remains to use

Lemma 	���� �

The formulas � de�ned in the formulation of Theorem 	��� are called
Sahlqvist formulas� It follows from this theorem that if L is a D!persistent
logic and � a set of Sahlqvist formulas then L � � is also D!persistent�
Moreover� L�� is elementary �in the sense that the class of Kripke frames
for it coincides with the class of all models for some set of �rst order formulas
in R and �� whenever L is so�
Other proofs of Sahlqvist�s Theorem were found by Kracht �	

�� and

J�onsson �	

�� �the latter is based upon the algebraic technique developed in
�J�onsson and Tarski 	
�	��� Venema �	

	� extended Sahlqvist�s Theorem to
logics with non�standard inference rules� like Gabbay�s �	
�	a� irre�exivity
rule� In �Chagrov and Zakharyaschev 	

�b� it is shown that there is a
continuum of Sahlqvist logics above S� and that not all of them have the
�nite model property �above T such a logic was constructed by Hughes
and Cresswell �	
����� As we shall see later in this chapter� there are even
undecidable �nitely axiomatizable Sahlqvist logics in NExtK� It would be
of interest to �nd out whether such logics exist above K� or S��
Kracht �	

�� described syntactically the set of �rst order equivalents of

Sahlqvist formulas� To formulate his criterion we require the fragment S of
�rst order logic de�ned inductively as follows� Formulas of the form xRmy
are in S for all variables x� y and every m � �� besides� if �� �� are in S then
the formulas

�x � y�m �� 	x � y�m �� � � ��� and � � ��

are also in S� For simplicity we assume that all occurrences of quanti�ers
in a formula bind pairwise distinct variables� Call a variable y in a formula
� � S inherently universal if either all occurences of y are free in � or �
contains a subformula �y � x�m �� which is not in the scope of 	�

THEOREM 	��� �Kracht 	

�� For every �rst order formula ��x� �in R
and �� of one free variable x� the following conditions are equivalent�
�i� ��x� is classically equivalent to a formula ���x� � S such that any sub�

formula of the form yRmz of ���x� contains at least one inherently universal
variable�

�ii� ��x� corresponds to a Sahlqvist formula in the sense of Theorem ���
�
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Condition �i� is satis�ed� for example� by the formula

�u � x� �v � x� 	z � u� vRz
which corresponds to ��p� ��p� On the other hand�

��x� � 	y � x� �z � y� zR�y

does not satisfy �i�� In fact� even relative to S� the condition expressed by
��x� does not correspond to any Sahlqvist formula� Notice� however� that
S� � ��p � ��p is a D�persistent logic whose frames are precisely the
transitive and re�exive frames validating �x��x��
We conclude this section by mentioning two more important results con�

necting persistence and elementarity �the idea of the proof was discussed in
Section �� of Basic Modal Logic��

THEOREM 	��� �i� �Fine 	
��b� van Benthem 	
��� If a logic L is char�
acterized by a �rst order de�nable class of Kripke frames then L is D

persistent�
�ii� �Fine 	
��b� If L is R�persistent then the class of Kripke frames for

L is �rst order de�nable�

It is an open problem whether every D!persistent logic is determined by
a �rst order de�nable class of Kripke frames� for more information about
this and related problems consult �Goldblatt 	

���

��� The degree of Kripke incompleteness

All known logics in NExtK of �natural origin� are complete with respect
to Kripke semantics� On the other hand� there are many examples of �ar�
ti�cial� logics that cannot be characterized by any class of Kripke frames
�see Sections 	
� �� of Basic Modal Logic or the examples below�� To un�
derstand the phenomenon of Kripke incompleteness Fine �	
��b� proposed
to investigate how many logics may share the same Kripke frames with a
given logic L� The number of them is called the degree of Kripke incom�
pleteness of L� Of course� this number depends on the lattice of logics under
consideration� The degree of Kripke incompleteness of logics in NExtK was
comprehensively studied by Blok �	
���� In this section we present the main
results of that paper following �Chagrov and Zakharyaschev 	

���
By Theorem 	�	�� all Kripke complete union�splittings of NExtK have

degree of incompleteness 	� And it turns out that no other union�splitting
exists�

THEOREM 	��� �Blok 	
��� Every union�splitting of NExtK has the �nite
model property�




� M� ZAKHARYASCHEV� F� WOLTER� AND A� CHAGROV

nontransitive

� � � �� �� � �
�

x� x�� xk��� xk� � � � � � � � � �� � � �� � � � � � � � � � � �
�

x� x� xn x�� x�� x�n xk� xk� xkn

�a� �b�

Figure ��

Proof Let F be a class of �nite rooted cycle free frames� We prove that
L � K�F has the �nite model property using a variant of �ltration� which
is applied to an n�generated re�ned frame F � hW�R� P i for L refuting a
formula ��p�� � � � � pn� under a valuation V�
Since F is di
erentiated� for every m 
 	 there are only �nitely many

points x in F such that x j� �m� � ��m���� we shall call them points of
type m� Given  
 Sub�� Sub� the set of all subformulas in �� we put
m� � m if m is the minimal number such that a point in F is of type � m
whenever x j�  and the formulas in Sub�� are false at x �under V�� if
no such m exists� we put m� � �� Let

k � maxfm� �  
 Sub�g� � � Sub�� ��k���
Now we divide F into two parts� W� consisting of points of type � k and
W� � W �W�� For x� y � W � put x � y if either x� y � W� and x � y
or x� y � W� and exactly the same formulas in � are true at x and y� Let
N � hG�Ui be the smallest �ltration �see Section 	� of Basic Modal Logic�
of M � hF�Vi through � with respect to �� Since W� is �nite� G is also
�nite and� by the Filtration Theorem� �M� x� j� � i
 �N� �x�� j� �� for every
� � �� So it remains to show that G j� L� Notice that �x� in G is of type
m � k i
 x has type m in F� Moreover� there is no �x� of type l � k� For
otherwise x �j� �k� and m� � � for  � f� � Sub� � x j� �g� which
means that arbitrary long chains �of not necessarily distinct points� start
from �x�� contrary to �x� being of type l� Thus G consists of two parts�
points of type � k� which form the generated subframe hW�� R � W�i of F�
and points involved in cycles� Since F j� L and frames in F are cycle free�
it follows from Lemma 	�	� and Theorem 	�	� that G j� L� �

THEOREM 	��� �Blok 	
��� If a logic L is inconsistent or a union�splitting
of NExtK� then L is strictly Kripke complete� Otherwise L has degree of
Kripke incompleteness ��� in NExtK�

Proof That For is strictly complete follows from Example 	�	� and The�
orem 	�	�� Suppose now that a consistent L is not a union�splitting and L�



ADVANCED MODAL LOGIC 
�

is the greatest union�splitting contained in L� Since L� has the �nite model
property� there is a �nite rooted frame F � hW�Ri for L� refuting some
� � L and such that every proper generated subframe of F validates L�
Clearly� F is not cycle free� Let x�Rx�R � � �RxnRx� be the shortest cycle
in F and k � md��� " 	� We construct a new frame F� by extending the
cycle x�� � � � � xn� x� as is shown in Fig� � ��a� for n � 	 and �b� for n � 	��
More precisely� we add to F copies x�i � � � � � x

k
i of xi for each i � f	� � � � � ng�

organize them into the nontransitive cycle shown in Fig� � and draw an
arrow from xji to y � W �fx�� � � � � xng i
 xiRy� Denote the resulting frame
by F� � hW �� R�i and let x� � xkn� By the construction� F is a reduct of F

��
Therefore� for every models M � hF�Vi and M� � hF��V�i such that

V��p� � V�p� � fxji � xi � V�p�� j � kg

and for every x � W � � � Sub�� we have �M� x� j� � i
 �M�� x� j� �� So we
can hook some other model on x�� and points in W will not feel its presence
by means of ��s subformulas� The frame to be hooked on x� depends on
whether � j� L or � j� L� We consider only the former alternative�
Fix some m � jW �j� For each I 
 � � f�g� let FI � hWI � RI � PI i be the

frame whose diagram is shown in Fig� � �d� sees the root of F
�� all points

ei and e
�
j and is seen from x�� the subframes in dashed boxes are transitive�

e�i � WI i
 i � I � and PI consists of sets of the form X � Y such that X
is a �nite or co�nite subset of WI � fb� ai � i � �g and Y is either a �nite
subset of fai � i � �g or is of the form fbg�Y �� where Y � is a co�nite subset
of fai � i � �g� It is not hard to see that the points ai� c� ei and e�i are
characterized by the variable free formulas

�� � ��
m ���
m�� � � � ���
�� � � ��� ����
m ���
m�� � � � ���
�� � � ���

�i�� � ��i � ����i� � � �
��� � �����

�� � ��� �i�� � ��i � ����i� �
�
i�� � ��i � ����i���

�in the sense that x j� �i i
 x � ai� etc��� where


� � ���� 
� � �
� � �
�� 
� � �
� � �
� � ���
��


k�� � �
k � �
k � ���
k�� � � � � � ���
��

De�ne LI to be the logic determined by the class of frames for L and FI �
i�e�� LI � L � LogFI � Since ����i ��m����� � LJ � LI for i � I � J �� is
refuted at the root of F��� jfLI � I 
 � � f�ggj � ��� �
Let us show now that LI has the same Kripke frames as L� Since LI 
 L�

we must prove that every Kripke frame for LI validates L� Suppose there
is a rooted Kripke frame G such that G j� LI but G �j� �� for some � � L�
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Since � is in L� it is valid in all frames for L� in particular� � j� �� And
since � �� LI � � is refuted in FI � Moreover� by the construction of FI � it
is refuted at a point from which the root of F� can be reached by a �nite
number of steps� Therefore� the following formulas are valid in FI and so
belong to LI and are valid in G�

�� �
l�

i��

�
i�� �		�

�� �
l�

i��

�
i�� � �������p � p�� p��� �	��

where p does not occur in � and l is a su�ciently big number so that
any point in FI is accessible by � l steps from every point in the selected
cycle and every point at which � may be false� and ��� � ����� � ���
According to �		�� G contains a point at which � is true� By the construction
of �� this point has a successor y at which� by �	��� �����p � p� � p is
true under any valuation in G and y j� ���� De�ne a valuation U in G
by taking U�p� � y�� Then y j� �����p � p�� from which y j� p and so
y � y�� Now de�ne another valuation U� so that U��p� � y� �fyg� Since
y is re�exive� we again have y j� �����p � p�� whence y j� p� which is a

contradiction� �

This construction can be used to obtain one more important result�

THEOREM 	��� �Blok 	
��� Every union�splitting K�F has � � !� im�
mediate predecessors in NExtK� where � is the number of frames in F which
are not reducts of generated subframes of other frames in F � Every consis�
tent logic di�erent from union�splittings has ��� immediate predecessors in
NExtK� �For has � immediate predecessors in NExtK��
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Proof The former claim follows from Theorem 	�	�� To establish the
latter� we continue the proof of Theorem 	���� One can show that L is
�nitely axiomatizable over LI �the proof is rather technical� and we omit it
here�� Then� by Zorn�s Lemma� NExtLI contains an immediate predecessor
L�I of L� Besides� LI � LJ � L whenever I �� J � Indeed�

LI � LJ � �L � LogFI�� �L � LogFJ� � L � �LogFI � LogFJ�

and if i � I � J then� for every � � L and a su�ciently big l�

�
l�

k��

�
k��i � � � LogFI � ���i � LogFJ �

from which � � LogFI �LogFJ and so L 
 LogFI � LogFJ � It follows that
L�I �� L�J whenever I �� J � �

It is worth noting that tabular logics� proper extensions of D and ex�
tensions of K� are not union�splittings in NExtK� Similar results hold for
the lattices NExtD and NExtT� where every consistent logic has degree of
incompleteness ��� �see �Blok 	
��� 	
��b��� It would be of interest to de�
scribe the behavior of this function in NExtK�� NExtS�� NExtGrz �where
Theorem 	��� does not hold and where every tabular logic has �nitely many
immediate predecessors� and other lattices of logics to be considered later
in this chapter�

��� Stronger forms of Kripke completeness

In the two preceding sections we were considering the problem of charac�
terizing logics L � NExtK by classes of Kripke frames� The same problem
arises in connection with the two consequence relations �L and ��L as well�
Theorem 	�	
 shows the way of introducing the corresponding concepts of
completeness�
With each Kripke frame F let us associate a consequence relation j�F by

putting� for any formula � and any set � of formulas� � j�F � i
 �M� x� j� �
implies �M� x� j� � for every model M based on F and every point x in F�
Clearly� a modal logic L is Kripke complete i
� for any �nite set of formulas
� and any formula �� � ��L � only if there is a Kripke frame F for L such
that � �j�F �� Now� let us call L strongly Kripke complete
 if this implication
holds for arbitrary sets �� In other words� L is strongly complete if every L�
consistent set of formulas holds at some point in a model based on a Kripke
frame for L� Another reformulation� L is strongly complete i
 L is Kripke

�Fine �����c� calls such logics compact� which does not agree with the use of this term
by Thomason ����
��
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complete and the relation
Tfj�F� F is a Kripke frame for Lg is �nitary� It

follows from the construction of the canonical models that every canonical
�in particular� D!persistent� logic is strongly complete� which provides us
with many examples of such logics in NExtK�
By Theorem 	���� all logics characterized by �rst order de�nable classes

of Kripke frames are strongly complete� The converse does not hold� there
exist strongly complete logics which are not canonical� The simplest is the
bimodal logic of the frame hR� ���i� see Example ���
 below� By applying
the Thomason simulation �to be introduced in Section ���� to this logic
we obtain a logic in NExtK with the same properties� see Theorem ��	��
Moreover� in contrast to D!persistence� strong Kripke completeness is not
preserved under �nite sums of logics �see �Wolter 	

�c��� It is an open
problem� however� whether such logics exist in NExtK��
Perhaps the simplest examples of Kripke complete logics which are not

strongly complete are GL and Grz �use Theorem 	��� and the fact that
these logics are not elementary� see Correspondence Theory�� It is much
more di�cult to prove that the McKinsey logic K � ��p � ��p is not
strongly complete� the proof can be found in �Wang 	

��� For other ex�
amples of modal logics that are not strongly complete see Section ���� It
is worth noting also that� as was shown in �Fine 	
��c�� every �nite width
logic in a �nite language turns out to be strongly Kripke complete� though
this is not the case for logics in an in�nite language� witness

GL�� � GL�����p � q� � ����q � p��

For the consequence relation ��L� we should take the �global� version j��F
of j�F� Namely� we put � j��F � if M j� � implies M j� � for any model M
based on F� A modal logic L is called globally Kripke complete if for any
�nite set of formulas � and any formula �� � ���L � only if there is a frame
F for L such that � �j��F �� L is strongly globally complete if this holds for
arbitrary �not only �nite� �� We also say that L has the global �nite model
property if for every �nite � and every �� � ���L � only if there is a �nite
frame F for L such that � �j��F ��
The global �nite model property �FMP� for short� of many standard logics

can be proved by �ltration� Say that a logic L strongly admits �ltration if for
every generated submodelM of the canonical modelML and every �nite set
of formulas # closed under subformulas� there is a �ltration of M through
# based on a frame for L�

PROPOSITION 	��� �Goranko and Passy 	

�� If L strongly admits �ltra�
tion then L has global FMP�

Proof Suppose that � ���L �� � �nite� Then ���
V
� ��L � and so the

set  � ���
V
� � f��g is L�consistent� It remains to �ltrate through
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Sub� � Sub� the submodel of ML generated by a maximal L�consistent
set containing  � �

It follows in particular that K� T� D� KB have global FMP�

PROPOSITION 	��� Suppose L is globally complete �has global FMP� and
� is a �nite set of variable free formulas� Then L� � is globally complete
�has global FMP� as well�

Proof Let L� � L � � and  ���L� ��  �nite� Then � �  ���L � and so
there exists a ��nite� Kripke frame F for L such that � � �j��G �� Since �

contains no variables� F j� L�� �

For n�transitive logics L the global consequence relation ��L is reducible to
the �local� �L and so L is Kripke complete �has FMP� is strongly complete�
i
 L is globally complete �has global FMP� is strongly globally complete�� In
general the global properties are stronger than the �local� ones� Although
L is globally complete �has global FMP� only if L is complete �has FMP��
the converse does not hold �see �Wolter 	

�a� and �Kracht 	

����

EXAMPLE 	��
 Let L � Alt�� p� ��p� ��p��p�� ���q���q�� A
Kripke frame F validates L i
 no point in F has more than three successors�
F is symmetric� and irre�exive points in it have at most one successor� By
Proposition 	���� L is Kripke complete� The class of Kripke frames for L is
closed under �not necessarily generated� subframes� So� by Proposition 	��

to be proved below� L has FMP� We show now that it does not have global
FMP� To this end we require the formulas�

�� � q� � �q� � �q�� �� � �q� � q� � �q�� �� � �q� � �q� � q��

� � �p � �p � ��� � �
�

f�i � ��i�� � i � 	� �g � �� � ����

Let F � hW�Ri� where W � � and

R � fhm�mi � m � �g � fhm�m" 	i � m � �g � fhm�m� 	i � m � �g�
We then have � �j��F ��� In fact� � is true at � and � is true everywhere
under the valuation V de�ned by V�p� � W � f�g and V�qi� � f�n" i �
n � �g� Clearly� F j� L and so � ���L ��� Suppose now that �N� x�� j� �
and N j� �� for a model N based on a Kripke frame G � hV� Si for L� Then
we can �nd a sequence xj � j � �� such that xjSxj�� and x�j�i j� �i��� for
j � � and i � 	� �� �� The reader can verify that all points xj are distinct�

Let us consider now the algebraic meaning of the notions introduced
above� A logic L is Kripke complete i
 the variety AlgL of modal algebras
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for L is generated by the class KrL � fF� � F is a Kripke frame for Lg� By
Birkho
�s Theorem �see e�g� �Mal�cev 	
����� this means that

AlgL � HSPKrL�

�i�e�� AlgL is obtained by taking the closure of KrL under direct prod�
ucts� then the closure of the result under �isomorphic copies of� subalgebras
and �nally under homomorphic images�� Clearly� L is globally complete i

precisely the same quasi�identities hold in KrL and AlgL� And since the
quasi�variety generated by a class of algebras C is SPPUC �where PU denotes
the closure under ultraproducts� see �Mal�cev 	
����� L is globally complete
i


AlgL � SPPUKrL�

Goldblatt �	
�
� calls the variety AlgL complexif AlgL � SKrL� or� equiv�
alently� if AlgL � SPKrL �this follows from the fact that the dual of the
disjoint union of a family of Kripke frames fFi � i � Ig is isomorphic to the
product

Q
i�I F

�
i �� We say a logic L is ��complex� � a cardinal� if every

modal algebra for L with � � generators is a subalgebra of F� for some
Kripke frame F j� L� As was shown in �Wolter 	

��� this notion turns
out to be the algebraic counterpart of both strong completeness and strong
global completeness of logics in in�nite languages with � variables�

THEOREM 	��� For every normal modal logic L in an in�nite language
with � variables the following conditions are equivalent�
�i� L is strongly Kripke complete�
�ii� L is globally strongly complete�
�iii� L is ��complex�

Proof �i� � �iii� Suppose the cardinality of A � AlgL does not exceed ��
Denote by L the algebra of modal formulas over � propositional variables
and take some homomorphism h from L onto A� For each ultra�lter r in
A� the set h���r� is maximal L�consistent� Since L is strongly complete�
there is a model Mr � hFr�Vri with root xr based on a Kripke frame
Fr for L and such that �Mr� xr� j� h���r�� Without loss of generality we
may assume that the frames Fr for distinct r are disjoint� Let F be the
disjoint union of all of them� De�ne a homomorphism V from L into F� by
taking

V�p� �
�

fVr�p� � r is an ultra�lter in Ag�
Then V�L� is a subalgebra of F� � AlgL isomorphic to A�
The implication �iii� � �ii� is trivial� To prove �ii� � �i�� consider an

L�consistent set of formulas � of cardinality � � and put

 � fpg � f�n�p � �� � n � �� � � �g�
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where the variable p does not occur in formulas from �� It is easily checked
that all �nite subsets of  are L�consistent� so  is L�consistent too� It
follows that fp � � � � � �g ���L �p� And since L is globally strongly
complete� there exists a model M based on a Kripke frame for L such that
M j� fp � � � � � �g and �M� x� j� p� for some x� But then �M� x� j� ��

�

��� Canonical formulas

The main problem of completeness theory in modal logic is not only to �nd
a su�ciently simple class of frames with respect to which a given logic L is
complete but also to characterize the constitution of frames for L �in this
class�� The �rst order approach to the characterization problem� discussed
in Section 	�� in connection with Sahlqvist�s Theorem� comes across two
obstacles� First� there are formulas whose Kripke frames cannot be de�
scribed in the �rst order language with R and �� The best known example
is probably the L�ob axiom

la � ���p � p�� �p�

F j� la i
 F is transitive� irre�exive �i�e�� a strict partial order� and Noethe�
rian in the sense that it contains no in�nite ascending chain of distinct
points� And as is well known� the condition of Noetherianness is not a �rst
order one� The second obstacle is that this approach deals only with log�
ics that are Kripke complete� it does not take into account sets of possible
values�
There is another� purely frame�theoretic method of characterizing the

structure of frames� For instance� a frame G validates K�F i
 G does
not contain a generated subframe reducible to F� It was shown in �Za�
kharyaschev 	
��� 	
��� 	

�� that in a similar manner one can describe
transitive frames validating an arbitrary modal formula� It is not clear
whether characterizations of this sort can be extended to the class of all
frames �an important step in this direction would be a generalization to
n�transitive frames�� That is why all frames in this section are assumed to
be transitive� First we illustrate this method by a simple example�

EXAMPLE 	��	 Suppose a frame F � hW�R� P i refutes la under some
valuation� Then the set V � fx � W � x �j� lag is in P and V 
 V �� It
follows from the former that G � hV�R�V� fX � V � X � Pgi is a frame�
we call it the subframe of F induced by V � And the latter condition means
that G is reducible to the single re�exive point � which is the simplest
refutation frame for la� Moreover� one can readily check that the converse
also holds� if there is a subframe G of F reducible to � then F �j� la�
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This example motivates the following de�nitions� Given frames F �
hW�R� P i and G � hV� S�Qi� a partial �i�e�� not completely de�ned� in
general� map f from W onto V is called a subreduction of F to G if it
satis�es the reduction conditions �R	�!�R�� for all x and y in the domain
of f and all X � Q� The domain of f will be denoted by domf � In other
words� an f �subreduct of F is a reduct of the subframe of F induced by
domf � A frame G � hV� S�Qi is a subframe of F � hW�R� P i if V 
 W and
the identity map on V is a subreduction of F to G� i�e�� if S � R � V and
Q 
 P � Note that a generated subframe G of F is not in general a subframe
of F� since V may be not in P �
Thus� the result of Example 	��	 can be reformulated like this� F �j� la

i
 F is subreducible to ��
A subreduction f of F to G is called co�nal if

domf� 
 domf��

This important notion can be motivated by the following observation� F
refutes �� i
 F is co�nally subreducible to � �a plain subreduction is not
enough��

THEOREM 	��� Every refutation frame F � hW�R� P i for ��p�� � � � � pn� is
co�nally subreducible to a �nite rooted refutation frame for � containing at
most c� � �

n � �cn�	� " � � �" cn��
jSub�j�� points��

Proof Suppose � is refuted in F under a valuation V� Without loss
of generality we can assume F to be generated by V�p��� � � � �V�pn�� Let
X�� � � � � Xm be all distinct maximal ��cyclic sets in F� Clearly� m � cn�	�
but unlike Theorem 	��� F is not in general re�ned and so these sets are
not necessarily clusters of depth 	� However� they can be easily reduced
to such clusters� De�ne an equivalence relation � on W by putting x � y
i
 x � y or x� y � Xi� for some i � f	� � � � �mg� and x �� y �as before
# � fp�� � � � � png�� Let �x� be the equivalence class under � generated by
x and �X � � f�x� � x � Xg� for X � P � By the de�nition of cyclic sets�
xRy i
 �x� 
 �y��� So the map x "� �x� is a reduction of F to the frame
F�� � hW �

�� R
�
�� P

�
�i which results from F by �folding up� the ��cyclic sets Xi

into clusters of depth 	 and leaving the other points untouched� W �
� � �W ��

�x�R���y� i
 �x� 
 �y�� and P �
� � f�X � � X � Pg� �Roughly� we re�ne that

part of F which gives points of depth 	�� Put V�
��pi� � �V�pi��� Then by

the Reduction �or P�morphism� Theorem� we have x j� � i
 �x� j� �� for
every � � Sub��
Let X be the set of all points in F�� of depth � 	 having Sub��equivalent

successors of depth 	� It is not hard to see that X � P �
�� Denote by

�The function cn�m� was de�ned in Section ��
�
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F� � hW�� R�� P�i the subframe of F�� induced by W �
��X and let V� be the

restriction of V�
� to F�� By induction on the construction of � � Sub� one

can readily show that � has the same truth�values at common points in F��
and F� �under V

�
� and V�� respectively� and so F� �j� �� The partial map

x "� �x�� for �x� � W�� is a co�nal subreduction of F to F��
Then we take the maximal 	�cyclic sets in F�� �fold� them up into clusters

of depth � and remove those points of depth � � that have Sub��equivalent
successors of depth �� The resulting frame F� will be a co�nal subreduct of
F� and so of F as well� After that we form clusters of depth �� and so forth�
In at most �jSub�j steps of that sort we shall construct a co�nal subreduct
of F refuting � and containing � c� points� It remains to select in it a

suitable rooted generated subframe� �

For the majority of standard modal axioms the converse also holds�
However� not for all� The simplest counterexample is the density axiom
den � ��p � �p� It is refuted by the chain H of two irre�exive points but
becomes valid if we insert between them a re�exive one� In fact� F �j� den

i
 there is a subreduction f of F to H such that f�x�� � fag� for no point
x in domf��domf � where a is the �nal point in H�
Loosely� every refutation frame for formulas like la can be constructed by

adding new points to a frame G that is reducible to some �nite refutation
frame of �xed size� For formulas like �� we have to take into account the
co�nality condition and do not put new points �above� G� And formulas
like den impose another restriction� some places inside G may be �closed�
for inserting new points� These �closed domains� can be singled out in the
following way�
Suppose N � hH�Ui is a model and a an antichain in H� Say that a is

an open domain in N relative to a formula � if there is a pair ta � ��a� a�
such that �a � a � Sub��

V
�a �

W
 a �� K� and

� �� � �a implies � � �a�
� �� � �a i
 a j� ��� for all a � a�

Otherwise a is called a closed domain inN relative to �� A re�exive singleton
a � fag is always open� just take ta � �f� � Sub� � a j� �g� f� � Sub� �
a �j� �g�� It is easy to see also that antichains consisting of points from the
same clusters are open or closed simultaneously� we shall not distinguish
between such antichains�
For a frame H and a �possibly empty� set D of antichains in H� we say a

subreduction f of F to H satis�es the closed domain condition for D if

�CDC� �	x � domf�� domf 	d � D f�x�� � d��
Notice that the co�nal subreduction f of F to the resulting �nite rooted
frame H in the proof of Theorem 	��� satis�es �CDC� for the set D of
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closed domains in the corresponding model N on H refuting �� Indeed�
every x � domf � � domf has a Sub��equivalent successor y � domf �
and so an antichain d such that f�x�� � d� is open� since we can take
td � �f� � Sub� � y j� �g� f� � Sub� � y �j� �g�� On the other hand� we
have

PROPOSITION 	��� Suppose N � hH�Ui is a �nite countermodel for �
and D the set of all closed domains in N relative to �� Then F �j� �
whenever there is a co�nal subreduction f of F to H satisfying �CDC� for
D� Moreover� if � is negation free �i�e�� contains no �� �� �� then a plain
subreduction satisfying �CDC� for D is enough�

Proof If f is co�nal and F � hW�R� P i then we can assume domf� �W �
De�ne a valuation V in F as follows� If x � domf then we take x j� p i

f�x� j� p� for every variable p in �� If x �� domf then f�x�� �� �� since f is
co�nal� Let a be an antichain in H such that a� � f�x��� By �CDC�� a is
an open domain in N� and we put y j� p i
 p � �a� for every y �� domf such
that f�y�� � f�x��� One can show that V is really a valuation in F and�
for every � � Sub�� x j� � i
 f�x� j� � in the case x � domf � and x j� �
i
 � � �a� where a is the open domain in N associated with x� in the case
x �� domf �
If � is negation free and f is a plain subreduction then f�x�� may be

empty� In such a case we just put x j� p� for all variables p� �

Now let us summarize what we have got� Given an arbitrary formula
�� we can e
ectively construct a �nite collection of �nite rooted frames
F�� � � � �Fn �underlying all possible rooted countermodels for � with � c�
points� and select in them sets D�� � � � �Dn of antichains �open domains in
those countermodels� such that� for any frame F� F �j� � i
 there is a co�nal
subreduction of F to Fi� for some i� satisfying �CDC� for Di� If � is negation
free then a plain subreduction satisfying �CDC� is enough�
This general characterization of the constitution of refutation transitive

frames can be presented in a more convenient form if with every �nite rooted
frame F � hW�Ri and a set D of antichains in F we associate formulas
��F�D��� and ��F�D� such that G �j� ��F�D��� �G �j� ��F�D�� i
 there is
a co�nal �respectively� plain� subreduction of G to F satisfying �CDC� for
D� For instance� one can take

��F�D��� �
�

aiRaj

�ij �
n�
i��

�i �
�
d�D

�d � �	 � p�

where a�� � � � � an are all points in F and a� is its root�

�ij � �
���pj � pi��
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�i � �
���

�

aiRak

�pk �
n�

j���j ��i
pj � pi�� pi�

�d � �
��

�
ai�W�d�

�pj �
n�
i��

pi �
�
aj�d

�pj��

�	 � �
��

n�
i��

�
�pi � ���

��F�D� results from ��F�D��� by deleting the conjunct �	� ��F�D��� and
��F�D� are called the canonical and negation free canonical formulas for F
and D� respectively� It is not hard to check that if ��F�D��� is refuted in
G � hV� S�Qi under some valuation then the partial map de�ned by x "� ai
if the premise of ��F�D��� is true at x and pi false is a co�nal subreduction
of G to F satisfying �CDC� for D� and conversely� if f is such a subreduction
then the valuation U de�ned by U�pi� � V � f���ai� refutes ��F�D��� at
any point in f���a���

THEOREM 	��� There is an algorithm which� given a formula �� returns
canonical formulas ��F��D����� � � � � ��Fn�Dn��� such that

K�� � � K�� ��F��D����� � � �� ��Fn�Dn����
So the set of canonical formulas is complete for the class NExtK�� If � is
negation free then one can use negation free canonical formulas�

It is not hard to see that K��� is a splitting of NExtK� i
 � is deduc�
tively equivalent in NExtK� to a formula of the form ��F�D����� where D�

is the set of all antichains in F �in this caseK��F � K����F�D������ Such
formulas are known as Jankov formulas �Jankov �	
��� introduced them for
intuitionistic logic�� or frame formulas �cf� �Fine 	
��a��� or Jankov
Fine
formulas� Since GL is not a union�splitting of NExtK�� this class of logics
has no axiomatic basis�
We conclude this section by showing in Table � canonical axiomatizations

of some standard modal logics in the �eld of K�� For brevity we write
��F��� instead of ��F� ���� and ���F��� instead of ��F�D����� Each  in
the table is to be replaced by both � and ��
For more information about the canonical formulas the reader is referred

to �Zakharyaschev 	

�� 	

�b��

��� Decidability via the �nite model property

Although� for cardinality reason� there are �much more� undecidable logics
than decidable ones� almost all �natural� propositional systems close to
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D� � K�� ������
S� � K�� ����
GL � K�� ����
Grz � K�� ����� ��

�� ���� �
K��� � K�� ������� ��

�� ���� ���

Triv � K�� ����� ��
�� ���� �� �� �

�
��

Verum � K�� ����� �� �
�
��

S� � S�� �� �
�
��

K�B � K�� ��  
 
�� �� axioms�

A� � GL� �� �
� �
AAK ���

	 �

� ff	g� f	� �gg�

K��� � K�� �� �
�
�

�
�

���� �� �
�
����� ��  

  
AAK ��� ��� �� axioms�

K��� � K�� ��  
  
AAK ��� � �� axioms�

Dum � S�� �� �

�� ���� �
AAK ���

�� ��
�� ����
�
�
�

K�BWn � K�� ��  

n��z �� � � � �  
��I ���

� ��n" � axioms�

K�BDn � K�� ��  
 

 

�

���
�

�

	

n

� ��n�� axioms�

K�n�m � K�� �� �
�

�

�

���
�

�

	

m

�D��

Table �� Canonical axioms of standard modal logics
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those we deal with in this chapter turn out to be decidable� Relevant and
linear logics are probably the best known among very few exceptions �see
�Urquhart 	
���� �Lincoln et al� 	

����
The majority of decidability results in modal logic was obtained by means

of establishing the �nite model property� FMP by itself does not ensure yet
decidability �there is a continuum of logics with FMP�� some additional con�
ditions are required to be satis�ed� For instance� to prove the decidability
of S� McKinsey �	
�	� used two such conditions� that the logic under con�
sideration is characterized by an e
ective class of �nite frames �or algebras�
matrices� models� etc�� and that there is an e
ective �exponential in the case
of S�� upper bound for the size of minimal refutation frames� Under these
conditions� a formula belongs to the logic i
 it is validated by ��nite� frames
in a �nite family which can be e
ectively constructed� Another su�cient
condition of decidability is provided by the following well known

THEOREM 	��� �Harrop 	
��� Every �nitely axiomatizable logic with FMP
is decidable�

Here we need not to know a priori anything about the structure of frames
for a given logic� This information is replaced by checking the validity of its
axioms in �nite frames� and the restriction of the size of refutation frames
is replaced by constructing all possible derivations� in a �nite number of
steps we either separate a tested formula from the logic or derive it� Note
that unlike the previous case now we cannot estimate the time required to
complete this algorithm�
The condition of �nite axiomatizability in Harrop�s Theorem cannot be

weakened to that of recursive axiomatizability� For there is a logic of depth
� in NExtK� �i�e�� a logic in NExtK�BD�� with an in�nite set of inde�
pendent axioms� so the logic of depth � axiomatizable by some recursively
enumerable but not recursive sequence of formulas in this set is undecid�
able and has FMP� On the other hand there are examples of undecidable
logics characterized by decidable classes of �nite frames �see e�g� �Chagrov
and Zakharyaschev 	

���� Yet one can generalize Harrop�s Theorem in
the following way� A logic is decidable i
 it is recursively enumerable and
characterized by a recursive class of recursive algebras� However� this cri�
terion is absolutely useless in its generality� In this connection we note two
open problems posed by Kuznetsov �	
�
�� Is every �nitely axiomatizable
logic characterized by recursive algebras� Is every �nitely axiomatizable
logic� characterized by recursive algebras� decidable� �That �nite axiom�
atizability is essential here is explained by the following fact� if a lattice
of logics contains a logic with a continuum of immediate predecessors then
there is no countable sequence of algebras such that every logic in the lattice
is characterized by one of its subsequences� For details see �Chagrov and
Zakharyaschev 	

����
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FMP of almost all standard systems was proved using various forms of
�ltration �consult Section 	� Basic Modal Logic and �Gabbay 	
����� How�
ever� the method of �ltration is rather capricious� one needs a special craft
to apply it in each particular case �for instance� to �nd a suitable ��lter���
In this and two subsequent sections we discuss other methods of proving
FMP which are applicable to families of logics and provide in fact su�cient
conditions of FMP� �It is to be noted that the families of Kripke complete
logics considered in Section 	�� contain logics without FMP�� A pair of such
conditions was already presented in Basic Modal Logic�

THEOREM 	��� �Segerberg 	
�	� Each logic in NExtK� characterized by
a frame of �nite depth �or� which is equivalent� containing K�BDn� for
some n � �� has FMP�

THEOREM 	��� �Bull 	
��b� Fine 	
�	� Each logic in NExtS��� has FMP
and is �nitely axiomatizable �and so decidable��

The former result� covering a continuum of logics� follows immediately
from the description of �nitely generated re�ned frames forK� in Section 	��
and the latter is a consequence of Theorem 	��� and Example 	��� below�
It is worth noting also that since FL�n� is �nite for every logic L � NExtK�
of �nite depth and every n � �� there are only �nitely many pairwise non�
equivalent in L formulas of n variables� Logics with this property are called
locally tabular �or locally �nite�� Moreover� as was observed by Maksimova
�	
��a�� the converse is also true� if L � NExtK� has frames of any depth
� � then the formulas in the sequence �� � p� �n�� � p � ��p � ��n�
are not equivalent in L� Thus� a logic in NExtK� is locally tabular i
 it
is of �nite depth� For L � NExtS� this criterion can be reformulated in
the following way� L is not locally tabular i
 L 
 Grz��� where Grz�� �
S��� �Grz� Likewise� L � NExtGL is not locally tabular i
 L 
 GL���
Nagle and Thomason �	
��� showed that all normal extensions of K� are
locally tabular�

Uniform logics Fine �	
��a� used a modal analog of the full disjunctive
normal form for constructing �nite models and proving FMP of a family
of logics in NExtD �containing in particular the McKinsey system K �
��p � ��p which had resisted all attempts to prove its completeness by
the method of canonical models and �ltration�� Let us notice �rst that every
formula ��p�� � � � � pm� is equivalent in K either to � or to a disjunction
of normal forms �in the variables p�� � � � � pm� of degree md���� which are
de�ned inductively in the following way� NF�� the set of normal forms of
degree �� contains all formulas of the form ��p� � � � � � �mpm� where each
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�i is either blank or �� NFn��� the set of normal forms of degree n " 	�
consists of formulas of the form

� � ����� � � � � � �k��k�
where � � NF� and ��� � � � � �k are all distinct normal forms in NFn� Put
NF �

S
n��NFn� Using the fact that

Wf�� � � � NFng � D it is not
hard to see also that in D every formula � with md��� � n is equivalent
either to � or to a disjunction of normal forms of degree n such that at
least one of ��� � � � ��k in the inductive step of the de�nition above is blank�
Such normal forms are called D�suitable�
It should be clear that� for any distinct ��� ��� � NFn� ���� � ���� � K�

Consequently� for every � � NFn and every ��p�� � � � � pm� with md��� � n�
we have either � � � � K or � � �� � K�
With each D�suitable normal form � we associate a modelM� � hF��V�i

on a frame F� � hW�� R�i by taking
W� � f�g � f�� � NF � �� �n �� for some n 
 �g�

�� � ��� i
 ��� is a conjunct of ����

��R��
�� i
 either �� � ��� or md���� � � and ��� � ��
V��p� � f�� � W� � p is a conjunct of �

�g�
According to the de�nition� � is the re�exive last point in F� and so F� is
serial� By a straightforward induction on the degree of �� � W� one can
readily show that �M�� �

�� j� ��� It follows immediately that D has FMP�
Indeed� given � �� D� we reduce �� to a disjunction of D�suitable normal
forms with at least one disjunct �� and then �M�� �� j� ��
It turns out that in the same way we can prove FMP of all logics in

NExtD axiomatizable by uniform formulas� which are de�ned as follows�
Every � without modal operators is a uniform formula of degree �� and if
� � ��#���� � � � �#m�m�� where#i � f���g� md���p�� � � � � pm�� � � and
��� � � � � �m are uniform formulas of degree n� then � is a uniform formula
of degree n"	� A remarkable property of uniform formulas is the following

PROPOSITION 	��� Suppose � is a uniform formula of degree n and M�
N are models based upon the same frame and such that� for some point x�
�M� y� j� p i� �N� y� j� p for every y � x�n and every variable p in �� Then
�M� x� j� � i� �N� x� j� ��

Given a logic L� we call a normal form � L�suitable if F� j� L�

THEOREM 	��
 �Fine 	
��a� Every logic L � NExtD axiomatizable by
uniform formulas has FMP�
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Proof It su�ces to prove that each formula � with md��� � n is equiva�
lent in L either to � or to a disjunction of L�suitable normal forms of degree
n� And this fact will be established if we show that everyD�suitable normal
form � such that � � � �� L is L�suitable� Suppose otherwise� Let � be an
L�consistent and D�suitable normal form of the least possible degree under
which it is not L�suitable� Then there are a uniform formula � � L of some
degree m and a model M � hF��Vi such that �M� �� �j� ��
For every variable p in �� let �p � f�� � � �m� �M� ��� j� pg and let


p �
W
�p �if �p � � then 
p � ��� Observe that for every �� � ��m we have

�M�� �
�� j� 
p i
 �� � �p i
 �M� ��� j� p� Therefore� by Proposition 	����

the formula �� which results from � by replacing each p with 
p is false
at � in M�� Now� if md���� � n then m � n and so 
p � � for every p
in �� i�e�� �� is variable free� But then �� is equivalent in D to � or ��
contrary to F� �j� �� and L being consistent� And if md���� � n then either
� � �� � K� which is impossible� since �M�� �� �j� � � ��� or � � ��� � K�
from which �� � �� � K and so �� � L� contrary to � being L�consistent�

�

Logics with ���axioms Another result� connecting FMP of logics with
the distribution of � and � over their axioms� is based on the following

LEMMA 	��� For any � and �� ��� �� � S� i� ���� ��� � K��
Proof Suppose ��� � ��� �� K�� Then there is a �nite model M�
based on a transitive frame� and a point x in it such that x j� ��� and
x �j� ���� It follows from the former that every �nal cluster accessible
from x� if any� is non�degenerate and contains a point where � is true� The
latter means that x sees a �nal cluster C at all points of which � is false�
Now� taking the generated submodel of M based on C� we obtain a model
for S� refuting �� � ��� The rest is obvious� since �p � ��p is in S�
and K� 
 S�� �

Formulas in which every occurrence of a variable is in the scope of a
modality �� will be called ���formulas�

THEOREM 	��	 �Rybakov 	
��� If a logic L � NExtK� is decidable �or
has FMP� and � is a ���formula then L�� is also decidable �has FMP��

Proof Let � � �������� � � � ����n�� for some formula ���q�� � � � � qn�� If
��p�� � � � � pm� � L�� then there exists a derivation of � in L�� in which
substitution instances of � contain no variables di
erent from p�� � � � � pm�
Each of these instances has the form ��������� � � � ����

�
n�� where every �

�
i is

some substitution instance of �i containing only p�� � � � � pm� By Lemma 	���
and in view of the local tabularity of S� �it is of depth 	�� there are �nitely
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many pairwise non�equivalent in K� substitution instances of ���i of that
sort �the reader can easily estimate the number of them�� So there exist
only �nitely many pairwise non�equivalent in K� substitution instances of
� containing p�� � � � � pm� say ��� � � � � �k� and we can e
ectively construct
them� Then� by the Deduction Theorem�

� � L� � i
 ��� � � � � �k ��L � i
 ����� � � � � � �k�� � � L

and so L�� is decidable �or has FMP� whenever L is decidable �has FMP��

�

It should be noted that by adding to L with FMP in�nitely many ���
formulas we can construct an incomplete logic� For a concrete example see
�Rybakov 	
���� By adding a variable free formula to a logic in NExtK with
FMP one can get a logic without FMP� However� K � �� � variable free�
has FMP� as can be easily shown by the standard �ltration through the set
Sub��Sub�� where � �� K��� In�nitely many variable free formulas can
axiomatize a normal extension of K� without FMP �for a concrete example
see �Chagrov and Zakharyaschev 	

����

��	 Subframe and co�nal subframe logics

A very useful source of information for investigating various properties of
logics in NExtK� is their canonical axioms� Notice� for instance� that the
canonical axioms of all logics in Table �� save A� and K�n�m� contain no
closed domains� Canonical and negation free canonical formulas of the form
��F� and ��F��� are called subframe and co�nal subframe formulas� respec�
tively� and logics in NExtK� axiomatizable by them are called subframe and
co�nal subframe logics� The classes of such logics will be denoted by SF
and CSF � Subframe and co�nal subframe logics in NExtK� were studied
by Fine �	
��� and Zakharyaschev �	
��� 	
��� 	

���

THEOREM 	��� All logics in SF and CSF have FMP�

Proof Suppose L � K��f��Fi��� � i � Ig and � �� L� By Theorem 	����
without loss of generality we may assume that � is a canonical formula�
say� ��F�D���� Now consider two cases� �	� For no i � I � F is co�nally
subreducible to Fi� Then F j� L� F �j� ��F�D���� and we are done� ��� F
is co�nally subreducible to ��Fi���� for some i � I � In this case we have
��F�D��� � K�� ��Fi��� 
 L� which is a contradiction� Indeed� suppose
G �j� ��F�D���� Then there is a co�nal subreduction of G to F� And since
the composition of �co�nal� subreductions is again a �co�nal� subreduction�
G is co�nally subreducible to Fi� which means that G �j� ��Fi���� Subframe
logics are treated analogously� �
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The names �subframe logic� and �co�nal subframe logic� are explained
by the following frame�theoretic characterization of these logics� A subframe
G � hV� S�Qi of a frame F is called co�nal if V �
 V � in F� Say that a class
C of frames is closed under �co�nal� subframes if every �co�nal� subframe
of F is in C whenever F � C�

THEOREM 	��� L � NExtK� is a �co�nal� subframe logic i� it is charac�
terized by a class of frames that is closed under �co�nal� subframes�

Proof Suppose L � CSF � We show that the class of all frames for L is
closed under co�nal subframes� Let G j� L and H be a co�nal subframe
of G� If H �j� ��F���� for some ��F��� � L� then �since G is co�nally
subreducible to H� G �j� ��F���� which is a contradiction� So H j� L�
Now suppose that L is characterized by some class of frames C closed

under co�nal subframes� We show that L � L�� where

L� �K�� f��F��� � F �j� Lg�

If F is a �nite rooted frame and F �j� L then ��F��� � L� for otherwise
G �j� ��F��� for some G � C� and hence there is a co�nal subframe H of
G which is reducible to F� but H � C and so� by the Reduction Theorem�
F is a frame for L� which is a contradiction� Thus� L� 
 L� To prove the
converse� suppose ��F�D��� � L� Then F �j� L� and hence ��F��� � L��
from which ��F�D��� � L��
Subframe logics are considered in the same way� �

It follows in particular that SF � CSF �K��� and K��� are co�nal
subframe logics but not subframe ones�� One can easily show also that
CSF is a complete sublattice of NExtK� and SF a complete sublattice of
CSF �

EXAMPLE 	��� Every normal extension of S��� is axiomatizable by canon�
ical formulas which are based on chains of non�degenerate clusters and so
have no closed domains� Therefore� NExtS��� � CSF �

The classes SF and CSF � SF contain a continuum of logics� And
yet� unlike NExtK or NExtK�� their structure and their logics are not so
complex� For instance� it is not hard to see that every logic in CSF is
uniquely axiomatizable by an independent set of co�nal subframe formulas
and so these formulas form an axiomatic basis for CSF �
The concept of subframe logic was extended in �Wolter 	

�� to the class

NExtK by taking the frame�theoretic characterization of Theorem 	��� as
the de�nition� Namely� we say that L � NExtK is a subframe logic if the
class of frames for L is closed under subframes� In other words� subframe
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logics are precisely those logics whose axioms �do not force the existence of
points�� For example� K� KB� K�� T� and Altn are subframe logics� To
give a syntactic characterization of subframe logics we require the following
formulas�
For a formula � and a variable p not occurring in �� de�ne a formula �p

inductively by taking

qp � q � p� q an atom�
�� $ ��p � �p $ �p� for $ � f�����g�
����p � ��p � �p� � p

and put �sf � p � �p�

LEMMA 	��� For any frame F� F j� �sf i� � is valid in all subframes of
F�

Proof It su�ces to notice that if M is a model based on F� M� a model
based on the subframe of F induced by fy � �M� y� j� pg and �M� x� j� q i


�M�� x� j� q� for all variables q� then �M� x� j� �p i
 �M�� x� j� �� �

PROPOSITION 	��� The following conditions are equivalent for any modal
logic L�
�i� L is a subframe logic�
�ii� L � K� f�sf � � � �g� for some set of formulas ��
�iii� L is characterized by a class of frames closed under subframes�

Proof The implication �i� � �iii� is trivial� �iii� � �ii� and �ii� � �i� are

consequences of Lemma 	���� �

It follows that the class of subframe logics forms a complete sublattice of
NExtK� However� not all of them have FMP and even are Kripke complete�

EXAMPLE 	��� Let L be the logic of the frame F constructed in Exam�
ple 	��� Since every rooted subframe G of F is isomorphic to a generated
subframe of F� L is a subframe logic� We show that L has the same Kripke
frames as GL��� Suppose G is a rooted Kripke frame for GL�� refuting
� � L� Then clearly G contains a �nite subframe H refuting �� Since H is
a �nite chain of irre�exive points� it is isomorphic to a generated subframe
of F� contrary to F �j� �� Thus G j� L� Conversely� suppose G is a Kripke
frame for L� Then G is irre�exive� For otherwise G refutes the formula
� � ����p � p� � ���p � p� � �p� which is valid in F� Let us show
now that G is transitive� Suppose otherwise� Then G refutes the formula
�p � ���p � ��q � q��� which is valid in F because � is a re�exive point�
Finally� since G j� �� G is Noetherian and since F is of width 	� we may
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conclude that G j� GL��� It follows that the subframe logic L is Kripke
incomplete� Indeed� it shares the same class of Kripke frames with GL��
but �p � ��p � GL��� L�

The following theorem provides a frame�theoretic characterization of those
complete subframe logics in NExtK that are elementary� D!persistent and
strongly complete� Say that a logic L has the �nite embedding property if
a Kripke frame F validates L whenever all �nite subframes of F are frames
for L�

THEOREM 	��� �Fine 	
��� For each Kripke complete subframe logic L
the following conditions are equivalent�
�i� L is universal��

�ii� L is elementary�
�iii� L is D
persistent�
�iv� L is strongly Kripke complete�
�v� L has the �nite embedding property�

Proof The implications �i� � �ii� and �iii� � �iv� are trivial� �ii� � �iii�
follows from Fine�s �	
��b� Theorem formulated in Section 	�� and �v� �
�i� from �Tarski 	
���� Thus it remains to show that �iv� � �v�� Suppose
F is a Kripke frame with root r such that F �j� L but all �nite subframes
of F validate L� Then it is readily checked that all �nite subsets of � �
fprg ���� F are L�consistent� Hence the whole set � is L�consistent� On
the other hand� similarly to the proof of Lemma 	�	� one can show that � is
satis�able in a Kripke frame i
 the frame is subreducible to F� So � cannot
be satis�ed in a Kripke frame for L and L is not strongly complete� �

A similar criterion for the co�nal subframe logics in NExtK� can be
found in �Zakharyaschev 	

��� Note� however� that they are not in general
universal and certainly do not have the �nite embedding property� but �ii��
�iii� and �iv� are still equivalent�

PROPOSITION 	��
 Every subframe logic L � NExtAltn has FMP�

Proof Suppose � �� L� By Theorem 	���� there is a Kripke frame F for L
refuting � at a point x� Denote by X the set of points in F accessible from
x by � md��� steps� Clearly� X is �nite and the subframe of F induced by

X validates L and refutes �� �

To understand the place of incomplete logics in the lattice of subframe
logics we call a subframe logic L strictly sf�complete if it is Kripke complete

�I�e�� universal is the class of Kripke frames for L considered as models of the �rst
order language with R and ��
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and no other subframe logic has the same Kripke frames as L� Example 	���
shows that GL�� is not strictly sf�complete� However� the logics T� S� and
Grz turn out to be strictly sf�complete� The following result clari�es the
situation� It is proved by applying the splitting technique to lattices of
subframe logics�

THEOREM 	��� A subframe logic L containing K� is strictly sf�complete
i� L �
 GL��� All subframe logics in NExtAltn are strictly sf�complete�
A subframe logic is tabular i� there are only �nitely many subframe logics
containing it�

��
 More su�cient conditions of FMP

As follows from Theorem 	���� a logic in NExtK� does not have FMP only
if at least one of its canonical axioms contains closed domains� We illustrate
their role by a simple example�

EXAMPLE 	��	 Consider the logic L � K��� � ���F��� and the formula
��F���� where F is the frame depicted in Fig� � �a�� The frame G in
Fig� � �b� separates ��F��� from L� Indeed� F is a co�nal subframe of G
and so G �j� ��F���� To show that G j� ���F���� suppose f is a co�nal
subreduction of G to F� Then f���	� contains only one point� say x� f�����
also contains only one point� namely the root of G� So the in�nite set of
points between x and the root is outside domf � which means that f does
not satisfy �CDC� for ff	gg� On the other hand� if H is a �nite refutation
frame of width 	 for ��F��� then H contains a generated subframe reducible
to F� from which H �j� L� Thus� L fails to have FMP� In the same manner
the reader can prove that A� in Table � does not have FMP either�

We show now two methods developed in �Zakharyaschev 	

�a� for es�
tablishing FMP of logics whose canonical axioms contain closed domains�
One of them uses the following lemma� which is an immediate consequence
of the refutability criterion for the canonical formulas�
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LEMMA 	��� Suppose ��F�D� and ��G�E� ���F�D��� and ��G�E����
are canonical formulas such that there is a �co�nal� subreduction f of G
to F satisfying �CDC� for D and an antichain e 
 domf� is in E whenever
f�e�� � d� for some d � D� Then ��G�E� � K� � ��F�D� �respectively�
��G�E��� � K�� ��F�D�����

THEOREM 	��� L � K��f��Fi�Di��� � i � Ig�f��Fj�Dj� � j � Jg has
FMP provided that either all frames Fi� for i � I � J � are irre�exive or all
of them are re�exive�

Proof Suppose all Fi are irre�exive and ��G�E��� is an arbitrary canon�
ical formula� We construct from G a new �nite frame H by inserting into it
new re�exive points� Namely� suppose e is an antichain in G such that e �� E�
Suppose also that C�� � � � � Cn are all clusters in G such that e 
 Ci� and
e � Ci � �� for i � 	� � � � � n� but no successor of Ci possesses this property�
Then we insert in G new re�exive points x�� � � � � xn so that each xi could
see only the points in e and their successors and could be seen only from the
points in Ci and their predecessors� The same we simultaneously do for all
antichains e in G of that sort� The resulting frame is denoted by H� Since
no new point was inserted just below an antichain in E� H �j� ��G�E����
Suppose now that ��G�E��� �� L and show that H j� L� If this is not so

then either H �j� ��Fi�Di���� for some i � I � or H �j� ��Fj �Dj�� for some
j � J � We consider only the former case� since the latter one is treated
similarly� Thus� we have a co�nal subreduction f of H to Fi satisfying
�CDC� for Di� Since Fi is irre�exive� no point that was added to G is in
domf � So f may be regarded as a co�nal subreduction of G to Fi satisfying
�CDC� forDi� We clearly may assume also that the subframe ofG generated
by domf is rooted� Let e be an antichain in G belonging to domf� and such
that f�e�� � d� for some d � Di� If e �� E then there is a re�exive point
x in H such that x � domf� and x sees only e� and� of course� itself� But
then f�x�� � f�e�� � d� and so� by �CDC�� x � domf � which is impossible�
Therefore� e � E and so� by Lemma 	���� ��G�E��� � L� contrary to our
assumption�

In the case of re�exive frames irre�exive points are inserted� �

EXAMPLE 	��� According to Theorem 	���� the logic

L � K�� �� �
� �
AAK ���

	 �

� ff	g� f	� �gg�

has FMP� However� Artemov�s logic A� � L � GL does not enjoy this
property� So FMP is not in general preserved under sums of logics�
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The scope of the method of inserting points is not bounded only by canon�
ical axioms associated with homogeneous �irre�exive or re�exive� frames� It
can be applied� for instance� to normal extensions of K� with modal reduc�
tion principles� i�e�� formulas of the formMp � Np� whereM and N are
strings of � and � �for �rst order equivalents of modal reduction principles
see �van Benthem 	
����� One can show that each such logic is either of
�nite depth� or can be axiomatized by ���formulas and canonical formulas
based upon almost homogeneous frames �containing at most one re�exive
point�� for which the method works as well� So we have

THEOREM 	��� All logics in NExtK� axiomatizable by modal reduction
principles have FMP and are decidable�

One of the most interesting open problems in completeness theory of
modal logic is to prove an analogous theorem for logics in NExtK or to
construct a counter�example� It is unknown� in particular� whether the
logics K��mp � �np have FMP� the same concerns the logics K� tran�
The second method of proving FMP uses the more conventional technique

of removing points� Suppose that L � K� � f��Gi�Di��� � i � Ig and
� � ��H�E��� �� L� Then there exists a frame F for L such that F �j� ��
i�e�� there is a co�nal subreduction h of F to H satisfying �CDC� for E�
Construct the countermodelM � hF�Vi for � as it was done in Section 	���
Without loss of generality we may assume that domh� � domh� � F and
that F is generated by the sets V�pi�� pi a variable in ��
Actually� the step�wise re�nement procedure with deleting points having

Sub��equivalent successors� used in the proof of Theorem 	���� establishes
FMP of L when all Di are empty� i�e�� L is a co�nal subframe logic� To
tune it for L with non�empty Di� we should follow a subtler strategy of
deleting points� preserving those that are �responsible� for validating the
axioms of L� Suppose we have already constructed a modelM�

n � hF�n�V�
ni

by �folding up� n� 	�cyclic sets into clusters of depth n �we use the same
notations as in the proof of Theorem 	����� Now we throw away points of
two sorts�
First� for every proper cluster C of depth n such that some x � C has

a Sub��equivalent successor of depth � n� we remove from C all points
except x� Second� call a point x of depth � n redundant in M�

n if it has
a Sub��equivalent successor of depth � n and� for every i � I and every
co�nal subreduction g of �F�n�

�n to the subframe of Gi generated by some
d � Di such that d 
 g�x�� and g satis�es �CDC� for Di� there is a point
y � x � of depth � n such that g�y �� � d�� Let X be the maximal
set of redundant points in M�

n which is upward closed in �W
�
n�

�n� We
de�ne Mn�� � hFn���Vn��i as the submodel of M�

n resulting from it by
removing all points in X as well� Since all deleted points have Sub��
equivalent successors�Mn�� �j� �� And since we keep in Fn�� points which
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violate �CDC� for Di of possible co�nal subreductions to Gi� Fn�� j� L�
So FMP of L will be established if we manage to prove that this process
eventually terminates�

EXAMPLE 	��� Let L � S� � ��G� ff	� �gg���� where G is �
� �

�

AAK ���

�	
�

� and
assume that our �algorithm�� when being applied to F� � and L� works
in�nitely long� Then the frame F� � hW� � R�i� where

W� �
�

��i��

W�i
i � R� �

�
��i��

R�ii � Fi � hWi� Ri� Pii �

is of in�nite depth� By K�onig�s Lemma� there is an in�nite descending
chain � � � xiR�xi�� � � � R�x�R�x� in F� such that xi is of depth i� Since
there are only �nitely many pairwise non�Sub��equivalent points� there
must be some n � � such that� for every k 
 n� each point in C�xk� has a

Sub��equivalent successor in F�kk � And since F
��
� is �nite� there is m 
 n

starting from which all xi see the same points of depth 	� Let us consider
now Fm and ask why points in the m�cyclic set X � folded at step m " 	
into C�xm���� were not removed at step m� X is upward closed in W�m

m

and every point in it has a Sub��equivalent successor in F�mm � So the only
reason for keeping some x � X is that F�mm is co�nally subreducible to G���
x sees inverse images of both points in G�� but none of its successors in
F�mm does� By the co�nality condition� these inverse images can be taken

from F
��
� � But then they are also seen from xm� which is a contradiction�

Thus sooner or later our algorithm will construct a �nite frame separating
L from �� which proves that L has FMP�

The reason why we succeeded in this example is that inverse images of
points in the closed domain f	� �g can be found at a �xed �nite depth in
F�� and so points violating �CDC� for it can also be found at �nite depth
�that was not the case in Example 	��	�� The following de�nitions describe
a big family of frames and closed domains of that sort�
A point x in a frame G is called a focus of an antichain a in G if x �� a

and x� � fxg � a�� Suppose G is a �nite frame and D a set of antichains
in G� De�ne by induction on n notions of n�stable point in G �relative to
D� and n�stable antichain in D� A point x is 	�stable in G i
 either x is of
depth 	 in G or the cluster C�x� is proper� A point x is n " 	�stable in G
�relative to D� i
 it is not m�stable� for any m � n� and either there is an
n�stable point in G �relative to D� which is not seen from x or x is a focus
of an antichain in D containing an n�	�stable point and no n�stable point�
And we say an antichain d in D is n�stable i
 it contains an n�stable point
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in the subframe G� of G generated by d �relative to D� and no m�stable
point in G� �relative to D�� for m � n� A point or an antichain is stable if
it is n�stable for some n� It should be clear that if a point in an antichain
is stable then the rest points in the antichain are also stable�

EXAMPLE 	��� �	� Suppose G is a �nite rooted generated subframe of one
of the frames shown in Fig� � �a�!�c�� Then� regardless of D� each point
in G di
erent from its root is n�stable� where n is the number located near
the point� Every antichain d in G� containing at least two points� is also
n�stable� with n being the maximal degree of stability of points in d�
��� If G is a rooted generated subframe of the frame depicted in Fig� �

�d� and D is the set of all two�point antichains in G then every point in G is
n�stable �relative to D�� where n stays near the point� However� for D � �
no point in G� save those of depth 	� is stable�
��� If G is a �nite tree of clusters then every antichain in G� di
erent from

a non��nal singleton� is either 	� or ��stable in G regardless of D� Every
antichain containing a point x with proper C�x� is 	� or ��stable as well�
whatever G and D are�
��� Every antichain is stable in every irre�exive frame G relative to the

set D� of all antichains in G� However� this is not so if G contains re�exive
points �for re�exive singletons are open domains and do not belong to D���

The su�cient condition of FMP below is proved by arguments that are
similar to those we used in Example 	����

THEOREM 	��� If L � K��f��Gi�Di��� � i � Ig and there is d � � such
that� for any i � I� every closed domain d � Di is n�stable in Gi �relative
to Di�� for some n � d� then L has FMP�

Example 	��� shows many applications of this condition� Moreover� using
it one can prove the following
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THEOREM 	��
 Every normal extension of S� with a formula in one vari�
able has FMP and is decidable�

Note that� as was shown by Shehtman �	
���� a formula in two variables
or an in�nite set of one�variable formulas can axiomatize logics in NExtS�
without FMP �and even Kripke incomplete��

���� The reduction method

That a logic does not have FMP �or is Kripke incomplete� is not yet an
evidence of its undecidability� it is enough to recall that the majority of
decidability results for classical theories was proved without using any ana�
logues of the �nite model property �see e�g� �Rabin 	
���� �Ershov 	
�����
The �rst example of a decidable �nitely axiomatizable modal logic without
FMP was constructed by Gabbay �	
�	��
It seems unlikely that the methods of classical model theory can be ap�

plied directly for proving the decidability of propositional modal logics�
However� sometimes it is possible to reduce the decision problem for a given
modal logic L to that for a knowingly decidable �rst or higher order theory
whose language is expressive enough for describing the structure of frames
characterizing L� The most popular tools used for this purpose are B�uchi�s
�	
��� Theorem on the decidability of the weak monadic second order theory
of the successor function on natural numbers and Rabin�s �	
�
� Tree The�
orem� Below we illustrate the use of Rabin�s Theorem following �Gabbay
	
��� and �Cresswell 	
����
Let �� be the set of all �nite sequences of natural numbers and % the

lexicographic order on it� For x � �� and i � �� put ri�x� � x  i� where
 denotes the usual concatenation operation� Besides� de�ne the following
predicates �i on �

�� for � � i � ��

x �i y i
 y � x  ��n" i� for some n � ��

It follows from �Rabin 	
�
� that the monadic second order theory S�S
of the model h��� fri � i � �g� f�i� � � i � �g�%� �i �� denotes the empty
sequence� is decidable�
The theory S�S has a very strong expressive power which makes it pos�

sible to e
ectively describe semantical de�nitions of many modal �as well as
some other� logics and thereby prove their decidability� In this way Gabbay
�	
��� established the decidability of� for instance�

K��m�p� �p� K��m
�p � �p�

K��mp � �
np� K��mp � �

np�



ADVANCED MODAL LOGIC ��

By Sahlqvist�s Theorem� all these logics are Kripke complete� however� we
do not know whether they have FMP� General frames can also be described
by means of S�S�

EXAMPLE 	��� The frame F � hW�R� P i constructed in Example 	�� can
be represented in the language of S�S as follows� Let us encode each n � �
by the sequence h�ni� while � and � " 	 by r���� and r����� respectively�
Then we have

x � W i
 � �� x � x � r���� � x � r�����
xRy i
 �� �� x � � �� y � y % x � x �� y� �

�x � r���� � � �� y� � x � y � r���� �
�x � r���� � y � r������

X � P i
 �x �x � X � x � W � � ��Fin�X� � r���� �� X� �
�Y ��y �y � Y � �y � W � y �� X��� Fin�Y � � r���� �� Y ���

where x � y means x % y � y % x and

Fin�X� � 	x�y �y � X � y % x��

It follows that the logic LogF is decidable� Indeed� for every formula
��p�� � � � � pn�� we have � � LogF i
 the second order formula
�x�X�� � � � � Xn �X� � P � � � � �Xn � P � x � W � ST ���X�� � � � � Xn���

belongs to S�S� Here ST ���X�� � � � � Xn��� the standard translation of �� is
de�ned inductively in the following way �see also Correspondence Theory��

ST �X� � x � X� ST ��� � ��
ST �X $ Y � � ST �X�$ ST �Y �� for $ � f�����g�

ST ��X� � �y �xRy � ST �X�fy�xg��
Recall that� as was shown in Example 	���� LogF is Kripke incomplete�

Also� it is not hard to �nd examples of applications of this technique
for proving the decidability of �nitely axiomatizable quasi�normal unimodal
and normal polymodal �in particular� tense� logics which do not have Kripke
frames at all� perhaps� the simplest one is Solovay�s logic S�
Sobolev �	
��a� found another way of proving decidability by applying

methods of automata theory on in�nite sequences� Using the results of
�B�uchi and Siefkes 	
��� he showed that all �nitely axiomatizable superin�
tuitionistic logics of �nite width �see Section ���� containing the formula

���p � q�� p�� p� � ���q � p�� q�� q��
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are decidable� By the preservation theorem of Section ���� this result can
be transferred to the corresponding extensions of S��

If a logic is known to be complete with respect to a suitable class of
frames� the methods discussed above are usually applicable to it in a rather
straightforward manner� A relative disadvantage of this approach is that the
resulting decision algorithms inherit the extremely high complexity of the
decision algorithms for S�S or other �rich theories� used to prove decidabil�
ity� On the other hand� the logic S� for instance� turns out to be decidable
by an algorithm of the same complexity as that for GL �see Example 	�����
in particular� the derivability problem in S is PSPACE�complete� The
logic of the frame F in Example 	�� is �almost trivial��it is polynomially
equivalent to classical propositional logic� which follows from the fact that
every formula � refutable by F can be also refuted in F under a valua�
tion giving the same truth�value to all variables in � at all points i such
that jSub�j � i � � �see Section ����� Actually� this sort of decidability
proofs �ignoring �inessential� parts of in�nite frames� was used already by
Kuznetsov and Gerchiu �	
��� for studying some superintuitionistic logics�

Recently more general semantical methods of obtaining decidability re�
sults without turning to �rich theories� have been developed� We demon�
strate them in the next section by establishing the decidability of all �nitely
axiomatizable logics in NExtK���� which according to Example 	��	 do not
in general have FMP� We show� however� that those logics are complete
with respect to recursively enumerable classes of recursive frames in which
the validity of formulas can be e
ectively checked�it was this rather than
the �niteness of frames that we used in the proof of Harrop�s Theorem� In
Section ��� this result will be extended to linear tense logics which in general
are not even Kripke complete� Our presentation follows �Zakharyaschev and
Alekseev 	

���

���� Logics containing K���

Each logic in L � NExtK��� is represented in the form

L � K���� f��Fi�Di��� � i � Ig�

where all Fi are chains of clusters� So our decidability problem reduces to
�nding an algorithm which� given such a representation with �nite I and
a canonical formula ��F�D��� built on a chain of clusters F� could decide
whether ��F�D��� � L� Recall also that� by Fine�s �	
��c� Theorem� logics
of width 	 are characterized by Kripke frames having the form of Noetherian
chains of clusters�
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LEMMA 	��	 For any Noetherian chain of clusters G and any canonical
formula ��F�D���� G �j� ��F�D��� i� there is an injective�� co�nal subre�
duction g of G to F satisfying �CDC� for D�

Proof If G �j� ��F�D��� then there is a co�nal subreduction f of G to
F satisfying �CDC� for D� Clearly� f���x� is a singleton if x is irre�exive�
Suppose now that x is a re�exive point in F� Since G contains no in�nite
ascending chains� f���x� has a �nite cover and so there is a re�exive point
ux � f���x� such that f���x� 
 ux�� Fix such a ux for each re�exive x and
de�ne a partial map g by taking

g�y� �

	

�

f�y� if either f�y� is irre�exive or
f�y� is re�exive and y � uf	y


unde�ned otherwise�

One can readily check that g is the injective co�nal subreduction we need�
The converse is trivial� �

Roughly� every Noetherian chain of clusters refuting ��F�D��� results
from F by inserting some Noetherian chains of clusters just below clusters
C�x� in F such that fxg �� D� We show now that if ��F�D��� is not in
L � NExtK��� then it can be separated from L by a frame constructed
from F by inserting in open domains between its adjacent clusters either
�nite descending chains of irre�exive points possibly ending with a re�exive
one or in�nite descending chains of irre�exive points�
Let C�x��� � � � � C�xn� be all distinct clusters in F ordered in such a way

that C�x�� � C�x��� � � � � � C�xn��� Say that an n�tuple t � h��� � � � � �ni
is a type for ��F�D��� if either �i � m or �i � m"� for some m � �� or
�i � �� with �i � � if fxig � D� Given a type t � h��� � � � � �ni for ��F�D����
we de�ne the t�extension of F to be the frame G that is obtained from F

by inserting between each pair C�xi���� C�xi� either a descending chain of
m irre�exive points� if �i � m � �� or a descending chain of m " 	 points
of which only the last �lowest� one is re�exive� if �i � m"� or an in�nite
descending chain of irre�exive points� if �i � �� It should be clear that
G �j� ��F�D����
LEMMA 	��� If L � NExtK��� and ��F�D��� �� L then ��F�D��� is
separated from L by the t�extension of F� for some type t for ��F�D����
Proof By Lemma 	��	� we have a Noetherian chain of clusters G for L
and an injective co�nal subreduction f of G to F satisfying �CDC� for D�
By the Generation Theorem� we may assume that f maps the root of G to
the root of F� Let G� be the subframe of G obtained by removing from G

�	That is g�x� �� g�y�� for every distinct x� y � domg�
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all those points that are not in domf but belong to clusters containing some
points in domf � The very same map f is an injective co�nal subreduction
of G� to F satisfying �CDC� for D� and so G� �j� ��F�D���� Since G� is a
reduct of G� G� j� L�
Let C�x��� � � � � C�xn� be all distinct clusters in G� such that

domf �

n�
i��

C�xi�� C�x�� � C�x��� � � � � � C�xn���

By induction on i we de�ne a sequence of frames G� � � � � � Gn such that
�a� f is an injective co�nal subreduction of Gi to F satisfying �CDC� for
D� �b� between C�xi��� and C�xi� the frame Gi contains either a �nite
descending chain of irre�exive points possibly ending with a re�exive one
or an in�nite descending chain of irre�exive points� and �c� Gi j� L�
Suppose Gi�� has been already constructed and Ci is the chain of clusters

located between C�xi��� and C�xi�� Three cases are possible� �	� Ci is a
�nite chain of irre�exive points� Then we put Gi � Gi��� ��� Ci contains
a non�degenerate cluster C�x� having �nitely many distinct successors in
Ci and all of them are irre�exive� Then Gi results from Gi�� by removing
from Ci all points save x and those successors� Gi is a reduct of Gi��
and so conditions �a�!�c� are satis�ed� ��� Suppose �	� and ��� do not
hold� Then Ci contains an in�nite descending chain Y of irre�exive points
accessible from all other points in Ci� In this case Gi is obtained from Gi��
by removing all points in Ci save those in Y � Clearly� Gi satis�es �a� and
�b�� To prove �c� suppose Gi �j� ��H�E��� for some ��H�E��� � L� Then
there is an injective co�nal subreduction g of Gi to H satisfying �CDC� for
E� Consider g as a co�nal subreduction of Gi�� to H and show that it also
satis�es �CDC� for E� Indeed� �CDC� could be violated only by a point in
z � Ci � Y such that g�z�� � w�� for some fwg � E� Since g���w� is a
singleton and Y 
 z�� there is y � Y such that g�y�� � w� and y �� domg�
contrary to g satisfying �CDC� for E as a subreduction of Gi to H� �

Thus� a frame separating ��F�D��� �� L from L � NExtK��� can be
found in the recursively enumerable class of t�extensions of F� t being a
type for ��F�D���� Moreover� given a formula ��H�E��� and a type t
for ��F�D���� one can e
ectively check whether ��H�E��� is valid in the
t�extension of F� Indeed� let k be the number of irre�exive points in H�
t � h��� � � � � �ni� and G the t�extension of F� Construct a co�nal subframe
Gk of G by �cutting o
� the in�nite descending chains inserted in F �if any�
just below their k " 	th points� and let X be the set of all these k " 	th
points� Clearly� Gk is �nite� It is now an easy exercise to prove the following

LEMMA 	��� G �j� ��H�E��� i� there is an injective co�nal subreduction
f of Gk to H satisfying �CDC� for E and such that X � domf � ��
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As a consequence we obtain

THEOREM 	��� All �nitely axiomatizable normal extensions of K��� are
decidable�

���� Quasi
normal modal logics

All logics we have considered so far were normal� i�e�� closed under the rule
of necessitation ����� McKinsey and Tarski �	
��� noticed� however� that
by adding to S� the McKinsey axiom ma � ��p � ��p and taking
the closure under modus ponens and substitution we obtain a logic�let us
denote it by S�����which is not normal in that sense� To understand why
this is so� consider the frame F shown in Fig� �� One can easily construct
a model on F such that � �j� �ma �� sees a �nal proper cluster�� On the
other hand� ma and all its substitution instances are true at � �� sees a
�nal simple cluster�� from which S���� 
 f� � � j� �g and so �ma �� S�����
A set of modal formulas containing K and closed under modus ponens

and substitution was called by Segerberg �	
�	� a quasi�normal logic� The
minimal quasi�normal extension of a logic L with formulas �i� i � I � will be
denoted by L " f�i � i � Ig �i�e�� the operation " presupposes taking the
closure under modus ponens and substitution only�� ExtL is the class of all
quasi�normal logics above L� It is easy to see that a quasi�normal logic is
normal i
 it is closed under the congruence rule p � q��p� �q�
Quasi�normal logics� introduced originally as some abstract �though nat�

ural� generalization of normal ones� attracted modal logicians� attention
after Solovay �	
��� constructed his provability logics GL and S� The for�
mer one treats � as �it is provable in Peano Arithmetic� and describes
those properties of G�odel�s provability predicate that are provable in PA� it
is normal� The latter characterizes the properties of the provability predi�
cate that are true in the standard arithmetic model� and in view of G�odel�s
Incompleteness Theorem it cannot be normal� �For a detailed discussion of
provability logic consult Modal Logic and Self�reference�� Solovay showed
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in fact that

S �GL"�p � p�

At �rst sight S may appear to be inconsistent� L�ob�s axiom requires frames
to be irre�exive� while �p � p is refuted in them� And indeed� no Kripke
frame validates both these axioms �in particular no consistent extension of
S is normal��
Having the algebraic semantics for normal modal logics� it is fairly easy to

construct an adequate algebraic semantics for a consistent L � ExtK� Let
M be a normal logic contained in L �for instance the greatest one� which is
called the kernel of L� and AM its Tarski!Lindenbaum algebra �in Section
		 of Basic Modal Logic it was called the canonical modal algebra for M��
The set

r � f���M � � � Lg
is clearly a �lter in AM � By the well known properties of the Tarski!
Lindenbaum algebras� we then obtain the following completeness result�
� � L i
 under every valuation in AM the value of � belongs to r� Struc�
tures of the form hA�ri� where A is a modal algebra and r a �lter in A� are
known as modal matrices� Thus� every quasi�normal logic is characterized
by a suitable class of modal matrices� It is not hard to see that L is normal
i
 it is characterized by a class of modal matrices with unit �lters�
Now� going over to the dual �Stone!J�onsson!Tarski representation� A�

of A in a modal matrix hA�ri and taking r� to be the set of ultra�lters in
A containing r� we arrive at the general frame A� with the set of distin�
guished points �or actual worlds� r�� A formula � is regarded to be valid
in hA��r�i i
 under any valuation in A�� � is true at all points in r��
Taking into account the Generation Theorem� we can conclude that ev�

ery quasi�normal modal logic is characterized by a suitable class of rooted
general frames in which the root is regarded to be the only actual world�
It follows in particular that� as was �rst observed by McKinsey and Tarski
�	
����

K�" f��i � i � Ig � K�� f��i � i � Ig�
However� one cannot replace here K� by K or T� Note also that as was
shown by Segerberg �	
�	�� K� T and some other standard normal logics
are not �nitely axiomatizable with modus ponens and substitution as the
only postulated inference rules� Duality theory between modal matrices and
frames with distinguished points can be developed along with duality theory
for normal logics �for details see �Chagrov and Zakharyaschev 	

���� Kripke
frames with distinguished points were used for studying quasi�normal logics
by Segerberg �	
�	�� Modal matrices were considered by Blok and K�ohler
�	
��� �under the name of �ltered algebras�� Chagrov �	
��b�� and Shum
�	
����
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EXAMPLE 	��� Consider the �transitive� frame G � hV� S�Qi whose un�
derlying Kripke frame is shown in Fig� � and Q consists of �� V � all ��
nite sets of natural numbers and the complements to them in the space
V �so � � X � Q i
 there is n � � such that m � X for all m 
 n��
Since G is irre�exive and Noetherian� it validates GL� Moreover� we have
hG� �i j� �p � p� for if under some valuation � j� �p then p must be true
at every point� It follows that G with actual world � validates S� �The
reader can check that by making � re�exive we again obtain a frame for S��
By inserting the �tail� G as in Fig� � into �nite rooted frames for GL

below their roots and using the fact that GL has FMP� one can readily
show that� for every formula ��

� � S i

�

���Sub�
��� � ��� � � GL�

It follows in particular that S is decidable�

This example shows that the concepts of Kripke completeness and FMP
do not play so important role in the quasi�normal case� even simple logics
require in�nite general frames� One possible way to cope with them at
least in the transitive case is to extend the frame�theoretic language of the
canonical formulas to the class ExtK��
Notice �rst that the canonical formulas� introduced in Section 	��� cannot

axiomatize all logics in ExtK�� Indeed� hG� wi �j� ��F�D��� i
 there is a
co�nal subreduction f of G to F satisfying �CDC� for D and the following
actual world condition as well�

�AWC� f�w� is the root of F�

Now� consider the frame hG� �i constructed in Example 	���� Since each set
X � Q containing � is in�nite and has a dead end� it is impossible to reduce
X to � or �� and so hG� �i validates all normal canonical formulas� On the
other hand� we clearly have hG� �i �j� Bn for every n 
 	� So the logics
K�BDn cannot be axiomatized by normal canonical formulas without the
postulated necessitation�
To get over this obstacle we have to modify the de�nition of subreduction

so that such sets as X above may be �reduced� at least to irre�exive roots
of frames� Given a frame G � hV� S�Qi with an irre�exive root u and a
frame F � hW�R� P i� we say a partial map f from W onto V is a quasi�
subreduction of F to G if it satis�es �R	� for all x� y � domf such that
f�x� �� u or f�y� �� u� �R�� and �R����� Thus� we may map all points in
the frame G in Fig� � to �� and this map will be a quasi�reduction of G to
� satisfying �AWC�� Actually� every frame is quasi�reducible to ��

��Another possibility is to allow 	reductions
 of X to re�exive points by relaxing �R
��
cf� Section 
���
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Now� given a �nite frame F with an irre�exive root a� and a set D of
antichains in F� we de�ne the quasi�normal canonical formula ���F�D���
as the result of deleting �p� from �� in ��F�D��� �which says that a� is not
self�accessible�� the quasi�normal negation free canonical formula ���F�D�
is de�ned in exactly the same way� starting from ��F�D�� It is not hard
to see that ���F�D��� �or ���F�D�� is refuted in a frame hG� wi i
 there
is a co�nal �respectively� plain� quasi�subreduction of G to F satisfying
�CDC� for D and �AWC�� The following result is obtained by an obvious
generalization of the proof of Theorem 	��� to frames with distinguished
points �for details see �Zakharyaschev 	

����

THEOREM 	��� There is an algorithm which� given a modal �negation
free� formula �� constructs a �nite set  of normal and quasi�normal �nega�
tion free� canonical formulas such that K�" � � K�" �

For example� S � K� " ���� " ����� Since frames for S� are re�exive�
we have

COROLLARY 	��� There is an algorithm which� given a modal formula
�� constructs a �nite set  of normal canonical formulas built on re�exive
frames such that S�" � � S�" �

As a consequence we obtain

THEOREM 	��� �Segerberg 	
��� ExtS��� � NExtS����

Proof We must show that every logic L � ExtS��� is normal� i�e�� � � L
only if �� � L� for every �� Suppose otherwise� Then by Corollary 	����
there exists ��F�D��� � L such that ���F�D��� �� L� Let hG� wi be a
frame validating L and refuting ���F�D���� Since G j� S���� G is a chain
of non�degenerate clusters� And since it refutes ��F�D��� there is a co�nal
subreduction f of G to F� It follows� in particular� that F is also a chain
of non�degenerate clusters and so D � �� Let a be the root of F� De�ne a
map g by taking

g�x� �

	

�

f�x� if x � domf
a if x � f���a��� domf
unde�ned otherwise�

It should be clear that g co�nally subreduces G to F and g�w� � a� Conse�

quently� hG� wi �j� ��F���� which is a contradiction� �

Let us now brie�y consider quasi�normal analogues of subframe and co�
�nal subframe logics in NExtK�� Those logics that can be represented in
the form

�K�� f��Fi� � i � Ig� " f��Fj� � j � Jg" f���Fk� � k � Kg
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are called �quasi�normal� subframe logics and those of the form

�K�� f��Fi��� � i � Ig� " f��Fj ��� � j � Jg" f���Fk��� � k � Kg
are called �quasi�normal� co�nal subframe logics� The classes of quasi�
normal subframe and co�nal subframe logics are denoted by QSF and
QCSF � respectively� The example of S shows that Theorem 	��� cannot
be extended to QSF and QCSF � Yet one can show that all �nitely axiom�
atizable logics in QSF and QCSF are decidable� We omit almost all proofs
and con�ne ourselves mainly to formulations of relevant results� For details
the reader is referred to �Zakharyaschev 	

���
We use the following notation� For a frame F � hW�Ri with irre�exive

root u and � � � � �� Fir	 and Fr	 denote the frames obtained from F

by replacing u with the descending chains �� � � � � � � 	 of irre�exive and
re�exive points� respectively� Fir	���
� �

D
W	���
� � R

ir
	���
� � P	���
�

E
is the

frame that results from F by replacing u with the in�nite descending chain
�� 	� � � � of irre�exive points and then adding irre�exive root �� with P	���
�
containing all subsets of W � fug� all �nite subsets of natural numbers
f�� 	� � � �g� all ��nite� unions of these sets and all complements to them in
the space W	���
� �see Fig� ��� Note that F is a quasi�reduct of every frame
of the form Fir	 � F

r
	 or F

ir
	���
� �

The following theorem characterizes the canonical formulas belonging to
logics in QSF and QCSF �
THEOREM 	��
 Suppose L is a subframe or co�nal subframe quasi�normal
logic� Then
�i� for every �nite frame F with root u� ��F�D��� � L i� hF� ui �j� L�
�ii� for every �nite frame F with irre�exive root u� ���F�D��� � L i�

hF� ui �j� L� hFr�� �i �j� L and
D
Fir	���
� � �

E
�j� L�

Proof We prove only ��� of �ii�� Let G � hV� S�Qi refute ���F�D��� at
its root w and show that hG� wi �j� L� We have a co�nal quasi�subreduction
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f of G to F such that f�w� � u� Consider the set U � f���u� � Q� Without
loss of generality we may assume that U � U�� There are three possible
cases�

Case 	� The point w is irre�exive and fwg � Q� Then the restriction of
f to domf� �U�fwg� is a co�nal subreduction of G to F satisfying �AWC�
and so hG� wi �j� L�

Case �� There is X 
 U such that w � X � Q and� for every x � X �
there exists y � X � x�� Then the restriction of f to domf � �U �X� is a
co�nal subreduction of G to Fr� satisfying �AWC� and so again hG� wi �j� L�

Case �� If neither of the preceding cases holds then� for every X 
 U
such that w � X � Q� the set DX � X �X� of dead ends in X is a cover
for X � i�e�� X 
 DX�� and w � X �DX � Q� Put

X� � DU � � � � � Xn�� � DU�	X�
���
Xn
� � � � � X� � U �
�
	��

X	�

Each of these sets� save possibly X�� is an antichain of irre�exive points
and belongs to Q� Besides� X
 � Xn� �

S
n�	��X	 for every n � � � ��

Therefore� the map g de�ned by

g�x� �

�
f�x� if x � V � U
� if x � X	� � � � � �

is a co�nal quasi�subreduction of G to Fir	���
� satisfying �AWC��

Now using the fact that
D
Fir	���
� � �

E
�j� L and that the composition of

�co�nal� �quasi�� subreductions is again a �co�nal� �quasi�� subreduction� it

is not hard to see that hG� wi �j� L� �

COROLLARY 	��� All subframe and co�nal subframe quasi�normal logics
above S� have FMP�

EXAMPLE 	��	 As an illustration let us use Theorem 	��
 to characterize
those normal and quasi�normal canonical formulas that belong to S� Clearly�
either ���� or ���� is refuted at the root of every rooted Kripke frame� So all
normal canonical formulas are in S� Every quasi�normal formula ���F�D���
associated with F containing a re�exive point is also in S� since ����� is
refuted at the roots of F� Fr� and F

ir
	���
� � But no quasi�normal formula

���F�D��� built on irre�exive F belongs to S� because Fir	���
� j� ���� andD
Fir	���
� � �

E
j� ����� since f�g �� P	���
� � Notice that incidentally we have

proved the following completeness theorem for S�

THEOREM 	��� S is characterized by the class

f
D
Fir	���
� � �

E
� F is a �nite rooted irre�exive frameg�
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Theorem 	��
 reduces the decision problem for a logic L in QSF or
QCSF to the problem of verifying� given a �nite frame F with root u�

whether hF� ui� hFr�� �i and
D
Fir	���
� � �

E
refute an axiom of L� The two

former frames present no di�culties� they are �nite� As to the latter� it is

not hard to see that� for instance�
D
Fir	���
� � �

E
�j� ���G��� i


D
Fir	 � � � 	

E
�

for some � � jGj� is co�nally quasi�subreducible to G� Thus we obtain

THEOREM 	��� All �nitely axiomatizable subframe and co�nal subframe
quasi�normal logics are decidable�

One can also give a frame�theoretic characterization of the classes QSF
and QCSF similar to Theorem 	���� Let us say that a frame F with actual
world u is a �co�nal� subframe of a frame G with actual world w if F is a
�co�nal� subframe of G and u � w�

THEOREM 	��� L is a �co�nal� subframe quasi�normal logic i� L is char�
acterized by a class of frames with actual worlds that is closed under �co�nal�
subframes�

���� Tabular logics

Every logic L having the �nite model property can be represented as the in�
tersection of some tabular logics� that is logics characterized by �nite frames
�or models� algebras� matrices� etc���

L �
�

fLogF � F is a �nite frame for Lg�

�It follows in particular that every fragment of L containing only those
formulas whose length does not exceed some �xed n � � is determined
by a �nite frame� for that reason logics with FMP are also called �nitely
approximable�� In many respects tabular logics are very easy to deal with�
For instance� the key problem of recognizing whether a formula � belongs
to a tabular L is trivially decided by the direct inspection of all possible
valuations of ��s variables in the �nite frame characterizing L� That is
why the question �is it tabular�� is one of the �rst items in the standard
�questionnaire� for every new logical system�
First results concerning the tabularity of modal logics were obtained by

G�odel �	
��� and Dugundji �	
��� who showed that intuitionistic proposi�
tional logic and all Lewis� modal systems S�!S� are not tabular� �Note that
using the same method Drabb�e �	
��� proved that the three non�normal
Lewis� systems S�!S� cannot be characterized by a matrix with a �nite
number of distinguished elements�� For arbitrary logics in ExtK one can
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easily prove the following syntactical criterion of tabularity� which uses the
formulas

�n � ���� ����� ����� � � � � ���n� � � ����

�n �
n���
m��

��m���� � � � � ���n��

tabn � �n � �n�

where �i � p� � � � � � pi�� � �pi � pi�� � � � � � pn�

THEOREM 	��� L � ExtK is tabular i� tabn � L� for some n � ��

Proof A frame F � hW�Ri refutes �n at a point x� i
 a chain of length n
starts from x�� and F refutes �n at x� i
 there is a chain x�Rx�R � � �Rxm
of length m � n such that xm is of branching n� i�e�� xmRy�� � � � � xmRyn
for some distinct y�� � � � � yn� It follows that every rooted generated �by an
actual world� subframe of the canonical frame for L containing tabn has at

most 	 " �n� 	� " � � �" �n� 	�n�� points� �

As a consequence we immediately obtain

COROLLARY 	��� Every tabular modal logic has �nitely many extensions
and all of them are also tabular�

The next theorem follows from general algebraic results of �Blok and
K�ohler 	
���� equally easy it can be proved using the characterization above�

THEOREM 	��� Every tabular logic L � ExtK is �nitely axiomatizable�

Proof According to Theorem 	���� L is an extension ofK"tabn� for some
n � �� By Corollary 	���� we have a chain

K" tabn � L� � L� � � � � � Lk�� � Lk � L

of quasi�normal logics such that fL� � ExtK � Li � L� � Li��g � �� for
every i � 	� � � � � k�	� It remains to notice that if L� is �nitely axiomatizable�
L� � L�� and there is no logic located properly between L� and L�� then L��

is also �nitely axiomatizable �e�g� L�� � L�"�� for any � � L���L��� �

Theorem 	�	� provides us in fact with an algorithm to decide� given a
tabular logic L � NExtK� and an arbitrary formula �� whetherK��� � L�
Indeed� notice �rst that we have
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THEOREM 	��� Each �nitely axiomatizable logic L � NExtK� of �nite
depth is a �nite union�splitting� i�e�� can be represented in the form

L � K�� f���Fi��� � i � Ig

with �nite I�

Proof Let L � K�� � be a logic of depth n and let m be the number of
variables in �� We show that L coincides with the logic

L� � K�� f���G��� � jGj �
n��X
i��

�mcm�i�� G �j� �g

�cm�i� was de�ned in Section 	���� The inclusion L � L� is obvious� Suppose
� �� L�� Then there is a rooted re�ned m�generated frame F for L� refuting
�� Clearly� F is of depth � n� since otherwise ���G��� is an axiom of L�
for every rooted generated subframe G of F of depth n" 	 and so F �j� L��
which is a contradiction� But then ���F��� is an axiom of L�� contrary to
our assumption� �

Thus� all tabular logics in NExtK� are �nite union�splittings and so� by
Theorem 	�	�� we obtain the following

THEOREM 	��
 Let L be a tabular logic in NExtK��

�i� �Blok 	
��c� L has �nitely many immediate predecessors and they are
also tabular�

�ii� The axiomatizability problem for L above K� is decidable�

For logics in NExtK this is not the case� witness Theorems 	��� and ��	��

The tabularity criterion of Theorem 	��� is not e
ective� Moreover� as
we shall see in Section ���� no e
ective tabularity criterion exists in general�
However� if we restrict attention to su�ciently strong logics� e�g� to the
class NExtS�� the tabularity problem turns out to be decidable� The key
idea� proposed by Kuznetsov �	
�	�� is to consider the so called pretabular
logics�

A logic L � �N�ExtL� is said to be pretabular in the lattice �N�ExtL�� if
L is not tabular but every proper extension of L in �N�ExtL� is tabular� In
other words� a pretabular logic in �N�ExtL� is a maximal non�tabular logic
in �N�ExtL��

THEOREM 	�
� In the lattices ExtK and NExtK every non�tabular logic
is contained in a pretabular one�
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Proof By Theorem 	���� a logic is non�tabular i
 it does not contain the
formula tabn� for any n � �� It follows that the union of an ascending
chain of non�tabular logics is a non�tabular logic as well� The standard use
of Zorn�s Lemma completes the proof� �

If there is a simple description of all pretabular logics in a lattice� we
obtain an e
ective �modulo the description� tabularity criterion for the lat�
tice� Indeed� take for de�niteness the lattice NExtK�� How to determine�
given a formula �� whether K��� is tabular� We may launch two parallel
processes� one of them generates all derivations in K�� � and stops after
�nding a derivation of tabn� for some n � �� another process checks if �
belongs to a pretabular logic in NExtK� and stops if this is the case� The
termination of the �rst process means that K��� is tabular� while that of
the second one shows that it is not tabular�
Unfortunately� it is impossible to describe in an e
ective way all pretab�

ular logics in �N�ExtK and even �N�ExtK�� Blok �	
��c� and Chagrov
�	
�
� constructed a continuum of them� However� for smaller lattices like
NExtS� or NExtGL such descriptions were found by Maksimova �	
��b��
Esakia and Meskhi �	
��� and Blok �	
��c�� The �ve pretabular logics in
NExtS� were presented in Section 	� of Basic Modal Logic� In NExtGL
the picture is much more complicated�

THEOREM 	�
	 �Blok 	
��c� Chagrov 	
�
� The set of pretabular logics
in NExtGL is denumerable� It consists of the logics GL�� � LogG� and
LogG�

m�n� for m 
 �� n 
 	� where G� and G�
m�n are the frames depicted in

Fig� �� If hm�ni �� hk� li then LogG�
m�n �� LogG�

k�l�

Using this semantic description of pretabular logics in NExtGL� it is not



ADVANCED MODAL LOGIC ��

hard to �nd �nite sets of formulas axiomatizing them� Moreover� all of them
turn out to be decidable� For we have

THEOREM 	�
� Every non�tabular logic L � NExtK� has a non�tabular
extension with FMP� and so every pretabular logic in NExtK� has FMP�

Proof Since L is non�tabular and characterized by the class of its rooted
�nitely generated re�ned frames� we have either a sequence Fi� i � 	� �� � � ��
of rooted �nite frames for L of depth i� or a sequence Fi of rooted �nite
frames for L of width 
 i� In both cases the logic LogfFi � i � �g � L is

non�tabular and has FMP� �

So we obtain the following result on the decidability of tabularity�

THEOREM 	�
� The property of tabularity is decidable in NExtS�� ExtS��
NExtGL� ExtGL�

Since a logic in ExtK� is locally tabular i
 it is determined by a frame
of �nite depth� the property of local tabularity is decidable in the lattices
mentioned in Theorem 	�
� as well� However� this is not the case for ExtK�
itself�

���� Interpolation

One of the fundamental properties of logics is their capability to provide
explicit de�nitions of implicitly de�nable terms� which is known as the Beth
property �Beth �	
��� proved it for classical logic�� In the modal case we
say a logic L has the Beth property if� for any formula ��p�� � � � � pn� pn���
and variables p and q di
erent from p�� � � � � pn�

��p�� � � � � pn� p� � ��p�� � � � pn� q�� �p � q� � L

only if there is a formula ��p�� � � � pn� such that

��p�� � � � � pn� p�� �p � ��p�� � � � pn�� � L�

The Beth property turns out to be closely related to the interpolation prop�
erty which was introduced by Craig �	
��� for classical logic� Namely� we
say that a logic L has the interpolation property if� for every implication
� � � � L� there exists a formula �� called an interpolant for � � � in L�
such that � � � � L� � � � � L and every variable in �� if any� occurs in
both � and �� While in abstract model theory interpolation is weaker than
Beth de�nability� for modal logics we have

THEOREM 	�
� �Maksimova 	

�� A normal modal logic has interpola�
tion i� it has the Beth property�
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Say also that a normal modal logic L has the interpolation property for
the consequence relation ��L� ���interpolation for short� if every time when
� ��L �� there is a formula � such that � ��L �� � ��L � and Var� 

Var� � Var�� �Here Var� is the set of all variables in ��� It should be
clear that interpolation implies ���interpolation�
By the end of the 	
��s interpolation had been established for a good

many standard modal systems� The semantical proofs� sometimes rather
sophisticated� resemble the Henkin construction of the canonical models�
Here are two examples of such proofs �which are due to Maksimova �	
��b�
and Smory�nski �	
�����

THEOREM 	�
� �Gabbay 	
��� The logics K� K�� T� S� have the inter�
polation property�

Proof We consider only S�� for the other logics the proofs are similar�
Suppose � � � �� S� and � � � �� S� for any � whose variables occur in
both � and �� and show that in this case � � � �� S��
Let t � ��� � be a pair of sets of formulas such that Var� 
 Var� if

� � � and Var� 
 Var� if � �  � Say that t is inseparable if there are
no formulas �i � �� �j �  and � with Var� 
 Var� � Var� such thatVn
i�� �i � � � S�� � � Wm

i�� �i � S�� The pair t is called complete if for
every � and � with Var� 
 Var� and Var� 
 Var�� one of the formulas
� and �� is in � and one of � and �� is in  �

LEMMA 	�
� Every inseparable pair t� � ���� �� can be extended to a
complete inseparable pair�

Proof Let ��� ��� � � � and ��� ��� � � � be enumerations of all formulas whose
variables occur in � and �� respectively� De�ne pairs t�n � ���n� �n� and
tn�� � ��n��� n��� inductively by taking

t�n �
�
��n � f�ng� n� if this pair is inseparable
��n � f��ng� n� otherwise�

tn�� �

�
���n� �n � f�ng� if this pair is inseparable
���n� 

�
n � f��ng� otherwise

and put t� � ���� ��� where �� �
S
n�� �n�  

� �
S
n�� n� Clearly

t� is complete� Suppose it is separable� i�e�� for some ��� � � � � �n � ���
��� � � � � �m �  � and some � containing only those variables that occur in
both � and �� we have

Vn
i�� �i � � � S� and � � Wm

i�� �i � S�� Then
there is k � � such that ��� � � � � �n � �k and ��� � � � � �m �  k� which means
that tk is separable� So it remains to show that if t � ��� � is inseparable�
Var� 
 Var� and Var� 
 Var� then
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� one of the pairs �� � f�g� � or �� � f��g� � is inseparable and
� one of the pairs ��� � f�g� or ��� � f��g� is inseparable�

We prove only the former claim� Suppose� on the contrary� that both pairs
are separable� i�e�� there are formulas ��� �� in variables occurring in both
� and � such that� for some ��� � � � � �n � �� ��� � � � � �m �  � we have

�� � � � � � �n � � � �� � S�� �� � �� � � � � � �m � S��
�� � � � � � �n � �� � �� � S�� �� � �� � � � � � �m � S��

Then we obtain ��� � � � � � �n � �� � ��� � � � � � �n � ���� �� � �� � S��
�� � �� � �� � � � � � �m � S�� from which

�� � � � � � �n � �� � �� � S�� �� � �� � �� � � � � � �m � S��
contrary to t being inseparable� �

Now we de�ne a frame F � hW�Ri by taking W to be the set of all
complete and inseparable pairs and� for t� � ���� ��� t� � ���� �� in W �
t�Rt� i
 �� � �� implies � � ��� Using the axioms �p � p and �p � ��p
of S�� one can readily check that R is a quasi�order on W � i�e�� F j� S��
De�ne a valuation V in F by taking for every variable p � Var�� � ���

V�p� � f��� � � W � either p � � or p � Var� and p ��  g� Put
M � hF�Vi� By induction on the construction of formulas � and � with
Var� 
 Var�� Var� 
 Var� one can show that for every t � ��� � in F

�M� t� j� � i
 � � �� �M� t� �j� � i
 � �  �
Indeed� the basis of induction follows from the de�nition of V and the
completeness and inseparability of t� The cases of the Boolean connectives
present no di�culty� So suppose � � ���� If t j� ��� then� for every
t� � ���� �� � t�� we have t� j� �� and so �� � ��� Suppose ��� �� �� Then
���� � �� Consider the pair t� � ���� ��� where

�� � f���g � f� � �� � �g�  � � f�� � ��� �  g�
and show that it is inseparable� Assume otherwise� Then there is � with
Var� 
 Var� � Var� such that� for some formulas ���� � � � ���n � ��
���n��� � � � ����m �  �

��� � �� � � � � � �n � � � S�� � � ��n�� � � � � � ��m � S��
It follows that

���� � ��� � � � � � ��n � �� � S��
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�� � ���n�� � � � � � ���m � S��
contrary to t being inseparable� Let t� � ���� �� be a complete inseparable
extension of t�� By the de�nition of t�� we have tRt

� and so �� � ��� contrary
to ��� � �� 
 �� and t� being inseparable�
Suppose now that ��� � �� Then for every t� � ���� �� such that tRt��

we have �� � � and so t� j� ��� Consequently� t j� ���� The formula � is
treated in the dual way�
To complete the proof it remains to observe that M �j� � � �� �

This proof does not always go through for di
erent kinds of logics� How�
ever� sometimes suitable modi�cations are possible�

THEOREM 	�
� GL has the interpolation property�

Proof Suppose � � � has no interpolant in GL� Our goal is to construct
a �nite irre�exive transitive frame refuting � � ��
This time we consider �nite pairs t � ��� � such that all formulas in �

and  are constructed from variables and their negations using �� �� �� ��
Without loss of generality we will assume � and � to be formulas of that
sort� Say that t is separable if there is a formula � withVar� 
 Var��Var�
such that

V
� � � � GL and � � W

 � GL� It should be clear that if
t � ��� � is a �nite inseparable pair then in the same way as in the proof
of Theorem 	�
� but taking only subformulas of � and � we can obtain
a �nite inseparable pair t� � ���� �� satisfying the conditions� for every
� � Sub� and � � Sub�� one of the formulas � and �� �an equivalent
formula of the form under consideration� to be more precise� is in �� and
one of � and �� is in  ��
Now we construct by induction a �nite rooted model for GL refuting

� � �� As its root we take �f�g�� f�g��� If we have already put in our
model a pair t � ��� � and it has not been considered yet� then for every
�� � � and every �� �  � we add to the model the pairs

t� � �f��������� � � �� � �g�� f���� � �� �  g���
t� � f���� � �� � �g�� f��������� � � �� �  g���

One can readily show that if t is inseparable then t� and t� are also in�
separable� Put tR�t� and tR�t�� The process of adding new pairs must
eventually terminate� since each step reduces the number of formulas of the
form �� and �� in the left and right parts of pairs� Let W be the set of
all pairs constructed in this way and R the transitive closure of R�� Clearly�
the resulting frame F � hW�Ri validates GL� De�ne a valuation V in F by
taking� for each variable p�

V�p� � f��� � � W � p � �g�
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As in the proof of Theorem 	�
�� it is easily shown that � � � is refuted in
F under V� �

To clarify the algebraic meaning of interpolation we require the following
well known proposition�

PROPOSITION 	�
� If r is a normal �lter�� in a modal algebra A then
the relation �r� de�ned by a �r b i� a � b � r� is a congruence relation�
The map r "��r is an isomorphism from the lattice of normal �lters in A
onto the lattice of congruences in A�

Denote by A�r the quotient algebra A��r and let kakr � fb � a �r bg�
Say that a class C of algebras is amalgamable if for all algebras A�� A��

A� in C such that A� is embedded in A� and A� by isomorphisms f� and f��
respectively� there exist A � C and isomorphisms g� and g� of A� and A�
into A with g��f��x�� � g��f��x��� for any x in A�� If in addition we have

gi�x� � gj�y� implies 	z � A� �x �i fi�z� and fj�z� �j y�

for all x � Ai� y � Aj such that fi� jg � f	� �g� then C is called superamal�
gamable� Here Ai is the universe of Ai and �i its lattice order�

THEOREM 	�

 �Maksimova 	
�
� L has the interpolation property i� the
variety AlgL of modal algebras for L is superamalgamable� L has the ���
interpolation property i� AlgL is amalgamable�

Proof We prove only the former claim� ��� Suppose L has the interpo�
lation property and A�� A�� A� are modal algebras for L such that A� is
a subalgebra of both A� and A�� With each element a � Ai� i � �� 	� ��
we associate a variable pia in such a way that� for a � A�� p

�
a � p�a � p�a�

Denote by Li the language with the variables pia� for a � Ai� i � �� 	� �� and
let L � L� � L�� We will assume that L is the language of L�
Fix the valuation Vi of Li in Ai� de�ned by Vi�p

i
a� � a� and put

#i � f� � ForLi � Vi��� � �g�
Let # be the closure of #� � #� � L under modus ponens� We show that�
for every � � ForLi� � � ForLj such that fi� jg � f	� �g�

� � � � # i
 	� � ForL� �� � � � #i and � � � � #j�� �	��

Suppose � � � � #� Then there exist �nite sets �i 
 #i and �j 
 #j such
that �

�i � � � �
�
�j � �� � L�

��A �lter r is normal �or open� as in Section �� of Basic Modal Logic� if �a � r
whenever a � r�
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Since L has interpolation� there is a formula � � ForL� such that�
�i � � � � � L�

�
�j � �� � �� � L�

from which � � � � #i and � � � � #j � The converse implication is
obvious�
Now construct an algebra A by taking the set fk�k � � � #g as its

universe� where k�k � f� � � � � � #g� k�k � k�k � k� � �k and
$k�k � k $ �k� for $ � f���g� One can readily prove that A � AlgL�
De�ne maps gi from Ai into A by taking gi�a� � kpiak� It is not di�cult to
show that gi is an embedding of Ai in A� And for a � A�� we have

g��a� � kp�ak � g��a��

It remains to check the condition for superamalgamability� Suppose a � Ai�
b � Aj � fi� jg � f	� �g� and gi�a� � gj�b�� Then gi�a� � gj�b� � � and

so kpia � pjbk � �� i�e�� pia � pjb � #� By �	��� we have � � ForL� with
V��� � c such that a �i c �j b�
��� Assuming AlgL to be superamalgamable� we show that L has the

interpolation property� To this end we require

LEMMA 	�	�� Suppose A� is a subalgebra of modal algebras A� and A��
a � A�� b � A� and there is no c � A� such that a �� c �� b� Then
there are ultra�lters r� in A� and r� in A� such that a � r�� b �� r� and
r� � A� � r� � A��

Suppose ��p�� � � � � pm� q�� � � � � qn� and ��q�� � � � � qn� r�� � � � � rl� are formu�
las for which there is no ��q�� � � � � qn� such that � � � � L and � � � � L�
We show that in this case there exists an algebra A � VarL refuting � � ��
Let A��� A�� and A�� be the free algebras in AlgL generated by the sets

fc�� � � � � cng� fa�� � � � � am� c�� � � � � cng and fc�� � � � � cn� b�� � � � � blg� respectively�
According to this de�nition� A�� is a subalgebra of both A

�
� and A

�
�� By

Lemma 	�	��� there are ultra�lters r� in A
�
� and r� in A

�
� such that we

have ��a�� � � � � am� c�� � � � � cn� � r� and ��c�� � � � � cn� b�� � � � � bl� �� r�� De�
�ne normal �lters

r�
i � fa � A�i � �m � � �ma � rig

and put A� � A���r�
�� A� � A���r�

�� Construct an algebra A� by taking
A� � fkakr�

�
� a � A��g� By the de�nition� A� is a subalgebra of A�� i�e�� is

embedded in A� by the map f��x� � x� One can show that A� is embedded
in A� by the map f��kxkr�� � kxkr�

�
� Then there are an algebra A for L

and isomorphisms g� and g� of A� and A� into A satisfying the conditions
of superamalgamability� De�ne a valuation V in A by taking V�pi� �
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g��kaikr��� V�qj� � g��kcjkr�� � g��kcjkr�� and V�rk� � g��kbkkr���
Then V��� �� V��� because otherwise there would exist fi� jg � f	� �g and
z � A� such that V��� �i fi�z� and fj�z� �j V���� Thus� A �j� � � � and

so � � � �� L� �

Using this theorem Maksimova �	
�
� discovered a surprising fact� there
are only �nitely many logics in NExtS� with the interpolation property
�not more than ��� to be more exact� and all of them turned out to be
union�splittings� By Theorem 	�	�� we obtain then

THEOREM 	�	�	 �Maksimova 	
�
� There is an algorithm which� given a
modal formula �� decides whether S�� � has interpolation�

We illustrate this result by considering a much simpler class of logics�

THEOREM 	�	�� Only four logics in NExtS� have the interpolation prop�
erty� S� itself� the logic of the two�point cluster� Triv and For�

Proof We have already demonstrated how to prove that a logic has inter�
polation� So now we show only that no logic L in NExtS� di
erent from
those mentioned in the formulation has the interpolation property� Suppose
on the contrary that L has interpolation� We use the amalgamability of the
variety of modal algebras for L to show that an arbitrary big �nite cluster
is a frame for L� from which it will follow that L � S��
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Figure 	� demonstrates two ways of reducing the three�point cluster to
the two�point one� By the amalgamation property� there must exist a clus�
ter reducible to the two depicted copies of the two�point cluster� with the
reductions satisfying the amalgamation condition� It should be clear from
Fig� 	� that such a cluster contains at least four points� By the same scheme
one can prove now that every n�point cluster validates L� �

It would be naive to expect that such a simple picture can be extended
to classes like NExtK� or NExtK� Even in NExtGL the situation is quite
di
erent from that in NExtS�� Maksimova �	
�
� discovered that there is
a continuum of logics in NExtGL having the interpolation property� This
result is based upon the following observation� For L � NExtK�� we call a
formula ��p� conservative in NExtL if

�
������ � ��p� � ��q��� ��p � q� � ���p� � L�

For example� in NExtS� conservative are ��p � ��p� ��p � ��p� and
�p � �p�

THEOREM 	�	�� �Maksimova 	
��� If L � NExtK� has the interpolation
property and formulas �i� for i � I� are conservative in NExtL� then the
logic L� f�i � i � Ig also has the interpolation property�

Proof Suppose � � � � L�f�i � i � Ig� Then there is a �nite J 
 I � say
J � f	� � � � � lg� such that � � � � L� f�i � i � Jg and so� as follows from
the de�nition of conservative formulas and the Deduction Theorem for K��

�
�

l�
j��

��j��� � �j�p�� � � � � � �j�pn��� �� � �� � L�

where p�� � � � � pm� pm��� � � � � pk and pm��� � � � � pk� pk��� � � � � pn are all the
variables in � and �� respectively� Consequently

�
�

l�
j��

��j��� � �j�p�� � � � � � �j�pk�� � � �

���
l�

j��

��j�pm��� � � � � � �j�pn��� �� � L�

Since L has the interpolation property� there is ��pm��� � � � � pk� such that

�
�

l�
j��

��j��� � �j�p�� � � � � � �j�pk�� � � � � � L�
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�
�

l�
j��

��j�pm��� � � � � � �j�pn��� �� � �� � L�

Then we obtain � � � � L� f�i � i � Ig and � � � � L� f�i � i � Ig�
i�e�� � is an interpolant for � � � in L� f�i � i � Ig� �

Using the formulas

�i � �
���i���� �i��� � �

i��p � �i���p�
which are conservative in NExtGL� one can readily construct a continuum
of logics in this class with the interpolation property� The set of logics in
NExtGL without interpolation is also continual�
In general� an interpolant � for an implication � � � � L depends on

both � and �� Say that a logic L has uniform interpolation if� for any
�nite set of variables $ and any formula �� there exists a formula � such
that Var� 
 $ and � � � � L� � � � � L whenever Var� � Var� 
 $
and � � � � L� In this case � is called a post�interpolant for � and
$� Roughly speaking� a logic has uniform interpolation if we can choose
an interpolant for � � � � L independly from the actual shape of ��
Uniform interpolation was �rst investigated by Pitts �	

�� who proved that
intuitionistic logic enjoys it� It is fairly easy to �nd multiple examples
of modal logics with uniform interpolation by observing that any locally
tabular logic with interpolation has uniform interpolation as well� Indeed�
for every formula � and every set of variables $� we can de�ne a post�
interpolant � as the conjunction of a maximal set of pairwise non�equivalent
in L formulas �� such thatVar�� 
 $ and � � �� � L �which is �nite in view
of the local tabularity of L�� It follows� for instance� that S� has uniform
interpolation� In general� however� interpolation does not imply uniform
interpolation� �Ghilardi and Zawadowski 	

�� showed that S� does not
enjoy the latter� witness the following formula without a post�interpolant
for frg in S�

p � ��p � �q� � ��q � �p� � ��p � r� � ��q � �r��
Only a few positive results on the uniform interpolation of modal logics
are known� Shavrukov �	

�� proved it for GL� Ghilardi �	

�� for K� and
Visser �	

�� for Grz�
A property closely related to interpolation is so called Halld�en com�

pleteness� A logic L is said to be Halld�en complete if � � � � L and
Var� � Var� � � imply � � L or � � L� Since every variable free for�
mula is equivalent in D either to � or to �� L � ExtD is Halld�en complete
whenever it has interpolation� K� K�� GL are examples of Halld�en incom�
plete logics with interpolation� each of them contains �� � ��� but not



�� M� ZAKHARYASCHEV� F� WOLTER� AND A� CHAGROV

�� and ���� On the other hand� S��� is a Halld�en complete logic �see
�van Benthem and Humberstone 	
���� without interpolation �see �Maksi�
mova 	
��a��� Actually� there is a continuum of Halld�en complete logics in
NExtS� �see �Chagrov and Zakharyaschev 	

����
Halld�en completeness has an interesting lattice�theoretic characteriza�

tion�

THEOREM 	�	�� �Lemmon 	
��c� A logic L � ExtK is Halld�en complete
i� it is

T
�irreducible in ExtL�

Since the lattice ExtS� is linearly ordered by inclusion� all logics above
S� are Halld�en complete� There are various semantic criteria for Halld�en
completeness �see e�g� �Maksimova 	

���� Here we note only the following
generalization of the result of �van Benthem and Humberstone 	
����

THEOREM 	�	�� Suppose a logic L � ExtK is characterized by a class
C of descriptive rooted frames with distinguished roots� Then L is Halld�en
complete i�� for all frames hF�� d�i and hF�� d�i in C� there is a frame hF� di
for L reducible�� to both hF�� d�i and hF�� d�i�

For more results and references on Halld�en completeness consult �Chagrov
and Zakharyaschev 	

	��

� POLYMODAL LOGICS

So far we have con�ned ourselves to considering modal logics with only one
necessity operator� From a theoretical point of view this restriction is not
such a great loss as it may seem at �rst sight� In fact� really important
concepts of modal logic do not depend on the number of boxes and can
be introduced and investigated on the basis of just one� We shall give a
precise meaning to this claim in Section ��� below where it is shown that
polymodal logic is reduced in a natural way to unimodal logic� However�
there are at least two reasons for a detailed discussion of polymodal logic
in this chapter�
First� a number of interesting phenomena are easily missed in unimodal

logic and actually appear in a representative form only in the polymodal
case� For example� with the exception of NExtK��� and QCSF all known
general decidability results in unimodal logic have been obtained by proving
the �nite model property� In fact� nearly all natural classes of logics in
NExtK turned out to be describable by their �nite frames� The situation
drastically changes with the addition of just one more box� Even in the
case of linear tense logics or bimodal provability logics one has to start with

��By reductions that map d to di�
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a thorough investigation of their in�nite frames� FMP becomes a rather
rare guest� While the result on NExtK��� indicated the need for general
methods of establishing decidability without FMP� this need becomes of
vital importance only in the context of polymodal logic�
The second reason is that various applications of modal logic require

polymodal languages� For example� in tense logic we have two necessity�
like operators �� and ��� One of them� say the former� is interpreted as �it
will always be true� and the other as �it was always true�� Kripke frames for
tense logics are structures hW�R�� R�i with two binary relations R� and R�

such that R� coincides with the converse R
��
� of R� �which re�ects the fact

that a moment x is earlier than y i
 y is later than x�� The characteristic
axioms connecting the two tense operators are

p � ����p and p � ����p�

For more information about tense systems consult Basic Tense Logic�
Another example is basic temporal logic in which we have two necessity�

like operators� one of them�usually called Next�is interpreted by the
successor relation in � and the other by its transitive and re�exive clo�
sure� Details can be found in �Segerberg 	
�
�� Propositional dynamic logic
PDL and its extensions� like deterministic PDL� can also be regarded as
polymodal logics �see Dynamic Logic��
A number of provability logics use two or more modal operators� see e�g�

Boolos �	

��� In GLB� for instance� we have one operator �� understood
as provability in PA and another operator �� interpreted as ��provability
in PA� The unimodal fragments of GLB coincide with GL� The axioms
connecting �� and �� are

��p � ��p and ��p � ����p�

In epistemic logics we need an operator �i for each agent i� �i� is inter�
preted as �agent i believes �or knows� ��� One possible way to axiomatize
the logic of knowledge with m agents is to take the axioms of S� for each
agent without any principles connecting di
erent �i and �j � We denote
the resultant logic by

Nm
i�� S�� Often

Nm
i�� S� is extended by the common

knowledge operator C with the intended meaning

C� � E� � E�� � � � � � En� � � � � � where E� �
Vm
i�� �i�

�see e�g� �Halpern and Moses 	

�� and �Meyer and van der Hoek 	

����
The reader will �nd more items for this list in other chapters of the

Handbook�
From the semantical point of view� many standard polymodal logics

can be obtained by applying Boolean or various natural closure opera�
tors to the accessibility relations of Kripke frames� For instance� in frames
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hW�R�� � � � � Rni for epistemic logic the common knowledge operator is in�
terpreted by the transitive closure of R� � � � � � Rn� Tense frames result
from usual hW�Ri by adding the converse of R� Humberstone �	
��� and
Goranko �	

�a� study the bimodal logic of inaccessible worlds determined
by frames of the form

�
W�R�W � �R

�
� This list of examples can be con�

tinued� for a general approach and related topics consult �Goranko 	

�b��
�Gargov et al� 	
���� �Gargov and Passy 	

���
Let us see now how polymodal logics in general �t into the theory de�

veloped so far� We begin by demonstrating how the concepts introduced in
the unimodal case transfer to polymodal logic and showing that a few gen�
eral results�like Sahlqvist�s and Blok�s Theorems�have natural analogues
in polymodal logic� We hope to convince the reader that up to this point
no new di�culties arise when one switches from the unimodal language to
the polymodal one� After that� in Section ���� we start considering subtler
features of polymodal logics�

��� From unimodal to polymodal

Let LI be the propositional language with a �nite number of necessity op�
erators �i� i � I � A normal polymodal logic in LI is a set of LI �formulas
containing all classical tautologies� the axioms �i�p � q� � ��ip � �iq�
for all i � I � and closed under substitution� modus ponens and the rule of
necessitation ���i� for every i � I � If the language is clear from the con�
text� we call these logics just �normal� modal logics and denote by NExtL
the family of all normal extensions of L �in the language LI�� The smallest
normal modal logic with n necessity operators is denoted by Kn �K �K��
of course��
Given a logic L� in LI and a set of LI �formulas �� we again denote by

L� � � the smallest normal logic �in LI � containing L� � �� A number
of other notions and results also transfer in a rather straightforward way�
e�g� Theorems 	�� and 	��� Proposition 	�� and all concepts involved in their
formulations� More care has to be taken to generalize Theorems 	�	� 	�� and
	��� Denote by M�

I the set of non�empty strings �words� over f�i � i � Ig
which do not contain any �i twice and put

�I� �
�

fM� �M �M�
Ig� ��mI � �

�
f�nI� � n � mg�

In the language LI the operator �I serves as a sort of surrogate for � in
K� For example� the following polymodal version of Theorem 	�	 holds�

THEOREM ��	 �Deduction� For every modal logic L in LI � every set of
LI�formulas �� and all LI�formulas � and ��

�� � ��L � i� 	m 
 � � ��L ��mI � � ��
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Theorems 	�� and 	�� can be reformulated analogously by replacing �
with �I �a logic L in LI is n�transitive if it contains ��nI p � �

n��
I p��

Basic semantic concepts are lifted to the polymodal case in a straight�
forward manner� The algebraic counterpart of L � NExtKn is the vari�
ety of Boolean algebras with n unary operators validating L� A structure
F � hW� hRi � i � Ii� P i is called a �general polymodal� frame whenever
every hW�Ri� P i� for i � I � is a unimodal frame� We then put

�iX � fx � W � �y �xRiy � y � X�g�

Di�erentiated� re�ned and descriptive frames and the truth�preserving op�
erations can also be de�ned in the same component�wise way� For instance�
a frame F � hW� hRi � i � Ii� P i is di
erentiated if all the unimodal frames
hW�Ri� P i� for i � I � are di
erentiated� F � hW� hRi � i � Ii� P i is a �gen�
erated� subframe of G � hV� hSi � i � Ii� Qi if all hW�Ri� P i are �generated�
subframes of hV� Si� Qi� and f is a reduction of F to G if f is a reduction of
hW�Ri� P i to hV� Si� Qi� for every i � I �

There are some exceptions to this rule� A point r is called a root of F if it
is a root of the unimodal frame hW�

S
i�I Rii� This does not mean that r is a

root of all unimodal reducts of F� Another important exception� as before�
a polymodal frame is ��generated if the algebra F� is ��generated� however�
this does not mean that the unimodal reducts of F are ��generated�

Splittings and the degree of Kripke incompleteness The semantic
criterion of splittings by �nite frames given in Theorem 	�	� transfers to
polymodal logics by replacing � with �I � Again� all �nite rooted frames
split NExtL�� if L� is an n�transitive logic in LI � Notice� however� that
n�transitivity is a rather strong condition in the polymodal case� For ex�
ample� it is easily checked that the fusion S� & S� as well as the minimal
tense logic K��t containing K� are not n�transitive� for any n � � �see
Sections ��� and ��� for precise de�nitions�� In fact� only � splits the lattice
NExt�S�& S�� and only � splits NExtK��t �see �Wolter 	

�� and �Kracht
	

��� respectively��

Call a frame hW� hRi � i � Iii cycle free if the unimodal frame hW�
S
i�I Rii

is cycle free� Kracht �	

�� showed that precisely the �nite cycle free frames
split NExtKn�

It is not di�cult now to extend Blok�s result on the degree of Kripke
incompleteness to the polymodal case� Note� however� that the degree of
incompleteness of For in NExtKn is �

�� whenever n 
 �� So� we do not have
a polymodal analog of Makinson�s Theorem� �An example of an incomplete
maximal consistent logic in NExtK� is the logic determined by the tense
frame C��� �� introduced in Section �����
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THEOREM ��� Let n � 	� If L is a union�splitting of NExtKn� then L is
strictly Kripke complete� Otherwise L has degree of Kripke incompleteness
��� in NExtKn�

Sahlqvist�s Theorem and persistence The proof of the following poly�
modal version of Sahlqvist�s Theorem is a straightforward extension of the
proof in the unimodal case� Say that � is a Sahlqvist formula �in LI� if the
result of replacing all �i and �i� i � I � in � with � and �� respectively� is
a unimodal Sahlqvist formula�

THEOREM ��� Suppose that � is equivalent in NExtKn to a Sahlqvist for�
mula� Then Kn�� is D�persistent� and one can e�ectively construct a �rst
order formula ��x� in R�� � � � � Rn and � such that� for every descriptive or
Kripke frame F and every point a in F� �F� a� j� � i� F j� ��x��a��

Bellissima�s result on the DF�persistence of all logics in NExtAltn has
a polymodal analog as well� Denote by

N
i�I Altn the smallest polymodal

logic in LI containing Altn in all its unimodal fragments� It is easy to see
that every L � NExtNi�I Altn is DF �persistent and so Kripke complete�
However� in contrast to the lattice NExtAlt��which is countable and all
logics in which have FMP �see �Segerberg 	
��� and �Bellissima 	
�����
the lattice NExt�Alt� & Alt�� is rather complex� as was shown by Grefe
�	

��� it contains logics without FMP �even without �nite frames at all�
and uncountably many maximal consistent logics�

Some FMP results Fine�s Theorem on uniform logics can be extended
to a suitable class of polymodal logics in LI � namely those logics that con�
tain �i�� for all i � I � and are axiomatizable by formulas � in which all
maximal sequences of nested modal operators coincide with respect to the
distribution of the indices i of �i and �i� i � I �

Now consider a result of Lewis �	
��� which we have not proved in its
unimodal formulation� Call a normal polymodal logic non�iterative if it is
axiomatizable by formulas without nested modalities� Examples of non�
iterative logics are T � K��p � p� Altm &Altn and K� ���p � ��p�

THEOREM ��� �Lewis 	
��� All non�iterative normal logics have FMP�

Proof Suppose the axioms of L � Kn � � have no nested modal oper�
ators and � �� L� By a ��description we mean any set of subformulas of
� together with the negations of the remaining formulas in Sub�� For
each L�consistent ��description % select a maximal L�consistent set  �

containing %� Denote by W the ��nite� set of the selected  � and de�ne
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F � hW� hRi � i � Iii and M � hF�Vi by taking

 �Ri � i
 �i

�
& �  �

and V�p� � f � � W � p �  �g� It is easily proved that �M� �� j� � i

� �  �� for all subformulas � of � and  � � W � Hence F �j� �� It is also
easy to see that for all truth�functional compounds � of subformulas in ��

�M� �� j� �i� i
 �i� �  �� �	��

Consider now a model M� � hF�V�i and � � �� For each variable p put

�p �
�n�

% �  � � V�p�
o

and denote by �� the result of substituting �p for p� for each p in �� Then
M� j� � i
 M j� ��� In view of �	��� we have M j� �� because �� has no
nested modalities� Therefore� F j� � and so F j� L� �

Tabular Logics Needless to say that all polymodal tabular logics are
�nitely axiomatizable and have only �nitely many extensions� �The proof is
the same as in the unimodal case�� A more interesting observation concerns
the complexity of polymodal logics whose unimodal fragments are tabular
or pretabular� In fact� it is not di�cult to construct two tabular unimodal
logics L� and L� such that their fusion L� & L� has uncountably many
normal extensions �see e�g� �Grefe 	

���� However� those logics are DF�
persistent and so Kripke complete� Wolter �	

�b� showed that the lattice

NExtT can be embedded into the lattice NExt�Log �
�
�& S�� in such a way

that properties like FMP� decidability and Kripke completeness are re�ected
under this embedding� It follows that almost all �negative� phenomena of
modal logic are exhibited by bimodal logics one unimodal fragment of which
is tabular and the other pretabular�

��� Fusions

The simplest way of constructing polymodal logics from unimodal ones is
to form the fusions �alias independent joins� of them� Namely� given two
unimodal logics L� and L� in languages with the same set of variables and
distinct modal operators �� and ��� respectively� the fusion L� & L� of
L� and L� is the smallest bimodal logic to contain L� � L�� If �� and
�� axiomatize L� and L�� then L� & L� is axiomatized by �� � ��� i�e��
L� & L� � K� � �� � ��� So the fusions are precisely those bimodal logics
that are axiomatizable by sets of formulas each of which contains only one
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of ��� ��� From the model�theoretic point of view this means that a frame
hW�R�� R�� P i validates L� & L� i
 hW�Ri� P i j� Li for i � 	� ��

PROPOSITION ��� �Thomason 	
��� If logics L� and L� are consistent�
then L� & L� is a conservative extension of both L� and L��

Proof Suppose for de�niteness that � �� L�� for some formula � in the
language of L�� and consider the Tarski!Lindenbaum algebras

AL���� �
�
A��A��A���

�
and AL���� �

�
B��B ��B ���

�
�

The Boolean reducts of them are countably in�nite atomless Boolean alge�
bras which are known to be isomorphic �see e�g� �Koppelberg 	
����� So
we may assume that A � B� �A � �B � �A � �B � Since AL���� refutes ���
A��A��A������

�
is then an algebra for L� & L� refuting �� �

Having constructed the fusion of logics� it is natural to ask which of
their properties it inherits� For example� the �rst order theory of a single
equivalence relation has the �nite model property and is decidable� but the
theory of two equivalence relations is undecidable and so does not have the
�nite model property �see �Janiczak 	
����� So neither decidability nor the
�nite model property is preserved under joins of �rst order theories� On
the other hand� as was shown by Pigozzi �	
���� decidability is preserved
under fusions of equational theories in languages with mutually disjoint sets
of operation symbols�
For modal logics we have�

THEOREM ��� Suppose L� and L� are normal unimodal consistent logics
and P is one of the following properties� FMP� �strong� Kripke complete�
ness� decidability� Halld�en completeness� interpolation� uniform interpola�
tion� Then L � L� & L� has P i� both L� and L� have P�

Proof We outline proofs of some claims in this theorem� the reader can
consult �Fine and Schurz 	

��� �Kracht and Wolter 	

	�� and �Wolter
	

�b� for more details�
The implication ��� presents no di�culties� So let us concentrate on

���� With each formula � of the form �i� we associate a new variable
q� which will be called the surrogate of �� For a formula � containing
no surrogate variables� denote by �� the formula that results from � by
replacing all occurrences of formulas ���� which are not within the scope
of another ��� with their surrogate variables q���� So �

� is a unimodal
formula containing only ��� Denote by %

���� the set of variables in �
together with all subformulas of ��� � Sub�� The formula �� and the set
%���� are de�ned symmetrically�
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Suppose now that both L� and L� are Kripke complete and � �� L� To
prove the completeness of L we construct a Kripke frame for L refuting
�� Since we know only how to build refutation frames for the unimodal
fragments of L� the frame is constructed by steps alternating between ��
and ��� First� since L� is complete� there is a unimodal model M based
on a Kripke frame for L� and refuting �

� at its root r� Our aim now is
to ensure that the formulas of the form ��� have the same truth�values as
their surrogates q���� To do this� with each point x in M we can associate
the formula

�x �
�

f� � %���� � �M� x� j� ��g �
�

f�� � � � %����� �M� x� �j� ��g�

construct a model Mx based on a frame for L� and satisfying ��x at its
root y� and then hook Mx to M by identifying x and y� After that we can
switch to �� and in the same manner ensure that formulas ��� have the
same truth�values as q��� at all points in every Mx� And so forth�
However� to realize this quite obvious scheme we must be sure that �x

is really satis�able in a frame for L�� which may impose some restrictions
on the models we choose� First� one can show that in the construction
above it is enough to deal with points x accessible from r by at most m �
md��� steps� Let X be the set of all such points� Now� a su�cient and
necessary condition for �x to be L� �and so L��� consistent can be formulated
as follows� Call a %�����description the conjunction of formulas in any
maximal L�consistent subset of %���� � f�� � � � %����g� It should be
clear that �x is L�consistent i
 it is a %

�����description� Denote by #����
the set of all %�����descriptions� It follows that all �x� for x � X � are

L�consistent i
 �M� r� j� ��m� �
W
#�����

�� In other words� we should start

with a model M satisfying �� � ��m� �
W
#�����

� at its root r� Of course�

the subsequent modelsMx� for x � X � must satisfy ��x ���m� �
W
#���x��

��
where #���x� is the set of all %

���x��descriptions� etc�
In this way we can prove that Kripke completeness is preserved under

fusions� The preservation of strong completeness and FMP can be estab�
lished in a similar manner� The following lemma plays the key role in the
proof of the preservation of the four remaining properties�

LEMMA ��� The following conditions are equivalent for every ��
�i� � � L� & L��

�ii� ��m� �
W
#�����

� � �� � L�� where m � md����

�iii� ��m� �
W
#�����

� � �� � L��

For Kripke complete L� and L� this lemma was �rst proved by Fine and
Schurz �	

�� and Kracht and Wolter �	

	�� actually� it is an immediate
consequence of the consideration above� The proof for the arbitrary case is
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also based upon a similar construction combined with the algebraic proof
of Proposition ���� for details see �Wolter 	

�b��
Now we show how one can use this lemma to prove the preservation

of the remaining properties� De�ne a���� to be the length of the longest
sequence ��������� � � � of boxes starting with �� such that a subformula
of the form ���� � ����� � ����� � � � � ���� occurs in �� The function a���� is
de�ned analogously by exchanging �� and ��� and a��� � a���� " a�����
It is easy to see that

a��� � a�
�
#����� or a��� � a�

�
#������

The preservation of decidability� Halld�en completeness� interpolation� and
uniform interpolation can be proved by induction on a��� with the help
of Lemma ���� We illustrate the method only for Halld�en completeness�
Notice �rst that� modulo the Boolean equivalence� we have

�
#��� � �� �

�
#���� �

�
#���� �

�
 ��� ���

where

 ��� �� � f�� � ��� � �� � #����� �� � #����� �� � ��� � Lg�

Suppose both L� and L� are Halld�en complete� By induction on n � a�����
we prove that ��� � L implies � � L or � � L whenever � and � have no
common variables� The basis of induction is trivial� So suppose a����� �
n � � and ��� � L� We may also assume that a����� � a�

W
#��������

By the induction hypothesis� it follows that  ��� �� � �� Hence� up to the
Boolean equivalence�

W
#������ �

W
#�����

W
#���� and� by Lemma ����

�
�m
� �

�
#�����

� ���m� �
�
#�����

� � �� � ��� � L��

for m � md�� � ��� Then

���m� �
�
#�����

� � ��� � ���m� �
�
#�����

� � ��� � L�

and� by the Halld�en completeness of L�� one of the disjuncts in this formula
belongs to L�� By Lemma ���� this means that � � L or � � L� �

Remark� This theorem can be generalized to fusions of polymodal logics
with polyadic modalities�

Note that in languages with �nitely many variables both GL�� and K
are strongly complete but GL�� &K is not strongly complete even in the
language with one variable �see �Kracht and Wolter 	

	���
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It is natural now to ask whether there exist interesting axioms � contain�
ing both �� and �� and such that �L�&L���� inherits basic properties of
L�� L� � NExtK� Let us start with the observation that even such a simple
axiom as ��p � ��p destroys almost all �good� properties because �i� we
can identify �L� & L�����p � ��p with the sum of the translation of L�
and L� into a common unimodal language and �ii� such properties as FMP�
decidability� and Kripke completeness are not preserved under sums of uni�
modal logics �see Example 	��� and �Chagrov and Zakharyaschev 	

����
Even for the simpler formula ��p � ��p no general results are available�
To demonstrate this we consider the following way of constructing a bimodal
logic Lu for a given L � NExtK�

Lu � �L& S�����p � ��p�

The modal operator �� in Lu is called the universal modality� Its meaning
is explained by the following lemma�

LEMMA ��� �Goranko and Passy 	

�� For every normal unimodal logic L
and all unimodal formulas � and ��

� ��L � i� �Lu ��� � ��

Proof Follows immediately from Theorem 	�	
 �ii�� since

hW�R� P i j� L i
 hW�R�W 'W�P i j� Lu�

for every frame hW�R� P i and every unimodal logic L� �

The universal modality is used to express those properties of frames F �
hW�R�W ' W i that cannot be expressed in the unimodal language� For
example� F validates ���p � ��p� � �p i
 it contains no in�nite R�
chains� Recall that there is no corresponding unimodal axiom� since K is
determined by the class of frames without in�nite R�chains� We refer the
reader to �Goranko and Passy 	

�� for more information on this matter�

THEOREM ��
 �Goranko and Passy 	

�� For any L � NExtK�
�i� L is globally Kripke complete i� Lu is Kripke complete�
�ii� L has global FMP i� Lu has FMP�

Proof We prove only �i�� Suppose that Lu is Kripke complete and � ���L ��
Then by Lemma ���� ��� � � �� Lu and so ��� � � is refuted in a Kripke
frame F � hW�R�� R�i for Lu� We may assume that R� � W 'W � But
then � ��L � is refuted in hW�R�i� Conversely� suppose that L is globally
Kripke complete and � �� Lu� for a �possibly bimodal� formula �� Using
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the properties of S� it is readily checked that � is �e
ectively� equivalent
in Ku to a formula �

� which is a conjunction of formulas � of the form

� � �� ����� � ���� ����� � � � � � ���n
such that ��� � � � � �n are unimodal formulas in the language with ��� Let
� be a conjunct of �� such that � �� Lu� Then ��� ���L �i� for every
i � f�� �� �� � � � � ng� Since L is globally complete� we have Kripke frames
hWi� Rii for L refuting ��� ��L �i� for i � f�� �� � � � � ng� Denote by hW�Ri
the disjoint union of those frames� Then hW�R�W 'W i is a Kripke frame
for Lu refuting �� �

We have seen in Section 	�� that there are Kripke complete logics �logics
with FMP� which do not enjoy the corresponding global property� In view
of Theorem ��
� we conclude that neither FMP nor Kripke completeness is
preserved under the map L "� Lu�
Another interesting way of adding to fusions new axioms mixing the

necessity operators is to use the so called inductive �or Segerberg	s� axioms�
First� we extend the language LI with m necessity operators by introducing
the operators E and C and then let

ind � fEp�
�
i�I
�ip� Cp � ECp� C�p � Ep�� �p � Cp�g�

Now� given L � NExtKm� we put

LECm � �L&KE & S�C�� ind�

where KE and S�C are just K and S� in the languages with E and C� re�
spectively� The following proposition explains the meaning of the inductive
axioms�

PROPOSITION ��	� A frame hW�R�� � � � � Rm� RE � RCi validates LECm

i� hW�R�� � � � � Rmi j� L� RE � R� � � � � � Rm and RC is the transitive
re�exive closure of RE�

EXAMPLE ��		 The logic �Alt� � D�EC� is determined by the frame
h�� S��i in which S is the successor relation in �� �Here we omit writ�
ing RE because RE � S�� For details consult �Segerberg 	
�
����

No general results are known about the preservation properties of the
map L "� LECm� In fact� it is easy to extend the counter�examples for the
map L "� Lu to the present case �see �Hemaspaandra 	

���� However� at
least in some cases�especially those that are of importance for epistemic
logic�the logic LECm enjoys a number of desirable properties�

��Krister Segerberg kindly informed us that this result was independently obtained by
D� Scott� H� Kamp� K� Fine and himself�
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THEOREM ��	� �Halpern and Moses 	

�� For every m 
 	� the logics
�
Nm

i��K�ECm� �
Nm

i�� S��ECm and �
Nm

i�� S��ECm have FMP�

Proof We consider only L � �
Nm

i�� S��ECm� The proof is by �ltration
and so the main di�culty is to �nd a suitable ��lter�� Suppose that � �� L
and let M � hhW�R�� � � � � Rm� RE � RCi �Ui be the canonical model for L�
Denote by �
 the closure of a set of formulas � under negations and de�ne
a �lter ' � '
� � '
� � '
� � where '� � Sub�� '� � f�i� � E� � '
� g
and '� � fEC���iC� � C� � '
� g� Certainly� ' is �nite and closed under
subformulas� Now� we �lter M through '� i�e�� put W � � f�x� � x � Wg�
where �x� consists of all points that validate the same formulas in ' as x�
and

�x�Ri�y� i
 ��i� � ' ��M� x� j� �i� � �M� y� j� �i���
R�E � R�� � � � � � R�m�

and R�C is the transitive and re�exive closure of R�E � A rather tedious
inductive proof shows that hW �� R��� � � � � R

�
m� R

�
E � R

�
Ci refutes � under the

valuation U��p� � f�x� � x j� pg� p a variable in �� For details we refer the
reader to �Halpern and Moses 	

�� and �Meyer and van der Hoek 	

���

�

It would be of interest to look for big classes of logics L for which LECm

inherits basic properties of L�

��� Simulation

In the preceding section we saw how results concerning logics in NExtK can
be extended to a certain class of polymodal logics� More generally� we may
ask whether�at least theoretically�polymodal logics are reducible to uni�
modal ones� The �rst to attack this problem was Thomason �	
��b� 	
��c�
who proved that each polymodal logic L can be embedded into a unimodal
logic Ls in such a way that L inherits almost all interesting properties of
Ls� Using this result one can construct unimodal logics with various �nega�
tive� properties by presenting �rst polymodal logics with the corresponding
properties� which is often much easier� It was in this way that Thomason
�	
��c� constructed Kripke incomplete and undecidable unimodal calculi�
Kracht �	

�� strengthened Thomason�s result by showing that his embed�
ding not only re�ects but also �i� preserves almost all important properties
and �ii� induces an isomorphism from the lattice NExtK� onto the interval
�Sim�K����� for some normal unimodal logic Sim� Thus indeed� in many
respects polymodal logics turn out to be reducible to unimodal ones�
Below we outline Thomason�s construction following �Kracht 	

�� and

�Kracht and Wolter 	

�a�� To de�ne the unimodal �simulation� Ls of a
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bimodal logic L� let us �rst transform each bimodal frame into a unimodal
one�
So suppose F � hW�R�� R�� P i is a bimodal frame� Construct a unimodal

frame Fs � hW s� Rs� P si�the simulation of F�by taking

W s � W ' f	� �g � f�g�
Rs � fhhx� 	i � hx� �ii � x � Wg �

fhhx� �i � hx� 	ii � x � Wg �
fhhx� 	i ��i � x � Wg �
fhhx� 	i � hy� 	ii � x� y � W�xR�yg �
fhhx� �i � hy� �ii � x� y � W�xR�yg�

P s � f�X ' f�g� � �Y ' f	g� � Z � X�Y � P�Z 
 f�gg�
This construction is illustrated by Fig� 		� One can easily prove that Fs is a
Kripke �di
erentiated� re�ned� descriptive� frame whenever F is so� Notice
also that if W � � then Fs �� �� Now� given a bimodal logic L� de�ne the
simulation Ls of L to be the unimodal logic

LogfFs � F j� Lg�
To formulate the translation which embeds L into Ls we require the follow�
ing formulas and notations�

� � �� ��� � ��� � ��
� � ��� �
� � ��� � ��
� � �� � ��� ��� � ��� � ���

��� �
 and �� are de�ned dually� Observe that the formula � is true in
Fs only at �� � is true precisely at the points in the set fhx� 	i � x � Wg�
and � is true at the points fhx� �i � x � Wg and only at them� Put

ps � p�
����s � � � ��s�
�� � ��s � �s � �s�
�����

s � �
�
s�

�����
s � �����
�

s�

By an easy induction on the construction of � one can prove
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LEMMA ��	� Let M � hF�Vi be a bimodal model� X � fx � x j� �g and
let Ms � hFs�Vsi be a model such that Vs�p� � X � V�p� ' f	g� for all
variables p� Then for every bimodal formula ��

�M� x� j� � i� �Ms� hx� 	i� j� �s�
M j� � i� Ms j� � � �s�
F j� � i� Fs j� � � �s�

Using this lemma� both consequence relations �L and ��L can be reduced to
the corresponding consequence relations for Ls�

PROPOSITION ��	� Let L be a bimodal logic�  a set of bimodal formulas
and � a bimodal formula� Then

 �L � i� � �  s �Ls � � �s�
 ��L � i� � �  s ��Ls � � �s�

where � �  s � f� � 
 � 
 �  sg�

To axiomatize Ls� given an axiomatization of L� we require the following
formulas�

�a� � � ���p � ��p�� � ���p� �
��p�

�b� � � ���p � ��p��

�c� � � ��
p � �
p��

�d� � � p� ���
p� � � p � �
��p�

�e� � ���p � �����
��p�

Let Sim � K� f�a�� � � � � �e�g� Obviously� Fs is a frame for Sim whenever
F is a bimodal frame� Consider now a di
erentiated frame F � hW�R� P i
for Sim which contains only one point where � is true� �Actually� every
rooted di
erentiated frame for Sim satis�es this condition�� Construct a
bimodal frame Fs � hV�R�� R�� Qi� called the unsimulation of F� in the
following way� Put V � fx � W � x j� �g� V � � fx � W � x j� �g and
U � fx � W � x j� �g� Since � � � � � � K� we have W � V � V � � U � It
is not hard to verify using �b� and �c� �and the di
erentiatedness of F� that
for every x � V there exists a unique x� � V � such that xRx�� and for every
y � V � there exists y� � V such that yRy�� By �d�� x � x��� Finally� we
put R� � R � V �� R� � fhx� yi � V � � x�Ry�g and Q � fX � V � X � Pg�
It is easily proved that Fs is a bimodal frame� The name unsimulation is
justi�ed by the following lemma�

LEMMA ��	� For every di�erentiated bimodal frame F� �Fs�s �� F�

Now we have�
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THEOREM ��	� For every bimodal logic L � K� � �
Ls � Sim� � �  s�

Proof Clearly� Sim� � �  s 
 Ls� Assume that the converse inclusion
does not hold� Then there exists a rooted di
erentiated F such that F �j� Ls

but F j� Sim� � �  s� By Lemma ��	�� �Fs�
s �j� Ls� By the de�nition

of Ls� we then conclude that Fs �j� L� And by Proposition ��	�� we have

�Fs�
s �j� � �  s� from which F �j� � �  s� �

Given L � �Sim�K����� the logic Ls � f� � � � �s � Lg is called the
unsimulation of L�

LEMMA ��	� If L is determined by a class C of frames in which � is true
only at one point then Ls � LogfFs � F � Cg�
We are in a position now to formulate the main result of this section�

THEOREM ��	� �Kracht 	

�� The map L "� Ls is an isomorphism from
the lattice NExtK� onto the interval �Sim�K� � ���� The inverse map
is L "� Ls� Both these maps preserve tabularity� �global� FMP� �global�
Kripke completeness� decidability� interpolation� strong completeness� R�
and D�persistence� elementarity�

Proof To prove the �rst claim it su�ces to show that �Ls�
s � L for every

L � �Sim�K � ���� That L 
 �Ls�
s is clear� Consider the set C of all

di
erentiated frames Fs such that F j� L and � is true only at one point in
F� By Lemma ��	�� C characterizes Ls� It is not di�cult to show now that
the class fF�s � F � Cg is closed under subalgebras� homomorphic images
and direct products� so it is a variety� Consequently� C is �up to isomorphic
copies� the class of all di
erentiated frames for Ls�
Take a di
erentiated frame F for �Ls�

s� Then Fs j� Ls� So there exists
Gs � C which is isomorphic to Fs� Hence �Fs�s �� �Gs�

s and F j� L� since
G j� L� It follows that Ls is determined by fFs � F � Cg whenever L is
determined by C�
The preservation of tabularity� �global� FMP� �global� Kripke complete�

ness� and strong completeness under both maps is proved with the help of
Lemma ��	� and the observation above� It is also clear that L is decidable
whenever Ls is decidable� For the remaining �rather technical� part of the
proof the reader is referred to �Kracht 	

�� and �Kracht and Wolter 	

�a��

�

Besides its theoretical signi�cance� this theorem can be used to transfer
rather subtle counter�examples from polymodal logic to unimodal logic� For
instance� Kracht �	

�� constructs a polymodal logic which has FMP and is
globally Kripke incomplete� By Theorem ��	�� we obtain a unimodal logic
with the same properties�
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��� Minimal tense extensions

Now let us turn to tense logics which may be regarded as normal bimodal
logics containing the axioms p � ����p and p � ����p� Usually studies
in Tense Logic concern some special systems representing various models of
time� like cyclic time� discrete or dense linear time� branching time� rela�
tivistic time� etc� Such systems are discussed in Basic Tense Logic �see also
�Gabbay et al� 	

�� and �Goldblatt 	
����� However� as before our concern
is general methods which make it possible to obtain results not only for this
or that particular system but for wide classes of logics� This direction of
studies in Tense Logic is quite new and actually not so many general results
are available� In this and the next section we consider two natural families
of tense logics�the minimal tense extensions of unimodal logics and tense
logics of linear frames� Our aim is to �nd out to what extent the theory
developed for unimodal logics in NExtK and especially NExtK� can be
�lifted� to these families�

The smallest tense logicK�t is determined by the class of bimodal Kripke
frames hW�R�R��i in which R is the accessibility relation for �� and R��
for��� Frames of this type are known as tense Kripke frames� general frames
of the form hW�R�R��� P i will be called just tense frames� Notice that not
all unimodal general frames hW�R� P i can be converted into tense frames
hW�R�R��� P i because P is not necessarily closed under the operation

��X � fx � W � 	y � X xR��yg�

For instance� in the frame F of Example 	�� we have ��f�"	g � f�g �� P �

Each normal unimodal logic L � K�� in the language with �� gives rise
to its minimal tense extension L�t � K�t��� From the semantical point of
view L�t is the logic determined by the class of tense frames hW�R�R��� P i
such that hW�R� P i j� L� The formation of the minimal tense extensions
is the simplest way of constructing tense logics from unimodal ones� Of
�natural� tense logics� minimal tense extensions are� for instance� the logics
of �converse� transitive trees� �converse� well�founded frames� �converse�
transitive directed frames� etc� The main aim of this section is to describe
conditions under which various properties of L are inherited by L�t�

Notice �rst that unlike fusions� L�t is not in general a conservative ex�
tension of L� witness L � LogF where F is again the frame constructed in
Example 	��� one can easily check that K��t 
 L�t� However� if L is Kripke
complete then L�t is a conservative extension of L and so L��t � L�t implies
L� 
 L� This example may appear to be accidental �as the �rst examples of
Kripke incomplete logics in NExtK�� However� we can repeat �with a slight
modi�cation� Blok�s construction of Theorem 	��� and prove the following
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THEOREM ��	
 If L is a union�splitting of NExtK or L � For� then
L��t � L�t implies L� � L� Otherwise there is a continuum of logics in
NExtK having the same minimal tense extension as L�

It is not known whether there exists L � NExtK� such that L�t is not a
conservative extension of L�
Theorem ��	
 leaves us little hope to obtain general positive results for

the whole family of minimal tense extensions� As in the case of unimodal
logics we can try our luck by considering logics with transitive frames� So in
the rest of this section it is assumed that the unimodal and tense logics we
deal with containK� andK��t� respectively� and that frames are transitive�
But even in this case we do not have general preservation results� Wolter
�	

�b� constructed a logic L � NExtK� having FMP and such that L�t is
not Kripke complete� However� the situation turns out to be not so hopeless
if we restrict attention to the well�behaved classes of logics in NExtK��
namely logics of �nite width� �nite depth and co�nal subframe logics� First�
we have the following results of �Wolter 	

�a��

THEOREM ���� If L � NExtK� is a logic of �nite depth then L�t has
FMP� If L � NExtK� is a logic of �nite width then L�t is Kripke complete�

It is to be noted that tense logics of �nite depth are much more complex
than their unimodal counterparts� For example� there exists an undecidable
�nitely axiomatizable logic containingK��t������ �for details see �Kracht
and Wolter 	

�a���
The minimal tense extensions of co�nal subframe logics were investigated

in �Wolter 	

�� 	

�a��

THEOREM ���	 If L � NExtK� is a co�nal subframe logic then
�i� L�t is Kripke complete�
�ii� L�t has FMP i� L is canonical�
�iii� L�t is decidable whenever L is �nitely axiomatizable�

Before outlining the idea of the proof we note some immediate conse�
quences for a few standard tense logics�

EXAMPLE ���� �i� The logic of the converse well�founded tense frames is
GL�t� it does not have FMP but is decidable� �ii� The logic of the converse
transitive trees is K����t� it has FMP and is decidable� �iii� The logic of
the converse well�founded directed tense frames is GL�t �K����t� it does
not have FMP and is decidable�

Proof The proof of the negative part� i�e�� that L�t does not have FMP if
L is not canonical� is rather technical� it is based on the characterization of



ADVANCED MODAL LOGIC ��

the canonical co�nal subframe logics of �Zakharyaschev 	

��� The reader
can get some intuition from the following example� neither Grz�t nor GL�t
has FMP� Indeed� the Grzegorczyk axiom

������p � ��p�� p�� p

is refuted in h��
��i and so does not belong to Grz�t� however� it is valid
in all �nite partial orders� The argument for GL�t is similar� take the L�ob
axiom in �� and the frame h�����i�
We sketch now the proof of the positive part� For a tense Kripke frame

F � hW�R�R��i� let rp be a partial function associating with some clusters
in F one of the frames

h�����i or h��
��i�

We call it a replacement function for F and de�ne Frp to be the result of
replacing in F all clusters C in the domain of rp by �disjoint copies of� rpC�
Our �rst observation is that for each co�nal subframe logic L� L�t is de�
termined by a set of frames of the form Frp such that F is of �nite depth�
Indeed� suppose � �� L�t and consider a countermodel M � hF�Vi for �
based on a descriptive �nitely generated tense frame F � hW�R�R��� P i for
L�t� Say that a point x � W is non�eliminable �relative to �� if there are a
subformula � of � and S � fR�R��g such that x � maxSfy � W � y j� �g
or x � maxSfy � W � y j� ��g� Denote by We the set of non�eliminable
points in W and construct a new model Me on the frame Fe � hWe� R �

We� R
�� �Wei by taking Ve�p� � V�p��We for all variables p in �� Clearly�

the Kripke frame Fe is of �nite depth �d�Fe� � �l���� to be more pre�
cise�� Besides� using Theorem 	��� one can easily show that �Me� y� j� � i

�M� y� j� �� for all � � Sub� and y � We� �Note that Theorem 	��� is ap�
plicable in this case� since hW�R� P i is descriptive whenever �W�R�R��� P

�
is descriptive�� Moreover� the R�reduct hWe� R �Wei of Fe is a co�nal sub�
frame of the R�reduct hW�Ri of the underlying Kripke frame of F� So Fe is
a frame for L�t whenever L is canonical �� D�persistent�� However� this is
not so if L is not canonical�

EXAMPLE ���� Consider the frame F � hW�R�R��� P i� where hW�Ri is
the re�exive point � followed by the chain h���i and P consists of all
co�nite sets containing� and their complements� Then F j� GL�t but �for
an arbitrary �� Fe contains � and so Fe �j� GL�t�

A rather tedious proof �see �Wolter 	

�a�� shows� however� that there
exists a replacement function rp for Fe such that F

rp
e validates L�t and all

points in clusters from domrp are eliminable relative to R in F� �In the
example above we put rpf�g � h�����i and � is eliminable relative to
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R�� So let us assume that such rp is given and that its domain is empty if
L is canonical� De�ne a model Mrp

e � �Frpe �Vrp� as follows� First we put
y � Vrp�p� whenever y � Ve�p� and y �� domrp� Consider now a cluster
C � fa�� � � � � am��g in domrp� Vrp is de�ned in rpC by unravelling C into
the chain rpC� more precisely� we put

Vrp�p� � rpC � fmj " i � j � �� ai � V�p�g�

Using the fact that domrp contains only R�eliminable points� one can show
by induction that� for every � � Sub�� �Me� y� j� � i
 �Mrp

e � y� j� �� if
C�y� does not belong to domrp� and

fn � rpC � �Mrp
e � n� j� �g � fmj " i � j � �� �Me� ai� j� �g�

if a cluster C � fa�� � � � � am��g is in domrp� Thus Frpe refutes �� which
proves that L�t is Kripke complete�
To show that all canonical logics L�t do have FMP we reduce Frpe once

again� De�ne an equivalence relation � onWe by induction on the R�depth
dR�x� of a point x in Fe� Suppose that dR�x� � dR�y� and � is already
de�ned for all points of R�depth � dR�x� and put x � y if the following
conditions are satis�ed� �a� x j� � i
 y j� �� for all � � Sub� �x �� y� for
short�� �b� if z is an R�successor of y and C�z� �� C�y� then there exists an
R�successor z� of x with C�z�� �� C�x� such that z � z� and vice versa� �c�
the cluster C�x� is degenerate i
 C�y� is degenerate� �d� rpC�x� � rpC�y��
�e� for each z � C�x� there exists z� � C�y� such that z �� z� and vice
versa�
Let �x� denote the equivalence class generated by x� De�ne a frame

G � hV� S� S��i by taking V � f�x� � x � Weg� and �x�S�y� i
 there are
x� � �x� and y� � �y� such that x�Ry�� Since Fe is of �nite depth� V is
�nite� Moreover� the map x "� �x� is a reduction of the unimodal frame
hWe� R �Wei to hV� Si� It follows that G is a frame for L�t whenever L is
canonical� De�ne a valuation in G by putting �x� j� p i
 x j� p� for all
x � We and all variables p in �� Then one can show that �x� j� � i
 x j� ��
for all � � Sub�� So G �j� �� as required� which means that L�t has FMP�
To prove the decidability of a �nitely axiomatizable L�t we �rst show its

completeness with respect to a rather simple class of frames�
De�ne a replacement function rf for G as follows� For each cluster C in

Fe the set �C� � f�x� � x � Cg is a cluster in G� and moreover� every cluster
in G can be presented in this way� So we put rf�C� � rpC� for all clusters
�C� in G� Notice that by �d�� rf is well�de�ned� It is easily shown now that
the R�reduct of Frpe is reducible to the R�reduct of G

rf and that Grf refutes
�� Thus we obtain
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LEMMA ���� For each co�nal subframe logic L�

L�t � LogfGrp � Grp j� L�t� G �nite� rp a replacement function for Gg�

So� to establish the decidability of a �nitely axiomatizable L�t it is enough
now to present an algorithm which is capable of deciding� given an rp for a
�nite G and �� whether Grp j� �� To this end we require the notion of a
cluster assignment t � ht�� t�i in a tense frameG� which is any function from
the set of clusters in G into the set fm� jg'fm� jg such that tC � �m�m� if C
is degenerate �here m and j are just two symbols� m stands for �maximal�
and j for �joker��� A valuation V in G is called ��good for �G� t� if the
following conditions hold�

� if t�C � j then C �maxR�V���� � �� for all � � Sub��
� if t�C � j then C �maxR���V���� � �� for all � � Sub� �

EXAMPLE ���� Let F be the frame constructed in Example ���� and sup�
pose that tf�g � �j�m�� Then each valuation V in F is ��good for �G� t�
no matter what � is� because � is eliminable relative to R� The point �
is not R���eliminable� since � � maxR������

Given a formula �� a �nite frame F and a replacement function rp for
F� we construct a �nite frame G � hV� S� S��i with a cluster assignment
t as follows� Let k be the number of variables in �� Then G is obtained
from Frp by replacing every rpC � h�����i with a non�degenerate cluster
C � of cardinality �k� S�followed by a chain of �l��� irre�exive points� and
by replacing every rpC � h��
��i with a non�degenerate cluster C � of
cardinality �k� S�followed by a chain of �l��� re�exive points� The cluster
assignment t in G is de�ned by putting tC � � �j�m�� for all new clusters
C � of cardinality �k� and tC � � �m�m�� for all the other clusters� It is
not di�cult now to prove that Frp j� � i
 �G�U� j� �� for all ��good for
�G� t� valuations U in G� This equivalence provides an e
ective procedure

for deciding whether Frp j� �� �

Note that a similar technique can be used to prove completeness and
decidability of various tense logics that are not minimal tense extensions�
For instance� all logics of the form L�t � ����p � ����p� where L is a
co�nal subframe logic� are complete and decidable if �nitely axiomatizable�

��� Tense logics of linear frames

One of the most important types of tense logics are logics characterized
by linear tense frames� i�e�� transitive frames

�
W�R�R��� P

�
such that� for
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all x� y � W � xRy or xR��y or x � y� For example� Bull �	
��� and
Segerberg �	
��� axiomatized the logics of the frames� hZ� ���i� hQ� ���i
and hR� ���i �Z� Q and R are the sets of integer� rational and real numbers�
respectively��

Linear tense logics form the lattice NExtLin� where

Lin �K��t�����p �����p � p ���p ���p

is the tense logic determined by the class of all linearly ordered Kripke
frames

�
W�R�R��

�
� As we saw in Section 	�		� even unimodal logics of

linear orders are rather non�trivial �for instance� they do not always enjoy
FMP�� Yet they can be characterized by Kripke frames with a transpar�
ent structure� which yields a decision algorithm for those of them that are
�nitely axiomatizable� Tense logics of linear frames turn out to be even more
complicated� In fact� one can �nd almost all kinds of �monsters� among
them� uncountably many logics without Kripke frames� strongly complete
logics that are not canonical� canonical logics that are not R�persistent�
incomplete subframe logics� etc� Nevertheless� in this section we show that
these logics are quite manageable� Our exposition follows �Wolter 	

�c�d��
where the reader can �nd the omitted details� All frames in this section are
assumed to be linear�
Given a �nite sequence F � hFi � hWi� Ri� Pii � 	 � i � ni of disjoint

frames� we denote by �F� � F� � � � �� Fn the ordered sum of them� i�e�� the
frame

�
W�R�R��� P

�
in which

W �

n�
i��

Wi� R �

n�
i��

Ri �
�

��i�j�n
�Wi 'Wj�

and P � fX� � � � � �Xn � Xi � Pig� Each �nite frame can be represented
then as the ordered sum C� � � � �� Cn of its clusters�
We begin our study by developing a language of �canonical formulas� for

axiomatizing logics in NExtLin and characterizing the constitution of their
frames� It will play the same role as the language of canonical formulas for
K�� With every �nite frame F � hW�R�R��i � C�� � � ��Cn and a cluster
assignment t � �t�� t�� in it we associate the formula

��F� t� � 
�F� t� � ��
�F� t� � ��
�F� t�� �pr�

where r is an arbitrary �xed point in F and


�F� t� �
�

fpx � ��py � xRy���yRx�g ��
fpx � ��py � xR

��y���xRy�g �
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�
fpx � �py � x �� yg �

�
fpx � ���py � ��xRy�g ��

fpx � ��py � 	i � n �t�Ci � m � x� y � Ci � xRy�g ��
fpx � ��py � 	i � n �t�Ci � m � x� y � Ci � xR��y�g ��
fpy � y � Wg�

To explain the semantical meaning of these formulas� notice �rst that if
tC � �m�m� for all clusters C then G �j� ��F� t� i
 G is reducible to F� so
Lin���F� t� is a splitting of NExtLin� Suppose now that tiC � j for some
i � f	� �g and some cluster C in F� In this case G �j� ��F� t� i
 there exist
frames Gi� for 	 � i � n� such that G � G�� � � ��Gn and Gi �j� ��Ci� t�Ci�
for all 	 � i � n� So it su�ces to examine the situation when G �j� ��C� t�
for a cluster C� Assume for simplicity that G is a Kripke frame� Case ��
tC � �j� j�� Then G �j� ��C� t� i
 jGj 
 jCj� Case �� tC � �m� j�� Then C is
non�degenerate and G �j� ��C� t� i
 either G contains an R��nal cluster of
cardinality 
 jCj or it has no R��nal point at all� Case �� tC � �j�m�� This
is the mirror image of Case �� Case �� tC � �m�m�� If C is an irre�exive
point then G is an irre�exive point as well whenever G �j� ��C� t�� If C is
non�degenerate and G �j� ��C� t� then G satis�es the conditions of Cases �
and ��

EXAMPLE ���� Let � � ��� �a b� � t� where ta � �m� j� and tb � �j�m��
Then F �j� � i
 there exists a non�empty upward closed set X � P such
that �x � X	y � X yRx� W �X �� � and �x � W �X	y � W �X xRy�
Hence hQ� ���i �j� � �take X � fy � Q �

p
� � yg� but hR� ���i j� ��

since the real line contains no gaps�

THEOREM ���� There is an algorithm which� given a formula �� returns
formulas ��F�� t��� � � � � ��Fn� tn� such that

Lin� � � Lin� ��F�� t��� � � �� ��Fn� tn��

Proof Let �Fi� ti�� 	 � i � n� be the collection of all �nite frames with type
assignments such that� for each i� �a� there is a countermodelMi � hFi�Vii
for � in which Vi is ��good for �Fi� ti�� �b� the depth of Fi does not exceed
�l��� " 	� and �c� no cluster in Fi contains more than �

v	�
 points� where
v��� is the number of variables in ��
Let F refute ��Gi� ti� under a valuation U� By the de�nition of �Fi� ti��

the modelMi refutes �� De�ne a valuation U
� in F by taking� for all variables

p in ��

U��p� �
�

fU�px� � x � Vi�p�g�
It is not hard to show by induction that U���� �

SfU�px� � x � Vi���g
for all � � Sub�� and so F refutes � under U�� Thus F j� � implies
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Ordt � Logfh�����i � � an ordinalg �
Lin� ���� ��� �j�m���

Et � Lin�������� �
Lin� ���� ��� �m�m��� � ����� �m�m�����

On � Logh�n����i �
Ordt � ����� �m� j��� � � �� ��� �m� j���� �z �

n��

����� ��� �m�m���

RD � LogfG � �x��xRx � 	y�xRy � fz � xRzRyg � ���g �
Lin� ���� ��� �m�m��� � ���� ��� �m�m��� ��� �m� j���

LD � the mirror image of RD

Zt � LoghZ� ���i�
RD� LD� ����� �j� j�� � ��� �j�m����
����� �m� j�� � ��� �j� j���

Dsn � Lin��n��� p � �n�p �

Lin� ���� ��� �m�m�� � � �� ��� �m�m��� �z �
n��

���

Qt � LoghQ� ���i �
Ds� �Et

Rt � LoghR� ���i �
Qt � ����� �m� j�� � ��� �j�m���

Rdt � Logfh����
i � � an ordinalg �
Lin� ���� �#� � �j�m���

Table �� Axiomatizations of standard tense logics

F j� ��Fi� ti� for every i� The converse direction is rather technical� we

refer the reader to �Wolter 	

�d�� �

�Canonical� axiomatizations of some standard linear tense logics are
shown in Table �� where we use the following abbreviations� Given a ��
nite frame F � C� � � � � � Cn� we write ���C�� tC�� � � � � � �Cn� tCn��
instead of ��F� t� and ���� �C�� tC��� � � �� �Cn� tCn�� instead of

���C�� tC��� � � �� �Cn� tCn��� ����� �j� j�� � �C�� tC��� � � �� �Cn� tCn���

���C�� tC��� � � �� �Cn� tCn���� is de�ned analogously�
Now we exploit the formulas ��F� t� to characterize the

T
�irreducible



ADVANCED MODAL LOGIC ���

logics in NExtLin� Recall that every logic L � NExtL� is represented as
L �

�
fL� � L � L� is

�
�irreducibleg�

So such a characterization can open the door to a better understanding of
the structure of the lattice NExtLin� The

T
�irreducible logics will be de�

scribed semantically as the logics determined by certain descriptive frames�

DEFINITION ���� �	� Denote by#k the non�degenerate cluster with k � �
points�
��� Let ����� be the strictly ascending chain h�����i of natural num�

bers� ���	� the chain h����
i� ����� the ascending chain of natural num�
bers in which precisely the even points are re�exive� ����� the chain in
which precisely the multiples of � are re�exive� and so on� ���n� is the
mirror image of ���n��

��� C���#� � is the mirror image of the frame introduced in Example �����
i�e�� C���#� � � h������#� � P i� where P consists of all co�nite sets contain�
ing #� and their complements� We generalize this construction to chains
���n� and clusters #k � Namely� for n � �� k � 	 and #k � fa�� � � � � ak��g�
we put

C�n�#k � � h���n��#k � P i�
where P is the set of possible values generated by fXi � � � i � k � 	g� for
Xi � faig � fkj " i � j � �g� � � i � k � 	� C�#k � n� denotes the mirror
image of C�n�#k ��
��� C���#� � �� � h������#� ������� P i� where P consists of all co�nite

sets containing #� and their complements�
It is easy to check that the frames de�ned in ��� and ��� are descriptive

and a singleton fxg is in P i
 x �� #k �
For a class of frames C� we denote by C� the class of �nite sequences of

frames from C and let �C�� � f�F� � F � C�g� The class of �nite clusters
and the frames of the form ��� in De�nition ���� is denoted by B�� put also
B � fC���#� � ��g � B��
THEOREM ���
 Each logic L � NExtLin is determined by a set C 
 �B���
If L is �nitely axiomatizable then L � LogC for some set C 
 �B�� ��
Proof We explain the idea of the proof of the �rst claim� Suppose that
M � hF�Vi is a countermodel for � � ���C�� tC��� � � �� �Cn� tCn�� based
on a descriptive frame F � hW�R�R��� P i� We must show that there exists
G � �B�� refuting � and such that LogG � LogF� Consider the sets

Wi � fy � W � �M� y� j�
�

fpx � x � Cigg�
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One can easily show that Wi are intervals in F and F � F� � � � �� Fn� for
the subframes Fi of F induced by Wi� Moreover� G � �G� is as required
if G � hG�� � � � �Gni is a sequence in B� such that LogGi � LogFi� and
Gi �j� ��Ci� tCi�� for 	 � i � n� Frames Gi with those properties are

constructed in �Wolter
�d�� �

EXAMPLE ���� The logic Qt is determined by the frames F � �B�� which
contain no pair of adjacent irre�exive points� and Rt is determined by the
frames F � �B�� which contain neither a pair of adjacent irre�exive points
nor a pair of adjacent non�degenerate clusters�

It is not di�cult to show now that the logics LogF� for F � �B��� coincide
with the

T
�irreducible logics in NExtLin� Our �rst aim is achieved� and

in the remaining part of this section we shall draw consequences of this
result� Using the same sort of arguments as in the proof of Theorem ���	
and Kruskal�s �	
��� Tree Theorem one can prove

COROLLARY ���	 �i� All �nitely axiomatizable logics in NExtLin are de�
cidable�
�ii� A logic L is �nitely axiomatizable whenever there exists n � � such

that L � NExtDsn�

It follows in particular that all logics in NExtQt and all logics of re�exive
frames are �nitely axiomatizable and decidable�
Now we formulate two corollaries concerning the Kripke completeness of

linear tense logics� First� it is not hard to see that every logic in NExtLin
characterized by an in�nite frame in �B�� is Kripke incomplete� Using this
observation one can prove

COROLLARY ���� Suppose L � NExtLin and there is a Kripke frame of
in�nite depth for L� Then there exists a Kripke incomplete logic in NExtL�

This result means in particular that in Tense Logic we do not have ana�
logues of the unimodal completeness results of Bull �	
��b� and Fine �	
��c��
However� if a logic is complete then it is determined by a simple class of
frames� Let K be the class frames containing �nite clusters and frames of
the form ��� in De�nition �����

THEOREM ���� Each Kripke complete logic in NExtLin is determined by
a subset of �K���

One of the main types of logics considered in conventional Tense Logic
are logics determined by strict linear orders� known also as time�lines� We
call them t�line logics� All logics in Table �� save Rdt� are t�line logics�
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T�line logics were de�ned semantically� and now we are going to determine
a necessary syntactic condition for a linear tense logic to be a t�line logic�
Given a frame F� we denote by F� the frame that results from F by

replacing its proper clusters with re�exive points� Call L � NExtLin a
t�axiom logic if L is axiomatizable by a set of formulas of the form ��F� t�
in which F contains no proper clusters�

PROPOSITION ���� The following conditions are equivalent for all logics
L � NExtLin�
�i� L is a t�axiom logic�
�ii� F� j� L implies F j� L� for every F � �B���
�iii� ��G� t� � L implies ��G�� t� � L��� for every �nite G�

Proof The implications �i� � �ii� and �iii� � �i� are clear� To prove that
�ii� � �iii�� suppose ��G�� t� �� L� Then there exists a frame F � �B�� for L
refuting ��G�� t�� Without loss of generality we may assume that F contains
no proper clusters� By enlarging some clusters in F we can construct a frame
H � �B�� such that H� � F and H �j� ��G� t�� In view of �ii�� H j� L and so

��G� t� �� L� �

It follows that the t�axiom logics form a complete sublattice of the lattice
NExtLin�

THEOREM ���� �i� All �nitely axiomatizable t�axiom logics are Kripke
complete�
�ii� All t�line logics are t�axiom logics�

Proof �i� Suppose that L � Lin� f��G�i � ti� � i � Ig� for some �nite set
I � By Theorem ���
� L is determined by a subset of �B�� �� For F � �B�� ��
let kF be the Kripke frame that results from F by replacing all C�n�#k �
and C�#k � n� with ���n� and ���n�� respectively� Then we clearly have
LogkF 
 LogF� and F j� ��G�� t� i
 kF j� ��G�� t�� It follows that L is
Kripke complete� �ii� Suppose that L is a t�line logic� By Proposition ����
���� it su�ces to observe that F j� ��G�� t� i
 F j� ��G� t�� for all time�lines

F and all �nite G� �

So the fact that in Table � all t�line logics are axiomatized by canon�
ical formulas of the form ��G�� t� is no accident� Finding and verifying
axiomatizations of t�line logics becomes almost trivial now�

EXAMPLE ���� Let us check the axiomatization of Zt in Table �� Put

L � RD� LD� ����� �j� j�� � ��� �j�m���� ����� �m� j�� � ��� �j� j����
��We assume that tC � t� whenever � replaces C in G�
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By Theorem ����� L is complete� By Theorem ����� L is then determined by
a subset of �K��� Clearly this set contains hZ� ���i� possibly #k for k � ��
and nothing else� But the logic of #k contains Zt� for all k � ��
We conclude this section by discussing the decidability of properties of

logics in NExtLin� In Section ��� it will be shown that almost all interesting
properties of calculi are undecidable in NExtK and even in NExtS�� In
NExtLin the situation is di
erent� as was proved in �Wolter 	

�d� 	

�d��

THEOREM ���� �i� There are algorithms which� given a formula �� decide
whether Lin � � has FMP� interpolation� whether it is Kripke complete�
strongly complete� canonical� R�persistent�
�ii� A linear tense logic is canonical i� it is D�persistent i� it is complete

and its frames are �rst order de�nable�
�iii� If a logic in NExtLin has a frame of in�nite depth then it does not

have interpolation�

So NExtLin provides an interesting example of a rather complex lattice
of modal logics for which almost all important properties of calculi are
decidable� We shall not go into details of the proof here but discuss quite
natural criteria for canonicity and strong completeness of logics in NExtLin
required to prove this theorem� Denote by B� the class of frames containing
B together with frames C�n��#k � n�� de�ned as follows� Suppose k � 	�

n�� n� � � are such that n� " n� � � and #k � fa�� � � � � ak��g� Then

C�n��#k � n�� � h���n���#k � ���n��� P i�
where P is the set of possible values generated by fXi � � � i � k � 	g� for

Xi � faig � fkj " i � j � �g � fk�j� " i� � j � �g
and f��� 	�� � � � � n�� � � �g being the points in ���n���
Let F be the class of frames of the form
hf�� � � � � n�g� ���i�#� � hf�� � � � � n�g� ���i or hf�� � � � � ng� ���i �

THEOREM ���� �i� A logic L � NExtLin is canonical i� the underlying
Kripke frame of each frame F � �B��� for L validates L as well�
�ii� A logic L � NExtLin is strongly complete i� for each frame F � �B���

validating L� there exists a Kripke frame G for L which results from F by
replacing

� every C�n�#k � with ���n� or ���n�� H�#k � for some H � F � and

� every C�#k � n� with ���n� or #k �H� ���n�� for some H � F � and
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� every C�n��#k � n�� with ���n��� H� ���n��� for some H � F �

EXAMPLE ���
 The logic Rt is not canonical because C���#� � j� Rt but

������#� �j� Rt� However�Rt is strongly complete� since F j� Rt whenever
G � �B��� validates Rt and F is obtained from G as in the formulation of
Theorem ���� with H � � � F �

One can also use Theorem ���� to construct two strongly complete logics
L�� L� � NExtLin whose sum L��L� is not strongly complete �see �Wolter
	

�c���

��� Bimodal provability logics

Bimodal provability logics emerge when combinations of two di
erent prov�
ability predicates are investigated� for example� if �� is understood as �it
is provable in PA� and �� as �it is provable in ZF�� In contrast to the
situation in unimodal provability logic� where almost all provability pred�
icates behave like the necessity operator � in GL� there exist quite a lot
of di
erent types of bimodal provability logics� Various completeness re�
sults extending Solovay�s completeness theorem for GL to the bimodal case
were established by Smory�nski �	
���� Montagna �	
���� Beklemishev �	

��
	

�� and Visser �	

��� Here we will not deal with the interpretation of
modal operators as provability predicates but sketch some results on modal
logics containing the bimodal provability logic

CSM� � �GL&GL����p � ��p���p � ����p

�named so by Visser �	

�� after Carlson� Smory�nski and Montagna�� A
number of provability logics is included in this class� witness the list below�
�As in unimodal provability logic we have quasi�normal logics among them�
i�e�� sets of formulas containing K� and closed under modus ponens and
substitutions �but not necessarily under ���i��� Recall that we denote by
L" � the smallest quasi�normal logic containing L and ���

� CSM� � CSM� � �����p � p�� �This is PRLZF in �Smory�nski
	
��� and F in �Montagna 	
�����

� NB� � CSM� � ����p ���p�� �����q � q��

� CSM� � CSM� " ��p � p� �This is PRLZF " Re�ection�� in
�Smory�nski 	
��� and F� in �Montagna 	
�����

� CSM� � CSM� " ��p � p� �This is PRLZF " Re�ection�� in
�Smory�nski 	
�����
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� NB� � NB� "��p � p"��p � ��p�

A remarkable feature of CSM� is that�like in GL�we have uniquely de�
termined de�nable �xed points�

THEOREM ���� �Smory�nski 	
��� Let ��p� be a formula in which every
occurrence of p lies within the scope of some �� or some ��� Then
�i� there exists a formula � containing only the propositional variables of

��p� di�erent from p such that � � ���� � CSM��
�ii� ����p � ��p�� � �q � ��q��� � �p � q� � CSM��

In the remaining part of this section we are concerned with subframe
logics containing CSM�� the main result stating that those of them that
are �nitely axiomatizable are decidable� All the provability logics introduced
above turn out to be subframe logics� so we obtain a uniform proof of their
decidability� An interesting trait of subframe logics in ExtCSM� is that
�as a rule� they are Kripke incomplete� in the list above such are CSMi�
i � 	� �� �� and NBi� i � 	� �� The proof extends the techniques introduced
by Visser �	

��� for details we refer the reader to �Wolter 	

�a��
First we develop�as was done for NExtK� and NExtLin�a frame the�

oretic language for axiomatizing subframe logics in the lattice ExtCSM��
A �nite frame G � hW�R�� R�i validates CSM� i
 both R� and R� are
transitive� irre�exive� R� 
 R� and

�x� y� z �xR�y � yR�z � xR�z��

In this section all �not only �nite� frames are assumed to satisfy these con�
ditions� save irre�exivity�
A �nite frame F is called a surrogate frame if it has precisely one root

r and all points di
erent from r are R��irre�exive� Surrogate frames will
provide the language to axiomatize subframe logics in ExtCSM�� A normal
surrogate frame hW�R�� R�i is a surrogate frame in which the root r is
R��irre�exive� We write xR

p
i y i
 xRiy and �yRix� Given a frame G �

hV� S�� S�� Qi for CSM� and a surrogate frame F � hW�R�� R�i� a map h
from V onto W is called a weak reduction of G to F if for i � f	� �g and all
x� y � V �

� xSiy implies f�x�Rif�y��

� f�x�Rp
i f�y� implies 	z � V �xSiz � f�z� � f�y���

� f���X� � Q for all X 
W �

�The standard de�nition of reduction is relaxed here in the second condi�
tion�� Each weak reduction to a CSM��frames is a usual reduction� since in
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this case Rp
i � Ri� A frame G is said to be weakly subreducible to a surro�

gate frame F if a subframe of G is weakly reducible to F� To describe weak
subreducibility syntactically� with each surrogate frame F � hW�R�� R�i we
associate the formula

��F� � 
�F� ���
�F�� �pr�
where r is the root of F and


�F� �
�

fpx � ��py � xR
p
�y� x� y � Wg ��

fpx � ��py � xR
p
�y� x� y � Wg ��

fpx � �py � x �� y� x� y � Wg ��
fpx � ���py � ��xR�y�� x� y � Wg ��
fpx � ���py � ��xR�y�� x� y � Wg�

LEMMA ���	 For every surrogate frame F and every CSM��frame G� G �j�
��F� i� G is weakly subreducible to F�

It follows immediately that CSM����F� andCSM�"��F� are subframe
logics� Conversely� we have the following completeness result�

THEOREM ���� �i� There is an algorithm which� given a formula � such
that CSM�"� is a subframe logic� returns surrogate frames F�� � � � �Fn for
which

CSM� " � � CSM� " ��F�� " � � �" ��Fn��

�ii� There is an algorithm which� given a formula � such that CSM���
is a subframe logic� returns normal surrogate frames F�� � � � �Fn such that

CSM� � � � CSM� � ��F��� � � �� ��Fn��

Table � shows axiomatizations of the logics introduced above by means of
formulas of the form ��F�� In this section we adopt the convention that in
�gures we place the number 	 nearby an arrow from x to y if xR�y and
�xR�y� An arrow without a number means that xR�y �and therefore xR�y
as well��
The proof of decidability is based on the completeness of subframe logics

in ExtCSM� with respect to rather simple descriptive frames� With every
surrogate frame F we associate a �nite set of frames E�F� � fFA � A �
SeqFg� Loosely� it is de�ned as follows� Let us �rst assume that the root r
of F is R��irre�exive� Then the frames in E�F� are the results of inserting an
in�nite strictly descending R��chain� denoted by C���� between each non�
degenerate R��cluster C and its R��successors� This de�nes R� uniquely�
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CSM� � CSM� � �� �
�
��

CSM� "��p � p � CSM� " ����

CSM� "��p � p � CSM� " �� �� �

CSM� "��p � ��p � CSM� " �� ��
��
��

NB� � CSM� � �� �
� �
��I ���
�
�

�

�� �� �
� �
��I ���� ��

�� �
� �
��I ���
�
�

�

�� �� �
� �
��I ���
�
�
�

Table �� Axiomatizations of provability logics

However� R� may be de�ned in di
erent ways� since a point R��seeing a
point in C need not �but may� R��see certain points in the chain C����
To be more precise� the set SeqF consists of all sequences A of the form

A � hAx � xR�x� x � W i�

where Ax is a subset of fy � W � C � yR�xg such that for all y and z�
y � Ax and zR�y imply z � Ax� For each non�degenerate R��cluster C�
denote by C��� the set f�n�C� � n � �g� Finally� given A � SeqF� we
construct F

A
� hV� S�� S�i as the frame satisfying the following conditions�

� V �W �SfC��� � C a non�degenerate R��cluster in Fg�
� Ri � Si � �W 'W �� for i � f	� �g�
� S� is de�ned so that C��� becomes an in�nite descending chain be�
tween C and its immediate successors�

� for every non�degenerate R��cluster C�

� ��C��� � C�' �C��� � C�� � S� � ��
� for all y � W � C and x � C���� xS�y i
 CR�y�

� for all y � W �C� C � fj � � � j � m� 	g and x � C���� yS�x
i
 	i � �	j � m� 	 �x � �im" j� C� � y � Aj��

� for all x � C��� and y � V � C� xS�y i
 CS�y�

We illustrate this technical de�nition by a simple example�
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Figure 	��

EXAMPLE ���� Construct E�F� for the frame F in Fig� 	� �a�� In this
case we have two R��re�exive points� namely c and d� So� SeqF consists of
pairs hAc� Adi� There are four di
erent pairs and so we have four frames
in E�F�� the frame in Fig� 	� �b� is Fh���i and that in �c� is Fhfag�fbgi�
Fh��fbgi is obtained from Fhfag�fbgi by omitting the R��arrows starting from
a� save the arrow to c� and Fhfag��i is obtained from Fhfag�fbgi by omitting
the R��arrows starting from b� save the arrow to d�

Suppose now that the root r of F � hW�R�� R�i is R��re�exive� We de�ne
F
A
as in the previous case� but this time we also insert an in�nite strictly

descending R��chain C��� between r and its R��successors�
We have de�ned the relational component of our frames and now turn to

their sets of possible values� Given F
A
� hV� S�� S�i and a non�degenerate

R��cluster C � fj � � � j � m� 	g in F� let
PC � ffjg � f�im" j� C� � i � �g � j � �� � � � �m� 	g

and denote by P the closure of

ffxg � x � V��xS�xg � fPC � C is a non�degenerate R��cluster in Fg
under intersections and complements in V � The resultant general frame is
denoted by G�F

A
� � hV� S�� S�� P i� One can check that it is a descriptive

frame for CSM�� The following completeness result is proved similarly to
that in Section ����

THEOREM ���� �i� Each subframe logic in NExtCSM� is determined by
a set of frames of the form G�F

A
�� in which F is a normal surrogate frame

and A � SeqF�
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�ii� Each subframe logic in ExtCSM� is determined by a set of frames
with distinguished worlds of the form

�
G�F

A
�� r
�
in which F is a surrogate

frame with root r and A � SeqF�

As a consequence of Theorem ���� and the fact that� for each surrogate
frame F with root r and each A � SeqF� both the logics of G�F

A
� and�

G�FA�� r
�
are decidable� we obtain

THEOREM ���� All �nitely axiomatizable subframe logics in ExtCSM�

are decidable�

We conjecture that the method above can be extended to logics without
the GL�axioms� i�e�� all �nitely axiomatizable subframe logics containing
�K�&K�����p � ��p���p� ����p are decidable�

� SUPERINTUITIONISTIC LOGICS

Although C�I� Lewis constructed his �rst modal calculus S� in 	
	�� it
was G�odel�s �	
��� two page note that attracted serious attention of math�
ematical logicians to modal systems� While Lewis �	
	�� used an abstract
necessity operator to avoid paradoxes of material implication� G�odel �	
���
and earlier Orlov �	
����� treated � as �it is provable� to give a classical in�
terpretation of intuitionistic propositional logic Int by means of embedding
it into a modal �provability� system which turned out to be equivalent to
Lewis� S��
Approximately at the same time G�odel �	
��� observed that there are

in�nitely many logics located between Int and classical logic Cl� which�
together with the creation of constructive �proper� extensions of Int by
Kleene �	
��� and Rose �	
��� �realizability logic�� Medvedev �	
��� �logic
of �nite problems�� Kreisel and Putnam �	
����gave an impetus to study�
ing the class of logics intermediate between Int andCl� started by Umezawa
�	
��� 	
�
�� G�odel�s embedding of Int into S�� presented in an algebraic
form by McKinsey and Tarski �	
��� and extended to all intermediate logics
by Dummett and Lemmon �	
�
�� made it possible to develop the theories
of modal and intermediate logics in parallel ways� And the structural results
of Blok �	
��� and Esakia �	
�
a�b�� establishing an isomorphism between
the lattices ExtInt and NExtGrz� along with preservation results of Mak�
simova and Rybakov �	
��� and Zakharyaschev �	

	�� transferring various
properties from modal to intermediate logics and back� showed that in many
respects the theory of intermediate logics is reducible to the theory of logics
in NExtS��

��Orlov�s paper remained unnoticed till the end of the ����s� It is remarkable also for
constructing the �rst system of relevant logic�
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For � Int" p

Cl � Int" p � �p
SmL � Int" ��q � p�� ���p � q�� p�� p�

KC � Int" �p � ��p
LC � Int" �p � q� � �q � p�

SL � Int" ����p � p�� �p � p�� �p � ��p
KP � Int" ��p � q � r�� ��p � q� � ��p � r�

BDn � Int" bdn� where
bd� � p� � �p�� bdn�� � pn�� � �pn�� � bdn�

BWn � Int"
Wn
i���pi �

W
j ��i pj�

BTWn � Int"
V
��i�j�n ���pi � �pj��

Wn
i����pi �

W
j ��i �pj�

Tn � Int"
Vn
i����pi �

W
i��j pj��

W
i��j pj��

Wn
i�� pi

Bn � Int"
Vn
i����pi �

W
i��j pj��

Wn
i�� pi

NLn � Int" nfn� where
nf � � �� nf� � p� nf� � �p� nf� � �
nf �m�� � nf�m�� � nf�m���
nf �m�� � nf�m�� � nf�m��

Table �� A list of standard superintuitionistic logics

To demonstrate this as well as some features of intermediate logics is
the main aim of this part� We will use the same system of notations as
in the modal case� In particular� ExtInt is the lattice of all logics of the
form Int " � �where � is an arbitrary set of formulas in the language of
Int and " as before means taking the closure under modus ponens and
substitution�� we call them superintuitionistic logics or si�logics for short�
Basic facts about the syntax and semantics of Int and relevant references
can be found in Intuitionistic Logic� A list of some �standard� si�logics is
given in Table ��

��� Intuitionistic frames

As in the case of modal logics� the adequate relational semantics for si�logics
can be constructed on the base of the Stone representation of the algebraic
�models� for Int� known as Heyting �or pseudo�Boolean� algebras� It is hard
to trace now who was the �rst to introduce intuitionistic general frames�the
earliest references we know are �Esakia 	
��� and �Rautenberg 	
�
��but in
any case� having at hand �J�onsson and Tarski 	
�	� and �Goldblatt 	
��a��
the construction must have been clear�
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An intuitionistic �general� frame is a triple F � hW�R� P i in which R is a
partial order on W �� � and P � the set of possible values in F� is a collection
of upward closed subsets �cones� in W containing � and closed under the
Boolean �� �� and the operation ( �for �� de�ned by

X ( Y � fx � W � �y � x� �y � X � y � Y �g�

If P contains all upward closed subsets in W then we call F a Kripke frame
and denote it by F � hW�Ri� An important feature of intuitionistic models
M � hF�Vi �V� a valuation in F� maps propositional variables to sets in P �
is that V���� the truth�value of a formula �� is always upward closed�
Every intuitionistic frame F � hW�R� P i gives rise to the Heyting algebra

F� � hP�����(� �i called the dual of F� Conversely� given a Heyting algebra
A � hA��������i� we construct its relational representation A� � hW�Ri
by taking W to be the set of all prime �lters in A �a �lter r is prime if it
is proper and a � b � r implies a � r or b � r�� R to be the set�theoretic
inclusion 
 and

P � ffr � W � a � rg � a � Ag�
It is readily checked that A�� the dual of A� is an intuitionistic frame�
A �� �A��� and A� is di
erentiated� tight in the sense that

xRy i
 �X � P �x � X � y � X��

and compact� i�e�� for any families X 
 P and Y 
 fW �X � X � Pg�
�
�X � Y� � fx � W � �X � X�Y � Y �x � X � x � Y �g �� �

whenever
T
�X � � Y �� �� � for every �nite subfamilies X � 
 X � Y � 
 Y �

Frames with these three properties �actually di
erentiatedness follows from
tightness� are called descriptive� In the same way as in the modal case
one can prove that F is descriptive i
 F �� �F���� Duality between the
basic truth�preserving operations on algebras and descriptive frames �the
de�nitions of generated subframes� reductions and disjoint unions do not
change� is also established by the same technique�
Since every consistent si�logic L is characterized by its Tarski!Lindenba�

um algebra AL� we conclude that L is characterized also by a class of intu�
itionistic frames� say by the dual of AL�
Re�ned �nitely generated frames for Int look similarly to those for K��

the only di
erence is that now all clusters are simple and the truth�sets must
be upward closed� Fig� 	� showing �a� the free 	�generated Heyting algebra
AInt�	� and �b� its dual FInt�	� will help the reader to restore the details�
AInt�	� was �rst constructed by Rieger �	
�
� and Nishimura �	
���� it is
called the Rieger
Nishimura lattice� The formulas nfn de�ned in Table �
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Figure 	��

and used for the construction are known as Nishimura formulas �see also
Section � of Intuitionistic Logic��
At the algebraic level the connection between Int and S� discovered by

G�odel is re�ected by the fact� established in �Mckinsey and Tarski 	
����
that the algebra of open elements �i�e�� elements a such that �a � a� of
every modal algebra for S� �known as a topological Boolean algebra� see
�Rasiowa and Sikorski 	
���� is a Heyting algebra and conversely� every
Heyting algebra is isomorphic to the algebra of open elements of a suitable
algebra for S�� We explain this result in the frame�theoretic language�
Given a frame F � hW�R� P i for S� �which means that R is a quasi�

order on W �� we denote by �W the set of clusters in F�more generally�
�X � fC�x� � x � Xg�and put C�x��C�y� i
 xRy�

�P � f�X � X � P �X � �Xg � f�X � X � P �X � X�g�
It is readily checked that the structure �F � h�W��R��P i is an intuition�
istic frame �for instance� ��X� ( ��Y � � �����X � Y ���� we call it the
skeleton of F� The skeleton of a modelM � hF�Vi for S� is the intuitionistic
model �M � h�F��Vi� where �V�p� � V��p��
Denote by T the G�odel translation pre�xing � to all subformulas of a

given intuitionistic formula��
 By induction on the construction of � one

��The translation de�ned in �G�odel ����� does not pre�x � to conjunctions and dis�
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can easily prove the following

LEMMA ��	 �Skeleton� For every model M for S�� every intuitionistic for�
mula � and every point x in M�

��M� C�x�� j� � i� �M� x� j� T ����

It follows that � � Int implies T ��� � S�� To prove the converse we
should be able to convert intuitionistic frames F into modal ones with the
skeleton �isomorphic to� F� This is trivial if F is a Kripke frame�we can
just regard it to be a frame for S�� which in view of the Kripke completeness
of both Int and S�� shows that T really embeds the former into the latter�
i�e��

� � Int i
 T ��� � S��
In general� the most obvious way of constructing a modal frame from an
intuitionistic frame F � hW�R� P i is to take the closure �P of P under the
Boolean operations �� � and �� It is well known in the theory of Boolean
algebras �see �Rasiowa and Sikorski 	
���� that for every X 
 W � X is in
�P i


X � ��X� � Y�� � � � � � ��Xn � Yn�

for some X�� Y�� � � � � Xn� Yn � P and n 
 	� It follows that if X � �P then
�X � �X� ( Y�� � � � � � �Xn ( Yn� � P 
 �P�

and so �P is closed under � in hW�Ri and P coincides with the set of
upward closed sets in �P � Thus� hW�R��P i is a partially ordered modal
frame� we shall denote it by �F� Moreover� we clearly have F �� ��F� If
M � hF�Vi is an intuitionistic model then �M � h�F�Vi is a modal model
having M as its skeleton� So by the Skeleton Lemma�

�M� x� j� � i
 ��M� x� j� T ����

for every intuitionistic formula � and every point x in F�
It is worth noting that if F � hW�Ri is a �nite intuitionistic Kripke frame

then �F is also a Kripke frame� However� for an in�nite F� �F is not in
general a Kripke frame� witness h���i�
The operator � is not the only one which� given an intuitionistic frame F�

returns a modal frame whose skeleton is isomorphic to F� As an example� we
de�ne now an in�nite class of such operators� For Kripke frames F � hW�Ri
and G � hV� Si� denote by F'G the direct product of F and G� i�e�� the frame
hW ' V�R' Si in which the relation R ' S is de�ned component�wise�

hx�� y�i �R' S� hx�� y�i i
 x�Rx� and y�Sy��
junctions� However this di�erence is of no importance as far as embeddings into logics
in NExtS� are concerned�
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Let � � k � �� We will regard k to be the set f�� � � � � k � 	g if k � � and
f�� 	� � � �g if k � �� Denote by � k an operator which� given an intuitionistic
frame F � hW�R� P i� returns a modal frame � kF � hkW� kR� kP i such that
�i� hkW� kRi is the direct product of the k�point cluster �k� k�� and hW�Ri

�in other words� hkW� kRi is obtained from hW�Ri by replacing its every
point with a k�point cluster��
�ii� �� kF �� F�
�iii� I 'X � kP � for every I 
 k and X � �P �

For instance� we can take kP to be the Boolean closure of the set

fI 'X � I 
 k� X � �Pg�
For a Kripke frame F � hW�R�UpW i we can� of course� take kP � �kW
and then � kF �

�
kW� kR� �kW

�
�

��� Canonical formulas

The language of canonical formulas� axiomatizing all si�logics and charac�
terizing the structure of their frames� can be easily developed following
the scheme of constructing the canonical formulas for K� outlined in Sec�
tion 	�� and using the connection between modal and intuitionistic frames
established above� We con�ne ourselves here only to pointing out the dif�
ferences from the modal case and some interesting peculiarities� details can
be found in �Zakharyaschev 	
��� 	
�
� and �Chagrov and Zakharyaschev
	

���
Actually� there are two important di
erences� First� in the de�nition of

subreduction of F � hW�R� P i to G the condition �R�� does not correspond
to the fact that all sets in P are upward closed� We replace it by the
following condition

�R��� �X � Q f���X�� � P �

where Q � fV � X � X � Qg and P � fW � X � X � Pg� For a
completely de�ned f satisfying �R	� and �R�� the condition �R��� is clearly
equivalent to �R�� and so every reduction is also a subreduction� If G is a
�nite Kripke frame then �R��� is equivalent to �z � V f���z�� � P � G is
a subframe of F if �G is a subframe of �F and the identity map on V is a
subreduction of F to G� It is of interest to note that in the intuitionistic case
�co�nal� subreductions are dual to IC�N��subalgebras of Heyting algebras
which preserve only implication� conjunction �and negation or �� but do
not necessarily preserve disjunction�
Second� we have to change the de�nition of open domains� Now we say

an antichain a �of at least two points� is an open domain in an intuitionistic
model N relative to a formula � if there ia a pair ta � ��a� a� such that
�a � a � Sub��

V
�a �

W
 a �� Int and
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� � � �a i
 a j� � for all a � a�
It is worth noting that in any intuitionistic model every antichain a is open
relative to every disjunction free formula �� Indeed� let �a be de�ned by
condition above and  a � Sub� � �a� It should be clear that � � � � �a
i
 � � �a and � � �a� And if � � � � �a� � � �a but � �  a then a j� �
for every a � a and b �j� � for some b � a� whence b �j� � � �� which is a
contradiction� It follows that

V
�a �

W
 a �� Int�

EXAMPLE ��� Let us try to characterize the class of intuitionistic refuta�
tion frames for the Weak Kreisel
Putnam Formula

wkp � ��p � �q � �r� � ��p � �q� � ��p � �r��

First we construct its simplest countermodel� it is depicted in Fig� 	�� where
by putting a formula to the left �right� of a point we mean that it is true
�not true� at the point� Then we observe that every frame F refuting wkp
is co�nally subreducible to the frame G underlying this countermodel by
the map f de�ned as follows�

f�x� �

	









�

� if x j� �p � �q � �r� x �j� ��p � �q� � ��p � �r�
	 if x j� �p � �q � �r� x j� �p and x j� q
� if x j� �p � �q � �r� x j� �p and x j� r
� if x j� p or x j� �p � �q � �r
unde�ned otherwise�

However� the co�nal subreducibility to G is only a necessary condition for
F �j� wkp� witness the frame having the form of the three�dimensional
Boolean cube with the top point deleted� The reason for this is that the
antichain f	� �g is a closed domain in N� it is impossible to insert a point
a between � and f	� �g and extend to it consistently the truth�sets for the
depicted formulas� Indeed� otherwise we would have a j� �p � �q � �r�
a �j� �q � �r and so a �j� �p� i�e�� there must be a point x � a� such that
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x j� p� but such a point does not exist� In fact� F �j� wkp i
 there is a
co�nal subreduction of F to G satisfying �CDC� for ff	� �gg�
Now� as in the modal case� with every �nite rooted intuitionistic frame

F � hW�Ri and a set D of antichains in it we can associate two formulas
��F�D��� and ��F�D�� called the canonical and negation free canonical
formulas� respectively� so that G �j� ��F�D��� �G �j� ��F�D�� i
 there is a
�co�nal� subreduction of G to F satisfying �CDC� for D� For instance� if
a�� � � � � an are all points in F and a� is its root� then one can take

��F�D��� �
�

aiRaj

�ij �
�
d�D

�d � �	 � p��

where

�ij � �
�


ajRak
pk � pj�� pi�

�d �
�

ai�W�d�
�
�


aiRak
pk � pi��

�
aj�d

pj �

�	 �
n�
i��

�
�


aiRak
pk � pi�� ��

��F�D� is obtained from ��F�D��� by deleting the conjunct �	�
THEOREM ��� There is an algorithm which� given an intuitionistic �� re�
turns canonical formulas ��F��D����� � � � � ��Fn�Dn��� such that

Int" � � Int" ��F��D���� " � � �" ��Fn�Dn����
So the set of intuitionistic canonical formulas is complete for ExtInt� If
� is negation free then one can use only negation free canonical formulas�
And if � is disjunction free then all Di are empty�

Table � and Theorem ��� show canonical axiomatizations of the si�logics
in Table �� Using this �geometrical� representation it is not hard to see� for
instance� that SmL� known as the Smetanich logic� is the greatest consistent
extension of Int di
erent from Cl� it is the logic of the two�point rooted
frame� KC� the logic of theWeak Law of the Excluded Middle� is character�
ized by the class of directed frames� It is the greatest si�logic containing the
same negation free formulas as Int �see �Jankov 	
��a��� LC� the Dummett
or chain logic� is characterized by the class of linear frames �see �Dum�
mett 	
�
��� BDn and BWn are the minimal logics of depth n and width
n� respectively �see �Hosoi 	
��� and �Smory�nski 	
����� Finite frames for
BTWn contain � n top points �Smory�nski 	
��� and �nite frames for Tn

are of branching � n� i�e�� no point has more than n immediate successors�
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For � Int" ����

Cl � Int" �� �
�
��

SmL � Int" �� �
� �
AAK ��� � " �� �

�
�

�
�

�

KC � Int" �� �
� �
AAK ��� ���

LC � Int" �� �
� �
AAK ���
�

SL � Int" ��� �
� �

�

AAK ���

�

���

KP � Int" �� �
� � �
��I ����
	 �

� ff	� �gg��� " �� �
� � �
��I ����
	 �

�
��� AAK

� ff	� �gg���

BDn � Int" �� �
�

�

�

���
�

�

	

n

�

BWn � Int" �� �

n��z �� �� � � � �
��I ����

BTWn � Int" �� �

n��z �� �� � � � �
��I ��� ���

Tn � Int" ��� �

n��z �� �� � � � �
��I ����

Bn � Int" ��� �

n��z �� �� � � � �
��I ��� ���

Table �� Canonical axioms of standard superintuitionistic logics
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THEOREM ��� �Nishimura 	
��� Anderson 	
��� Every extension L of Int
by formulas in one variable can be represented either as

L � Int" nf�n � Int " ���Hn���
or as

L � Int" nf �n�� � Int" ���Hn����� " ���Hn������
where Hn� Hn��� Hn�� are the subframes of the frame in Fig� �� generated
by the points n� n"	 and n"�� respectively� and ���F��� is an abbreviation
for ��F�D����� D� the set of all antichains in F�

Jankov �	
�
� proved in fact that logics of the form Int " ���F��� and
only them are splittings of ExtInt� However� not every si�logic is a union�
splitting of ExtInt which means that this class has no axiomatic basis�

��� Modal companions and preservation theorems

The fact that the G�odel translation T embeds Int into S� and the relation�
ship between intuitionistic and modal frames established in Section ��	 can
be used to reduce various problems concerning Int �e�g� proving complete�
ness or FMP� to those for S� and vice versa� Moreover� it turns out that
each logic in ExtInt is embedded by T into some logics in NExtS�� and for
each logic in NExtS� there is one in ExtInt embeddable in it�
We say a modal logic M � NExtS� is a modal companion of a si�logic L

if L is embedded in M by T � i�e�� if for every intuitionistic formula ��

� � L i
 T ��� � M�

If M is a modal companion of L then L is called the si�fragment of M
and denoted by �M � The reason for denoting the operator �modal logic
"� its si�fragment� by the same symbol we used for the skeleton operator is
explained by the following

THEOREM ��� For every M � NExtS�� �M � f� � T ��� � Mg� More�
over� if M is characterized by a class C of modal frames then �M is char�
acterized by the class �C � f�F � F � Cg of intuitionistic frames�

Proof It su�ces to show that f� � T ��� � Mg � Log�C� Suppose that
T ��� � M � Then F j� T ��� and so� by the Skeleton Lemma� �F j� � for
every F � C� i�e�� � � Log�C� Conversely� if �F j� � for all F � C then� by
the same lemma� T ��� is valid in all frames in C and so T ��� � M � �

Thus� � maps NExtS� into ExtInt� The following simple observation
shows that actually � is a surjection� Given a logic L � ExtInt� we put

�L � S�� fT ��� � � � Lg�
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THEOREM ��� �Dummett and Lemmon 	
�
� For every si�logic L� �L is
a modal companion of L�

Proof Clearly� L 
 ��L� To prove the converse inclusion� suppose � �� L�
i�e�� there is a frame F for L refuting �� Since F �� ��F� by the Skeleton
Lemma we have �F j� �L and �F �j� T ���� Therefore� T ��� �� �L and so

� �� ��L� �

Now we use the language of canonical formulas to obtain a general char�
acterization of all modal companions of a given si�logic L� Our presentation
follows �Zakharyaschev 	
�
� 	

	�� Notice �rst that for every modal frame
G and every intuitionistic canonical formula ��F�D���� G j� ��F�D��� i

�G j� ��F�D��� and so S�� T ���F�D���� � S�� ��F�D���� The same
concern� of course� the negation free canonical formulas�

THEOREM ��� A logic M � NExtS� is a modal companion of a si�logic
L � Int" f��Fi�Di��� � i � Ig i� M can be represented in the form

M � S�� f��Fi�Di��� � i � Ig � f��Fj �Dj ��� � j � Jg�

where every frame Fj � for j � J � contains a proper cluster�

Proof ��� We must show that for every intuitionistic formula �� � � L
i
 T ��� � M � Suppose that � �� L and F � hW�R� P i is a frame separating
� from L� We prove that �F separates T ��� from M � As was observed
above� �F �j� T ��� and �F j� ��Fi�Di��� for any i � I � So it remains to
show that �F j� ��Fj �Dj ��� for every j � J �
Suppose otherwise� Then� for some j � J � we have a subreduction f of

�F to Fj � Let a� and a� be distinct points belonging to the same proper
cluster in Fj � By the de�nition of subreduction� f

���a�� 
 f���a��� and
f���a�� 
 f���a���� and so there is an in�nite chain x�Ry�Rx�Ry�R � � � in
�F such that fx�� x�� � � �g 
 f���a�� and fy�� y�� � � �g 
 f���a��� And since
R is a partial order� all the points xi and yi are distinct�

Since f���a�� � �P � there are Xi� Yi � P such that

f���a�� � ��X� � Y�� � � � � � ��Xn � Yn��

And since f���a���f���a�� � �� for every point yi there is some number ni
such that yi � Xni and yi �� Yni � But then� for some distinct l and m� the
numbers nl and nm must coincide� and so if� say� ylRym then xm �� Ynm and
xm � Xnl �for ylRxmRym� Xi � Xi �� Yi � Yi ��� Therefore� xm �� f���a���
which is a contradiction�
The rest of the proof presents no di�culties� �
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This proof does not touch upon the co�nality condition� So along with
canonical formulas in Theorem ��� we can use negation free canonical for�
mulas� Thus� we have�

�S� � �S��� � �Dum � �Grz � Int�

�S��� � ��S����Grz� � KC�

�S��� � ��S����Grz� � LC�

�S� � ��S��Grz� � Cl�

COROLLARY ��� The set of modal companions of every consistent si�logic
L forms the interval

����L� � ��L� �L� ��
�� ���� �� � fM � NExtS� � �L 
 M 
 �L�Grzg

and contains an in�nite descending chain of logics�

Proof Notice �rst that ��F�D��� and ��F�D� are in Grz i
 F contains
a proper cluster� So ����L� 
 ��L� �L� ��

�� ���� ��� On the other hand� the
si�fragments of all logics in the interval are the same� namely L� Therefore�
����L� � ��L� �L� ��

�� ���� ��� Now� if L is consistent then ���� �� L and so
we have

�L � � � � � �L� ��Cn� � � � � � �L� ��C�� � �L� ��C�� � For�

where Ci is the non�degenerate cluster with i points� �

This result is due to Maksimova and Rybakov �	
���� Blok �	
��� and
Esakia �	
�
b��

Thus� all modal companions of every si�logic L are contained between the
least companion �L and the greatest one� viz�� �L� ��

�� ���� �� which will be
denoted by �L� Using Theorems ��� and 	���� we obtain

COROLLARY ��
 There is an algorithm which� given a modal formula ��
returns an intuitionistic formula � such that ��S�� �� � Int" ��

The following theorem� which is also a consequence of Theorem ���� de�
scribes lattice�theoretic properties of the maps �� � and �� Items �i�� �ii�
and �iv� in it were �rst proved by Maksimova and Rybakov �	
���� and �iii�
is due to Blok �	
��� and Esakia �	
�
b� and known as the Blok!Esakia
Theorem�
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THEOREM ��	� �i� The map � is a homomorphism of the lattice NExtS�
onto the lattice ExtInt�
�ii� The map � is an isomorphism of ExtInt into NExtS��
�iii� The map � is an isomorphism of ExtInt onto NExtGrz�
�iv� All these maps preserve in�nite sums and intersections of logics�

Now we give frame�theoretic characterizations of the operators � and ��
Note �rst that the following evident relations between frames for si�logics
and their modal companions hold�

F j� �M i
 �F j�M� F j� L i
 �F j� �L�

�F j� L i
 F j� �L� F j� L i
 � kF j� �L�

THEOREM ��		 �Maksimova and Rybakov 	
��� A si�logic L is charac�
terized by a class C of intuitionistic frames i� �L is characterized by the
class �C � f�F � F � Cg�
Proof ��� It su�ces to show that any canonical formula ��F�D��� �� �L
is refuted by some frame in �C� Since F is partially ordered� ��F�D��� �� L�
i�e�� there is F � C refuting ��F�D��� and so �F �j� ��F�D���� ��� is
straightforward� �

To characterize � we require

LEMMA ��	� For any canonical formula ��F�D��� built on a quasi�ordered
frame F� ��F�D��� � S� � ���F��D���� where �D � f�d � d � Dg and
�d � fC�x� � x � dg�
Proof Let G be a quasi�ordered frame refuting ��F�D���� Then there is
a co�nal subreduction f of G to F satisfying �CDC� for D� The map h from
F onto �F de�ned by h�x� � C�x�� for every x in F� is clearly a reduction
of F to �F� So the composition hf is a co�nal subreduction of G to �F� and
it is easy to verify that it satis�es �CDC� for �D� �

THEOREM ��	� A si�logic L is characterized by a class C of frames i� �L
is characterized by the class

S
��k�� � kC� where � kC � f� kF � F � Cg�

Proof ��� As was noted above� if F is a frame for L then � kF is a frame for
�L� So suppose that a formula ��F�D���� built on a quasi�ordered frame
F � hW�Ri� does not belong to �L and show that it is refuted by some frame
in
S
��k�� � kC� By Lemma ��	�� ���F��D��� �� �L and so ���F��D��� ��

L� Hence there is a frame G � hV� S�Qi in C which refutes ���F��D����
But then �G j� �L and �G �j� ���F��D���� Let f be a subreduction
of �G to �F satisfying �CDC� for �D and let k � maxfjC�x�j � x � Wg�



ADVANCED MODAL LOGIC �
�

De�ne a partial map h from � kG � hkV� kS� kQi onto F as follows� if x � V �
y� � W � f�x� � C�y�� and C�y�� � fy�� � � � � yng then we put h�hi� xi� � yi�
for i � �� � � � � n� By the de�nition of � k� for any i � f�� � � � � ng we have

h���yi� � fhi� xi � x � f���C�y���g � fig ' f���C�y��� � kQ�

Now� one can readily prove that h is a co�nal subreduction of � kG to F
satisfying �CDC� for D� So � kG �j� ��F�D���� ��� is obvious� �

It is worth noting that this proof will not change if we put in it k � ��

COROLLARY ��	� A logic L � ExtInt is characterized by a class C of
frames i� �L is characterized by the class ��C�
The following theorem provides a deductive characterization of the maps

� and ��

THEOREM ��	� For every si�logic L and every modal canonical formula
��F�D��� built on a quasi�ordered frame F�
�i� ��F�D��� � �L i� ���F��D��� � L�
�ii� ��F�D��� � �L i� either F is partially ordered and ��F�D��� � L

or F contains a proper cluster�

Proof �i� The implication ��� was actually established in the proof of
Theorem ��	�� and the converse one follows from Lemma ��	��
�ii� Suppose ��F�D��� � �L� Then either F is partially ordered� and so

��F�D��� � L� or F contains a proper cluster� The converse implication
follows from �i� and the fact that ��F�D��� � Grz for every frame F with
a proper cluster� �

The results obtained in this section not only establish some structural
correspondences between logics in ExtInt and NExtS� and their frames�
but may be also used for transferring various properties of modal logics
to their si�fragments and back� A few results of that sort are collected in
Table �� we shall cite them as the Preservation Theorem� The preservation
of decidability follows from the de�nition of � and Theorem ��	�� That
� preserves Kripke completeness� FMP and tabularity is a consequence of
Theorem ���� The map � preserves Kripke completeness and FMP� since
we can de�ne � k in Theorem ��	� so that � k hW�Ri � hkW� kRi� however�
� does not in general preserve the tabularity� because �Cl � S� is not
tabular� The preservation of FMP and tabularity under � follows from
Theorem ��		� On the other hand� Shehtman �	
��� proved that � does not
preserve Kripke completeness �since � preserves it and Grz is complete�
this means in particular that Kripke completeness is not preserved under
sums of logics in NExtS��� Some other preservation results in Table � will
be discussed later� For references see �Chagrov and Zakharyaschev 	

��
	

���
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Property of logics Preserved under
� � �

Decidability Yes Yes Yes
Kripke completeness Yes Yes No
Strong completeness Yes Yes No
Finite model property Yes Yes Yes
Tabularity Yes No Yes
Pretabularity Yes No Yes
D�persistence Yes Yes No
Local tabularity Yes No No
Disjunction property Yes Yes Yes
Halld�en completeness Yes No No
Interpolation property Yes No No
Elementarity Yes Yes No
Independent axiomatizability No Yes Yes

Table �� Preservation Theorem

��� Completeness

In this section we brie�y discuss the most important results concerning
completeness of si�logics with respect to various classes of Kripke frames�

Kripke completeness That not all si�logics are complete with respect
to Kripke frames was discovered by Shehtman �	
���� who found a way
to adjust Fine�s �	
��b� idea to the intuitionistic case �which was not so
easy because intuitionistic formulas do not �feel� in�nite ascending chains
essential in Fine�s construction� see Section �� of Basic Modal Logic�� Note
however that Kuznetsov�s �	
��� question whether all si�logics are complete
with respect to the topological semantics �see Intuitionistic Logic� is still
open�
As to general positive results� notice �rst that the Preservation Theorem

yields the following translation of Fine�s �	
��c� Theorem on �nite width
logics �si�logics of �nite width were studied by Sobolev �	
��a���

THEOREM ��	� Every si�logic of width n �i�e�� a logic in ExtBWn� see
Table 
� is characterized by a class of Noetherian Kripke frames of width
� n�

The translation of Sahlqvist�s Theorem gives nothing interesting for si�
logics� A sort of intuitionistic analog of this theorem has been recently
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proved by Ghilardi and Meloni �	

��� Here is a somewhat simpli�ed variant
of their result in which p� q� r� s denote tuples of propositional variables
and �� � tuples of formulas of the same length as r and s� respectively�

THEOREM ��	� �Ghilardi and Meloni 	

�� Suppose ��p� q� r� s� is an in�
tuitionistic formula in which the variables r occur positively and the vari�
ables s occur negatively� and which does not contain any �� except for
negations and double negations of atoms� in the premise of a subformula of
the form �� � ���� Assume also that ��p� q� and ��p� q� are formulas such
that p occur positively in � and negatively in �� while q occur negatively in
� and positively in �� Then the logic

Int" ��p� q� ��p� q�� ��p� q��

is canonical�

The preservation of D�persistence under � �see �Zakharyaschev 	

���
and the fact �discovered by Chagrova �	

��� that �L is characterized by an
elementary class of Kripke frames whenever L is determined by such a class
provide us with an intuitionistic variant of the Fine!van Benthem Theorem�

THEOREM ��	� If a si�logic is characterized by an elementary class of
Kripke frames then it is D�persistent�

As in the modal case� it is unknown whether the converse of this theo�
rem holds� All known non�elementary si�logics� for instance the Scott logic
SL and the logics Tn of �nite n�ary trees �see �Rodenburg 	
���� are not
canonical and even strongly complete either� as was shown by Shimura
�	

��� �Actually he proved that no logic in the intervals �SL�SL"bd�� and
�Int�T��� save of course Int� is strongly complete��

As far as we know� there are no examples of si�logics separating canonicity�
D�persistence and strong completeness� �Ghilardi� Meloni and Miglioli have
recently showed that SL in any language with �nitely many variables is
canonical�� Theorem 	��� which holds in the intuitionistic case as well gives
an algebraic counterpart of strong Kripke completeness�

The 	nite model property The �rst example of an in�nitely axiomati�
zable si�logic without FMP was constructed by Jankov �	
��b��that was in
fact the starting point of a long series of �negative� results in modal logic�
A �nitely axiomatizable logic without FMP appeared two years later in
�Kuznetsov and Gerchiu 	
���� The reader can get some impression about
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this and other examples of that sort by proving �it is really not hard� that

� � �� �
� � � �

�

��IBBM������

�	 �

� �� L � Int " bw� " �� �
� � � �

�

��IBBM ������

�	 �

� ff	� �gg�

but no �nite frame can separate � from L� �Notice by the way that �L
is axiomatizable by Sahlqvist formulas� see �Chagrov and Zakharyaschev
	

�b���
FMP of a good many si�logics was proved using various forms of �ltration�

see e�g� �Gabbay 	
���� �Ono 	
���� �Smory�nski 	
���� �Ferrari and Miglioli
	

��� As an illustration of a rather sophisticated selective �ltration we
present here the following

THEOREM ��	
 �Gabbay and de Jongh 	
��� The logic Tn �see Table 
�
is characterized by the class of �nite n�ary trees�

Proof First we prove that Tn is characterized by the class of �nite frames
of branching � n� Suppose � �� Tn and M � hF�Vi is a model for Tn

refuting �� Without loss of generality we may assume that F � hW�Ri is a
tree� Let # � Sub� and �x � f� � # � x j� �g� for every point x in F�
Given x in F� put rg�x� � f�y� � y � x�g and say that x is ofminimal range

if rg�x� � rg�y� for every y � �x� � x�� Since there are only �nitely many
distinct #�equivalence classes in M� every y � �x� sees a point z � �x� of
minimal range� Now we extract fromM a �nite refutation frame G � hV� Si
for � of branching � n� To begin with� we select some point x of minimal
range at which � is refuted and put V� � fxg�
Suppose Vk has already been de�ned� If jrg�x�j � 	 for every x � Vk� then

we put G � hV� Si� where V � Sk
i�� Vk and S is the restriction of R to V �

Otherwise� for each x � Vk with jrg�x�j � 	 and each �y� � rg�x� di
erent
from �x� and such that �z � �y for no �z� � rg�x��f�x�g� we select a point
u � �y� � x� of minimal range� Let Ux be the set of all selected points for x
and Vk�� �

S
x Ux� It should be clear that �x � �u �and rg�x� ( rg�u��� for

every u � Ux� and so the inductive process must terminate� Consequently
G �j� ��
It remains to establish that G j� Tn� i�e�� G is of branching � n� Suppose

otherwise� Then there is a point x in G withm 
 n"	 immediate successors
x�� � � � � xm� which are evidently in Ux because F is a tree� We are going to
construct a substitution instance of Tn�s axiom bbn which is refuted at x
in M�
Denote by 
i the conjunction of the formulas in �xi � Since all of them

are true at xi inM� we have xi j� 
i� and since �i 
 �j for no distinct i and
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j� we have xj �j� �i if i �� j� Put �i � 
i� for � � i � n� �n � 
n � � � � � 
m
and consider the truth�value of the formula � � bbnf���p�� � � � � �n�png at
x in M�
Since xRxi for every i � �� � � � �m� we have x �j� Wn

i�� �i� Suppose that
x �j� Vn

i�����i � W
i��j �j� � W

i��j �j�� Then y j� �i � W
i��j �j and

y �j� Wi��j �j � for some y � x� and some i � f�� � � � � ng� and hence y �j� �i�
Since xi j� �i and xi �j�

W
i��j �j � y sees no point in �xi� and so y ��� x �for

otherwise x would not be of minimal range�� Therefore� �xj 
 �y for some
j � f�� � � � �mg� and then y j� �j if j � n and y j� �n if j 
 n� which is a
contradiction�
It follows that x j� Vn

i�����i �
W
i��j �j��

W
i��j �j�� from which x �j� ��

contrary toM being a model for bbn� It remains to notice that every �nite
frame of branching � n is a reduct of a �nite n�ary tree� which clearly
validates Tn� �

Another way of obtaining general results on FMP of si�logics is to trans�
late the corresponding results in modal logic with the help of the Preserva�
tion Theorem�

THEOREM ���� Every si�logic of �nite depth �i�e�� every logic in ExtBDn�
for n � �� is locally tabular�

Note� however� that unlike NExtK�� the converse does not hold� the
Dummett logic LC� characterized by the class of �nite chains �or by the
in�nite ascending chain�� is locally tabular� As we saw in Section 	��� every
non�locally tabular in NExtS� logic is contained in Grz��� the only pre�
locally tabular logic in NExtS�� But in ExtInt this way of determining
local tabularity does not work�

THEOREM ���	 �Mardaev 	
��� There is a continuum of pre�locally tab�
ular logics in ExtInt�

Besides� it is not clear whether every locally tabular logic in ExtInt �or
NExtK�� is contained in a pre�locally tabular one�
An intuitionistic formula is said to be essentially negative if every occur�

rence of a variable in it is in the scope of some �� If � is essentially negative
then T ��� is a ���formula� which yields

THEOREM ���� �McKay 	
�	� Rybakov 	
��� If a si�logic L is decidable
�or has FMP� and � is an essentially negative formula then L"� is decidable
�has FMP��

Originally this result was proved with the help of Glivenko�s Theorem
�see Section � in Intuitionistic Logic�� Say that an occurrence of a variable
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in a formula is essential if it is not in the scope of any �� A formula
� is mild if every two essential occurrences of the same variable in � are
either both positive or both negative� Kuznetsov �	
��� claimed �we have
not seen the proof� that all si�logics whose extra axioms do not contain
negative occurrences of essential variables have FMP� And Wro�nski �	
�
�
announced that if L is a decidable si�logic and � a mild formula then L"�
is also decidable�
Subframe and co�nal subframe si�logics�that is logics axiomatizable by

canonical formulas of the form ��F� and ��F���� respectively�can be char�
acterized both syntactically and semantically �see �Zakharyaschev 	

����

THEOREM ���� The following conditions are equivalent for every si�logic
L�
�i� L is a �co�nal� subframe logic�
�ii� L is axiomatizable by implicative �respectively� disjunction free� for�

mulas�
�iii� L is characterized by a class of �nite frames closed under the forma�

tion of �co�nal� subframes�

That all si�logics with disjunction free axioms have FMP was �rst proved
by McKay �	
��� with the help of Diego�s �	
��� Theorem according to which
there are only �nitely many pairwise non�equivalent in Int disjunction free
formulas in variables p�� � � � � pn �see also �Urquhart 	
�����
Since frames for Int contain no clusters� Theorem 	��� and its analog

for co�nal subframe logics reduce in the intuitionistic case to the following
result which is due to Chagrova �	
���� Rodenburg �	
���� Shimura �	

��
and Zakharyaschev �	

���

THEOREM ���� All si�logics with disjunction free axioms are elementary
�de�nable by �	�sentences� and D�persistent�

Theorem 	��� is translated into the intuitionistic case simply by replacing
K� with Int� � with " and � with �� As a consequence we obtain� for
instance� that Ono�s �	
��� Bn and all other logics whose canonical axioms
are built on trees have FMP� Moreover� we also have

THEOREM ���� �Sobolev 	
��b� Nishimura 	
��� All si�logics with extra
axioms in one variable have FMP and are decidable�

In fact Sobolev �	
��b� proved a more general �but rather complicated�
syntactical su�cient condition of FMP and constructed a formula in two
variables axiomatizing a si�logic without FMP �Shehtman�s �	
��� incom�
plete si�logic has also axioms in two variables��
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Tabularity By the Blok!Esakia and Preservation Theorems� the situation
with tabular logics in ExtInt is the same as in NExtGrz� In particular�
L � ExtInt is tabular i
 BDn "BWn 
 L for some n � � i
 L is not a
sublogic of one of the three pretabular logics in ExtInt� namely LC� BD�

and KC " bd�� �The pretabular si�logics were described by Maksimova
�	
����� The tabularity problem is decidable in ExtInt�

��� Disjunction property

One of the aims of studying extensions of Int� which may be of interest
for applications in computer science� is to describe the class of constructive
si�logics� At the propositional level a logic L � ExtInt is regarded to be
constructive if it has the disjunction property �DP� for short� which means
that for all formulas � and ��

� � � � L implies � � L or � � L�

That intuitionistic logic itself is constructive in this sense was proved in a
syntactic way by Gentzen �	
��!	
���� However� (Lukasiewicz �	
��� con�
jectured that no proper consistent extension of Int has DP�
A similar property was introduced for modal logics �see e�g� �Lemmon

and Scott 	
����� L � NExtK has the �modal� disjunction property if� for
every n 
 	 and all formulas ��� � � � � �n�

��� � � � � ���n � L implies �i � L� for some i � f	� � � � � ng�
The following theorem �in a somewhat di
erent form it was proved in

�Hughes and Cresswell 	
��� and �Maksimova 	
���� provides a semantic
criterion of DP�

THEOREM ���� Suppose a modal or si�logic L is characterized by a class C
of descriptive rooted frames closed under the formation of rooted generated
subframes� Then L has DP i�� for every n 
 	 and all F�� � � � �Fn � C with
roots x�� � � � � xn� there is a frame F for L with root x such that the disjoint
union F� " � � �" Fn is a generated subframe of F with fx�� � � � � xng 
 x��
Proof We consider only the modal case� ��� Let FL � hWL� RL� PLi be
a universal frame for L� big enough to contain F�" � � �"Fn as its generated
subframe� Assuming that FL is associated with a suitable canonical model
for L� we show that there is a point x in FL such that x��WL� The set

 � � f��� � 	y � WL y �j� �g
is L�consistent �for otherwise ���� � � ����n � L for some ��� � � � � �n �� L��
Let  be a maximal L�consistent extension of  � and x the point in FL
where  is true� Then xRLy� for every y � WL�
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��� Suppose otherwise� Then there are formulas ��� � � � � �n �� L such
that ��� � � � � � ��n � L� Take frames F�� � � � �Fn � C refuting ��� � � � � �n
at their roots� respectively� and let F be a rooted frame for L containing
F�" � � �"Fn as a generated subframe and such that its root x sees the roots
of F�� � � � �Fn� Then all the formulas ���� � � � ���n are refuted at x and so
��� � � � � � ��n �� L� which is a contradiction� �

It should be clear that if we use only the su�cient condition of Theo�
rem ����� the requirement that frames in C are descriptive is redundant�
Furthermore� it is easy to see that for L � NExtK� we may assume n � ��
And clearly a logic L � NExtS� has DP i
� for all � and �� �� � �� � L
implies �� � L or �� � L�
As a direct consequence of the proof above we obtain

COROLLARY ���� A modal or si�logic L has DP i� the canonical frame
FL � hWL� RLi contains a point x such that x��WL�

Using the semantic criterion above it is not hard to show that DP is
preserved under �� � and �� It is also a good tool for proving and disproving
DP of logics with transparent semantics�

EXAMPLE ���� �i� Let F�� � � � �Fn be serial rooted Kripke frames� Then
the frame obtained by adding a root to F�"� � �"Fn is also serial� Therefore�
D has DP� In the same way one can show that K� K�� T� S�� Grz� GL
and many other modal logics have DP�
�ii� Since no rooted symmetrical frame can contain a proper generated

subframe� no consistent logic in NExtKB has DP�

The �rst proper extensions of Int with DP were constructed by Kreisel
and Putnam �	
���� these were KP �now called the Kreisel
Putnam logic
and SL �known as the Scott logic�� We present here Gabbay�s �	
��� proof
that KP has DP�

THEOREM ���
 �Kreisel and Putnam 	
��� KP has DP�

Proof Using �ltration one can show that KP is characterized by the class
of �nite rooted frames F � hW�Ri satisfying the condition

�x� y� z �xRy � xRz � �yRz � �zRy � 	u �xRu � uRy � uRz �
�v �uRv � 	w �vRw � �yRw � zRw������ �	��

If F is such a frame then for each non�empty X 
 W��� the generated
subframe of F based on the set W � �W�� �X�� is rooted� we denote its
root by r�X��
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Let F� � hW�� R�i and F� � hW�� R�i be �nite rooted frames satisfying
�	��� We construct from them a frame F � hW�Ri by taking

W �W� �W� � U�

where U � fX� �X� � X� 
W��
� � X� 
 W��

� � X�� X� �� �g� and

xRy i
 �x� y � Wi � xRiy� � �x� y � U � x � y� �
�x � X� �X� � U � y � Wi � r�Xi�Riy��

It follows from the given de�nition that F� " F� is a generated subframe of
F� W� �W� is a cover for F and W��

� �W��
� is its root� So our theorem

will be proved if we show that �	�� holds�
Suppose x� y� z � W satisfy the premise of �	��� Since �	�� holds for F�

and F�� we can assume that x � X� �X� � U � Let Y� � Y� and Z� � Z� be
the sets of �nal points in y� and z�� respectively� with Yi� Zi 
 Wi� By the
de�nition of R� we have Yi� Zi 
 Xi� Consider u � �Y� � Z�� � �Y� � Z���
Clearly� xRu� uRy and uRz� Suppose now that v � u�� Let w be any �nal
point in v�� Then v � �Y� � Z�� � �Y� � Z�� and so either yRw or zRw�

�

Other examples of constructive si�logics were constructed by Ono �	
���
and Gabbay and de Jongh �	
���� namely� Bn and Tn� Anderson �	
���
proved that among the consistent si�logics with extra axioms in one variable
only those of the form Int " nf �n��� for n 
 �� have DP �for n � � the
proof was found by Wro�nski �	
���� see also �Sasaki 	

���� Finally� Wro�nski
�	
��� showed that there is a continuum of si�logics with DP�
The additional axioms of logics in all these examples contained occur�

rences of �� on the other hand� known examples of si�logics with disjunction
free extra axioms� say LC� KC� Cl� BWn or BDn� were not constructive�
This observation led Hosoi and Ono �	
��� to the conjecture that the dis�
junction free fragment of every consistent si�logic with DP coincides with
that of Int� We present a proof of this conjecture following �Zakharyaschev
	
����
First we describe the co�nal subframe logics in NExtS� with DP� as�

suming that every such logic L is represented by its independent canonical
axiomatization

L � S�� f��Fi��� � i � Ig� �	��

All frames in the rest of this section are assumed to be quasi�ordered�
Say that a �nite rooted frame F with 
 � points is simple if its root cluster

and at least one of the �nal clusters are simple� Suppose F � hW�Ri is a
simple frame� a�� a�� � � � � am� am��� � � � � an are all its points� with a� being
the root� C�a��� � � � � C�am� all the distinct immediate cluster�successors of
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a�� and an a �nal point with simple C�an�� For every k � 	� � � � � n� de�ne a
formula �k by taking

�k �
�

aiRaj �i ���
�ij �

n�
i��

�i � ��	 � pk

where �ij � �i were de�ned in Section ��� and ��	 � ��
Vn
i���pi � ���

Now we associate with F the formula ��F� � �p� � ��� if m � 	� and the
formula ��F� � ��� � � � � � ��m if m � 	�

LEMMA ���� For every simple frame F� ��F� � S�� ��F����
Proof It is enough to show that G �j� ��F� implies G �j� ��F���� for any
�nite G� So suppose ��F� is refuted in a �nite frameG under some valuation�
De�ne a partial map f from G onto F by taking

f�x� �

	

�

a� if x �j� ��F�
ai if x �j� �i� 	 � i � n
unde�ned otherwise�

One can readily check that f is a subreduction of G to F� However it is not
necessarily co�nal� So we extend f by putting f�x� � an� for every x of
depth 	 in G such that f�x�� � fa�g� Clearly� the improved map is still a
subreduction of G to F� and ��	 ensures its co�nality� �

Using the semantical properties of the canonical formulas it is a matter
of routine to prove the following

LEMMA ���	 Suppose i � f	� � � � �mg and G is the subframe of F generated
by ai� Then ��G��� � S�� �i�

We are in a position now to prove a criterion of DP for the co�nal sub�
frame logics in NExtS��

THEOREM ���� A consistent co�nal subframe logic L � NExtS� has the
disjunction property i� no frame Fi in its independent axiomatization ����
is simple� for i � I�

Proof ��� Suppose� on the contrary� that Fi is simple� for some i � I �
Since the axiomatization �	�� is independent� every proper generated sub�
frame of Fi validates L� By Lemma ����� ��Fi� � L and so either p� � L or
�j � L� However� both alternatives are impossible� the former means that
L is inconsistent� while the latter� by Lemma ���	� implies ��G��� � L�
where G is the subframe of Fi generated by an immediate successor of Fi�s
root�
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��� Given two �nite rooted frames G� and G� for L� we construct the
frame F as shown in Fig� 	� and prove that F j� L� Suppose otherwise� i�e��
there exists a co�nal subreduction f of F to Fi� for some i � I � Let xi be the
root of Fi� Since G� and G� are not co�nally subreducible to Fi and since
L is consistent� f���xi� � fxg� By the co�nality condition� it follows in
particular that y � domf � But then Fi is simple� which is a contradiction�
Thus� by Theorem ����� L has DP� �

Note that in fact the proof of ��� shows that if L � NExtS�� F is
a simple frame� ��F��� � L and ��G��� �� L for any proper generated
subframe G of F then L does not have DP� Transferring this observation to
the intuitionistic case� we obtain

THEOREM ���� �Minari 	
��� Zakharyaschev 	
��� If a si�logic is consis�
tent and has DP then the disjunction free fragments of L and Int are the
same�

Su�cient conditions of DP in terms of canonical formulas can be found
in �Chagrov and Zakharyaschev 	

�� 	

���
Since classical logic is not constructive� it is of interest to �nd maximal

consistent si�logics with DP� That they exist follows from Zorn�s Lemma�
Here is a concrete example of such a logic�
Trying to formalize the proof interpretation of intuitionistic logic� Med�

vedev �	
��� proposed to treat intuitionistic formulas as �nite problems�
Formally� a �nite problem is a pair hX�Y i of �nite sets such that Y 
 X
and X �� �� elements in X are called possible solutions and elements in Y
solutions to the problem� The operations on �nite problems� corresponding
to the logical connectives� are de�ned as follows�

hX�� Y�i � hX�� Y�i � hX� 'X�� Y� ' Y�i �
hX�� Y�i � hX�� Y�i � hX� tX�� Y� t Y�i �
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hX�� Y�i � hX�� Y�i �
D
XX�
� � ff � XX�

� � f�Y�� 
 Y�g
E
�

� � hX� �i �
Here X tY � �X'f	g�� �Y 'f�g� and XY is the set of all functions from
X into Y � Note that in the de�nition of � the set X is �xed� but arbitrary�
for de�niteness one can take X � f�g�
Now we can interpret formulas by �nite problems� Namely� given a for�

mula �� we replace its variables by arbitrary �nite problems and perform
the operations corresponding to the connectives in �� If the result is a
problem with a non�empty set of solutions no matter what �nite problems
are substituted for the variables in �� then � is called �nitely valid� One
can show that the set of all �nitely valid formulas is a si�logic� it is called
Medvedev	s logic and denoted byML�
In fact� ML can be de�ned semantically� Medvedev �	
��� showed that

ML coincides with the set of formulas that are valid in all framesBn having
the form of the n�ary Boolean cubes with the topmost point deleted� for
n � 	� �� �� �� the Medvedev frames are shown in Fig� 	�� Since Bn"Bm is
a generated subframe of Bn�m�ML has DP� Moreover� Levin �	
�
� proved
that it has no proper consistent extension with DP� The following proof of
this result is due to Maksimova �	
����

THEOREM ���� �Levin 	
�
� ML is a maximal si�logic with DP�

Proof Suppose� on the contrary� that there exists a proper consistent ex�
tension L of ML having DP� Then we have a formula � � L �ML� We
show �rst that there is an essentially negative substitution instance �� of
� such that �� �� ML� Since ��p�� � � � � pn� �� ML� there is a Medvedev
frame Bm refuting � under some valuation V� With every point x in Bm

we associate a new variable qx and extend V to these variables by taking
V�qx� to be the set of �nal points in Bm that are not accessible from x� By
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the construction of Bm� we have y j� �qx i
 y � x�� from which

V�
�

x�V	pi

�qx� � V�pi��

Let �� � ��
W
x�V	p�
 �qx� � � � �

W
x�V	pn
 �qx�� It follows that V���� � V���

and so �� ��ML�
Thus� we may assume that � is an essentially negative formula� Since

KP 
ML� ML contains the formulas

ndk � ��p � �q� � � � � � �qk�� ��p � �q�� � � � � � ��p � �qk�

which� as is easy to see� belong to KP� Let us consider the logic

ND � Int" fndk � k 
 	g�

Using the fact that the outermost� in ndk can be replaced with� and that
��p � �q� � ���p � q� � Int� one can readily show that every essentially
negative formula is equivalent in ND to the conjunction of formulas of the
form ����� � ����l� So L�ML contains a formula of the form ����� � ����l�
Since L has DP� ��i � L for some i� But then� by Glivenko�s Theorem�
��i �ML� which is a contradiction� �

Remark� ML is not �nitely axiomatizable� as was shown by Maksimova
et al� �	
�
�� Nobody knows whether it is decidable�

It turns out� however� thatML is not the unique maximal logic with DP
in ExtInt� Kirk �	
��� noted that there is no greatest consistent si�logic
with DP� Maksimova �	
��� showed that there are in�nitely many maximal
constructive si�logics� and Chagrov �	

�a� proved that in fact there are
a continuum of them� see also Ferrari and Miglioli �	

�� 	

�a� 	

�b��
Galanter �	

�� claims that each si�logic characterized by the class of frames
of the form

hfW � W 
 f	� � � � � ng� W �� �� jW j �� Ng��i �

where n � 	� �� � � � and N is some �xed in�nite set of natural numbers� is a
maximal si�logic with DP�

��� Intuitionistic Modal Logics

All modal logics we have dealt with so far were constructed on the classical
non�modal basis� It can be replaced by logics of other types� For instance�
one can consider modal logics based on relevant logic �see e�g� �Fuhrmann
	
�
�� or many�valued logics �see e�g� �Segerberg 	
���� �Morikawa 	
�
��
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�Ostermann 	
����� and many others� In this section we brie�y discuss
modal logics with the intuitionistic basis�
Unlike the classical case� the intuitionistic � and � are not supposed to

be dual� which provides more possibilities for de�ning intuitionistic modal
logics� For a non�empty set M of modal operators� let LM be the stan�
dard propositional language augmented by the connectives in M� By an
intuitionistic modal logic in the language LM we understand any subset of
LM containing Int and closed under modus ponens� substitution and the
regularity rule � � ��# � � #�� for every # � M�
There are three ways of de�ning intuitionistic analogues of �classical�

normal modal logics� First� one can take the family of logics extending the
basic system IntK� in the language L� which is axiomatized by adding to
Int the standard axioms of K

��p � q�� �p � �q and ���

An example of a logic in this family is Kuznetsov�s �	
��� intuitionistic
provability logic I� �Kuznetsov used ) instead of ��� the intuitionistic
analog of the provability logic GL� It can be obtained by adding to IntK�

�and even to Int� the axioms

p � �p� ��p � p�� p� ��p � q�� p�� ��q � p��

A model theory for logics in NExtIntK� was developed by Ono �	
����
Bo)zi�c and Do)sen �	
���� Do)sen �	
��a�� Sotirov �	
��� and Wolter and Za�
kharyaschev �	

�a�b�� we discuss it below� Font �	
��� 	
��� considered
these logics from the algebraic point of view� and Luppi �	

�� investigated
their interpolation property by proving� in particular� that the superamal�
gamability of the corresponding varieties of algebras is equivalent to inter�
polation�
A possibility operator� in logics of this sort can be de�ned in the classical

way by taking �� � ����� Note� however� that in general this � does not
distribute over disjunction and that the connection via negation between �
and� is too strong from the intuitionistic standpoint �actually� the situation
here is similar to that in intuitionistic predicate logic where 	 and � are not
dual��
Another family of �normal� intuitionistic modal logics can be de�ned in

the language L� by taking as the basic system the smallest logic in L� to
contain the axioms

��p � q�� �p ��q and ����

it will be denoted by IntK�� Logics in NExtIntK� were studied by Bo)zi�c
and Do)sen �	
���� Do)sen �	
��a�� Sotirov �	
��� and Wolter �	

�c��
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Finally� we can de�ne intuitionistic modal logics with independent � and
�� These are extensions of IntK��� the smallest logic in the language L��
containing both IntK� and IntK�� Fischer Servi �	
��� 	
��� constructed a
logic in NExtIntK�� by imposing a weak connection between the necessity
and possibility operators�

FS � IntK�� ���p� q�� ��p � �q�� ��p� �q�� ��p � q��

A remarkable feature of FS is that the standard translation ST of modal
formulas into �rst order ones �see Correspondence Theory� not only embeds
K into classical predicate logic but also FS into intuitionistic �rst order
logic� � belongs to the former i
 ST ��� is a theorem of the latter� According
to Simpson �	

��� this result was proved by C� Stirling� see also Grefe �	

���
Various extensions of FS were studied by Bull �	
��a�� Ono �	
���� Fischer

Servi �	
��� 	
��� 	
���� Amati and Pirri �	

��� Ewald �	
���� Wolter and
Zakharyaschev �	

�b�� Wolter �	

�c�� The best known one is probably the
logic

MIPC � FS��p � p��p� ��p��p� ��p�
p � �p���p� �p���p� �p

introduced by Prior �	
���� Bull �	
��a� noticed that the translation � de�
�ned by

�pi�
� � Pi�x�� �� � ��

�� $ ��� � �� $ ��� for $ � f�����g�
����� � �x ��� ����� � 	x ��

is an embedding ofMIPC into the monadic fragment of intuitionistic pred�
icate logic� Ono �	
���� Ono and Suzuki �	
���� Suzuki �	

��� and Bezhan�
ishvili �	

�� investigated the relations between logics in NExtMIPC and
superintuitionistic predicate logics induced by that translation�
In what follows we restrict attention only to the classes of intuitionistic

modal logics introduced above� An interesting example of a system not
covered here was constructed by Wijesekera �	

��� A general model theory
for such logics is developed by Sotirov �	
��� and Wolter and Zakharyaschev
�	

�b��
Let us consider �rst the algebraic and relational semantics for the logics

introduced above� All the semantical concepts to be de�ned below turn
out to be natural combinations of the corresponding notions developed for
classical modal and si�logics� For details and proofs we refer the reader to
Wolter and Zakharyaschev �	

�a�b��
From the algebraic point of view� every logic L � NExtIntKM� for M 


f���g� corresponds to the variety of Heyting algebras with one or two
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operators validating L� The variety of algebras for IntKM will be called the
variety of M�algebras�
To construct the relational representations of M�algebras� we de�ne a ��

frame to be a structure of the form hW�R�R�� P i in which hW�R� P i is an
intuitionistic frame� R� a binary relation on W such that

R �R� �R � R�

and P is closed under the operation

�X � fx � W � �y � W �xR�y � y � X�g�

A ��frame has the form hW�R�R�� P i� where hW�R� P i is again an intu�
itionistic frame� R� a binary relation on W satisfying the condition

R�� �R� �R�� � R�

and P is closed under

�X � fx � W � 	y � X xR�yg�

Finally� a ���frame is a structure hW�R�R�� R�� P i the unimodal reducts
hW�R�R�� P i and hW�R�R�� P i of which are �� and ��frames� respec�
tively� �To see why the intuitionistic and modal accessibility relations are
connected by the conditions above the reader can construct in the standard
way the canonical models for the logics under consideration� The important
point here is that we take the Leibnizean de�nition of the truth�relation for
the modal operators� Other de�nitions may impose di
erent connecting
conditions� see below��
Given a ���frame F � hW�R�R�� R�� P i� it is easy to check that its dual

F� � hP������� �����i

is a ���algebra� Conversely� for each ���algebra A � hA������������i
we can de�ne the dual frame

A� � hW�R�R�� R�� P i

by taking hW�R� P i to be the dual of the Heyting algebra hA��������i
and putting

r�R�r� i
 �a � A ��a � r� � a � r���

r�R�r� i
 �a � A �a � r� � �a � r���

A� is a ���frame and� moreover� A �� �A���� Using the standard technique
of the model theory for classical modal and si�logics� one can show that a
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���frame F is isomorphic to its bidual �F��� i
 F � hW�R�R�� R�� P i is
descriptive� i�e�� hW�R� P i is a descriptive intuitionistic frame and� for all
x� y � W �

xR�y i
 �X � P �x � �X � y � X��

xR�y i
 �X � P �y � X � x � �X��
Thus we get the following completeness theorem�

THEOREM ���� Every logic L � NExtIntK�� is characterized by a suit�
able class of �descriptive� ���frames� e�g� by the class fA� � A j� Lg�
Similar results hold for logics in NExtIntK� and NExtIntK��
As usual� by a Kripke frame we understand a frame hW�R�R�� R�� P i

in which P consists of all R�cones� in this case we omit P � An intuition�
istic modal logic L is D�persistent if the underlying Kripke frame of each
descriptive frame for L validates L� For example� FS as well as the logics

L�k� l�m� n� � IntK�� ��k
�
lp� �

m
�
np� for k� l�m� n 
 �

are D�persistent and so Kripke complete �see Wolter and Zakharyaschev
�	

�b��� Descriptive frames validating FS satisfy the conditions

xR�y � 	z �yRz � xR�z � xR�z��

xR�y � 	z �xRz � zR�y � zR�y��

and those for L�k� l�m� n� satisfy

xRk
�
y � xRm

�
y � 	u �yRl

�
u � zRn

�
u��

It follows� in particular� thatMIPC is D�persistent� its Kripke frames have
the properties� R� is a quasi�order� R� � R��

�
and R� � R��R��R��� On

the contrary� I� is not D�persistent� although it is complete with respect to
the class of Kripke frames hW�R�R�i such that hW�R�i is a frame for GL
and R the re�exive closure of R��
The next step in constructing duality theory of M�algebras and M�frames

is to �nd relational counterparts of the algebraic operations of forming ho�
momorphisms� subalgebras and direct products� Let F � hW�R�R�� R�� P i
be a ���frame and V a non�empty subset of W such that

�x � V �y � W �xR�y � xRy � y � V ��

�x � V �y � W �xR�y � 	z � V �xR�z � yRz���

Then G � hV�R � V�R� � V�R� � V� fX � V � X � Pgi is also a ���frame
which is called the subframe of F generated by V � The former of the two
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conditions above is standard� it requires V to be upward closed with respect
to both R and R�� However� the latter one does not imply that V is upward
closed with respect to R�� the frame G in Fig� 	� is a generated subframe
of F� although the set fx� zg is not an R��cone in F� This is one di
erence
from the standard �classical modal or intuitionistic� case� Another one arises
when we de�ne the relational analog of subalgebras�
Given ���frames F � hW�R�R�� R�� P i and G � hV� S� S�� S�� Qi� we

say a map f from W onto V is a reduction of F to G if f���X� � P for
every X � Q and� for all x� y � W and u � V �

xRy implies f�x�Sf�y��

xR�y implies f�x�S�f�y�� for # � f���g�
f�x�Su implies 	z � f���u� xRz�
f�x�S�u implies 	z � f���u� xR�z�
f�x�S�u implies 	z � W �xR�z � uSf�z���

Again� the last condition di
ers from the standard one� given f�x�S�f�y��
in general we do not have a point z such that xR�z and f�y� � f�z�� witness
the map gluing � and 	 in the frame F in Fig� 	� and reducing it to G�
Note that both these concepts coincide with the standard ones in classical

modal frames� where R and S are the diagonals� The relational counterpart
of direct products�disjoint unions of frames�is de�ned as usual�

THEOREM ���� �i� If G is the subframe of a ���frame F generated by V
then the map h de�ned by h�X� � X � V � for X an element in F�� is a
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homomorphism from F� onto G��
�ii� If h is a homomorphism from a ���algebra A onto a ���algebra B

then the map h� de�ned by h��r� � h���r�� r a prime �lter in B� is an
isomorphism from B� onto a generated subframe of A��
�iii� If f is a reduction of a ���frame F to a ���frame G then the map

f� de�ned by f��X� � f���X�� X an element in G�� is an embedding of
G� into F��
�iv� If B is a subalgebra of a ���algebra A then the map f de�ned by

f�r� � r�B� r a prime �lter in A and B the universe of B� is a reduction
of A� to B��

This duality can be used for proving various results on modal de�nability�
For instance� a class C of ���frames is of the form C � fF � F j� �g� for some
set � of L���formulas� i
 C is closed under the formation of generated sub�
frames� reducts� disjoint unions� and both C and its complement are closed
under the operation F "� �F��� �see Wolter and Zakharyaschev �	

�b���
Moreover� one can extend Fine�s Theorem connecting the �rst order de�n�
ability and D�persistence of classical modal logics to the intuitionistic modal
case�

THEOREM ���� If a logic L � NExtIntK�� is characterized by an ele�
mentary class of Kripke frames then L is D�persistent�

These results may be regarded as a justi�cation for the relational seman�
tics introduced in this section� However� it is not the only possible one� For
example� Bo)zi�c and Do)sen �	
��� impose a weaker condition on the con�
nection between R and R� in ��frames� Fisher Servi �	
��� interprets FS
in birelational Kripke frames of the form hW�R� Si in which R is a partial
order� R � S 
 S �R� and

xRy � xSz � 	u �ySu � zRu��

The intuitionistic connectives are interpreted by R and the truth�conditions
for � and � are de�ned as follows

�X � fx � W � �y� z �xRySz � z � Xg�

�X � fx � W � 	y � X xSyg�
In birelational frames forMIPC S is an equivalence relation and

xSyRz � 	u xRuSz�

These frames were independently introduced by L� Esakia who also estab�
lished duality between them and �monadic Heyting algebras��
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There are two ways of investigating various properties of intuitionistic
modal logics� One is to continue extending the classical methods to logics
in NExtIntKM� Another one uses those methods indirectly via embeddings
of intuitionistic modal logics into classical ones� That such embeddings
are possible was noticed by Shehtman �	
�
�� Fischer Servi �	
��� 	
����
and Sotirov �	
���� Our exposition here follows Wolter and Zakharyaschev
�	

�a�b�� For simplicity we con�ne ourselves only to considering the class
NExtIntK� and refer the reader to the cited papers for information about
more general embeddings�
Let T be the translation of L� into L�I� pre�xing �I to every subfor�

mula of a given L��formula� Thus� we are trying to embed intuitionistic
modal logics in NExtIntK� into classical bimodal logics with the necessity
operators �I �of S�� and �� Say that T embeds L � NExtIntK� into
M � NExt�S�&K� �S� in L�I and K in L�� if� for every � � L��

� � L i
 T ��� � M�

In this case M is called a bimodal �or BM�� companion of L�
For every logic M � NExt�S�&K� put

�M � f� � L� � T ��� � Mg�
and let � be the map from NExtIntK� into NExt�S�&K� de�ned by

��IntK� � �� � �Grz &K��mix� T ����

where � 
 L� and mix � �I��Ip � �p� �The axiom mix re�ects the
condition R � R� � R � R� of ��frames�� Then we have the following
extension of the embedding results of Maksimova and Rybakov �	
���� Blok
�	
��� and Esakia �	
�
a�b��

THEOREM ���� �i� The map � is a lattice homomorphism from the lattice
NExt�S� &K� onto NExtIntK� preserving decidability� Kripke complete�
ness� tabularity and the �nite model property�
�ii� Each logic IntK� � � is embedded by T into any logic M in the

interval

�S�&K�� T ��� 
M 
 �Grz &K��mix� T ����

�iii� The map � is an isomorphism from the lattice NExtIntK� onto the
lattice NExt�Grz &K��mix preserving FMP and tabularity�

Note that Fischer Servi �	
��� used another generalization of the G�odel
translation� She de�ned

T ���� � �T ����



ADVANCED MODAL LOGIC ���

T ���� � �I�T ���

and showed that this translation embeds FS into the logic

�S�&K����Ip � �I�p���Ip � �I�p�

It is not clear� however� whether all extensions of FS can be embedded into
classical bimodal logics via this translation�
Let us turn now to completeness theory of intuitionistic modal logics� As

to the standard systems I�� FS� and MIPC� their FMP can be proved
by using �sometimes rather involved� �ltration arguments� see Muravit�
skij �	
�	�� Simpson �	

�� and Grefe �	

��� and Ono �	
���� respectively�
Further results based on the �ltration method were obtained by Sotirov
�	
��� and Ono �	
���� However� in contrast to classical modal logic� only a
few general completeness results covering interesting classes of intuitionistic
modal logics are known� The proofs of the following two theorems are based
on the translation into classical bimodal logics discussed above�

THEOREM ���
 Suppose that a si�logic Int" � has one of the properties�
decidability� Kripke completeness� FMP� Then the logics IntK� � � and
IntK� � ���p � p also have the same property�

Proof It su�ces to show that there is a BM�companion of each of these
systems satisfying the corresponding property� Notice that

���S�� T ����&K� � IntK� � ��
���S�� T ����& �K� �p� p�� � IntK� � ���p � p�

So it remains to use the fact that if Int " � has one of the properties
under consideration then its smallest modal companion S�� T ��� has this
property as well �Table ��� and if L�� L� are unimodal logics having one
of those properties then the fusion L� & L� also enjoys the same property
�Theorem ����� �

Such a simple reduction to known results in classical modal logic is not
available for logics containing IntK�� � IntK� � �p � ��p� However�
by extending Fine�s �	
��� method of maximal points to bimodal compan�
ions of extensions of IntK�� Wolter and Zakharyaschev �	

�a� proved the
following�

THEOREM ���� Suppose L � IntK�� has a D�persistent BM�companion
M � �S�&K���mix whose Kripke frames are closed under the formation
of substructures� Then
�i� for every set � of intuitionistic negation and disjunction free formulas�

L� � has FMP�
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�ii� for every set � of intuitionistic disjunction free formulas and every
n 
 	�

L� ��
n�
i��

�pi �
�
j ��i

pj�

has the �nite model property�

One can use this result to show that the following �and many other�
intuitionistic modal logics enjoy FMP�

�	� IntK���
��� IntS�� � IntK�� ��p � p �R� is re�exive��
��� IntS���� � IntS�� � ���p � q� � ���q � p� �R� is re�exive and

connected��
��� IntK�� � p � ���p �R� is symmetrical��
��� IntK�� ��p � ���p �R� is Euclidean��
��� IntK�� ��p � ��p �xRy � xR�z � yR�z��

We conclude this section with some remarks on lattices of intuitionis�
tic modal logics� Wolter �	

�c� uses duality theory to study splittings of
lattices of intuitionistic modal logics� For example� he showed that each
�nite rooted frame splits NExt�L � ��np � �n��p�� for L � IntK� and
L � FS� and each R��cycle free �nite rooted frame splits the lattices of
extensions of IntK� and FS� No positive results are known� however� for
the lattice NExtIntK�� In fact� the behavior of ��frames is quite di
erent
from that of frames for FS� For instance� in classical modal logic we have
RGF � GRF � for each class of frames �or even ��frames� F � where G and R
are the operations of forming generated subframes and reducts� respectively�
But this does not hold for ��frames� More precisely� there exists a �nite
��frameG such that RGfGg �� GRfGg� In other terms� the variety of modal
algebras for K has the congruence extension property �i�e�� each congruence
of a subalgebra of a modal algebra can be extended to a congruence of the
algebra itself� but this is not the case for the variety of ��algebras�
Vakarelov �	
�	� 	
��� and Wolter �	

�c� investigate how logics having

Int as their non�modal fragment are located in the lattices of intuitionistic
modal logics� It turns out� for instance� that in NExtIntK� the inconsistent
logic has a continuum of immediate predecessors all of which have Int as
their non�modal fragment� but no such logic exists in the lattice of extensions
of IntK��

� ALGORITHMIC PROBLEMS

All algorithmic results considered in the previous sections were positive�
we presented concrete procedures for deciding whether an arbitrary given
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formula belongs to a given logic in some class or whether it axiomatizes
a logic with a certain property� What is the complexity of those decision
algorithms� Do there exist undecidable calculi�� and properties� These are
the main questions we address in this chapter�

��� Undecidable calculi

The �rst undecidable modal and si�calculi were constructed by Thomason
�	
��c� �polymodal and unimodal�� Isard �	
��� �unimodal� and Shehtman
�	
��b� �superintuitionistic�� However� we begin with the very simple exam�
ple of �Shehtman 	
��� which is a modal reformulation of the undecidable
associative calculus T of �Tseitin 	
���� The axioms of T are

ac � ca� ad � da�

bc � cb� bd � db�

edb � be� eca � ae�

abac � abacc�

The reader will notice immediately an analogy between them and the axioms
of the following modal calculus with �ve necessity operators�

L � K� � ����p� ����p�����p � ����p �
����p� ����p�����p � ����p �
������p � ����p�������p � ����p �
��������p � ����������p�

Moreover� it is not hard to see that words x� y in the alphabet fa� b� c� d� eg
are equivalent in T �� i
 f�x�p � f�y�p � K�� where f is the natural
one�to�one correspondence between such words and modalities in language
f��� � � � ���g under which� for instance� f�cadedb� � ������������� It
follows immediately that L is undecidable� Using the undecidable associa�
tive calculus of Matiyasevich �	
���� one can construct in the same way an
undecidable bimodal calculus having three reductions of modalities as its
axioms� It is unknown whether there is an undecidable unimodal calculus
axiomatizable by reductions of modalities�
Thomason�s simulation and the undecidable polymodal calculi mentioned

above provide us with examples of undecidable calculi in NExtK� However�
to �nd axioms of undecidable unimodal calculi with transitive frames� as
well as undecidable si�calculi� a more sophisticated construction is required�

��By a calculus we mean a logic with �nitely many axioms �inference rules in our case
are �xed��

��I�e�� they can be obtained from each other by a �nite number of transformations of
the form w�ww� � w�vw�� where w � v or v � w is an axiom of T �
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Instead of associative calculi� let us use now Minsky machines with two
tapes �or register machines with two registers�� A Minsky machine is a
�nite set �program� of instructions for transforming triples hs�m� ni of nat�
ural numbers� called con�gurations� The intended meaning of the current
con�guration hs�m� ni is as follows� s is the number �label� of the current
machine state and m� n represent the current state of information� Each
instruction has one of the four possible forms�

s � ht� 	� �i � s � ht� �� 	i �

s � ht��	� �i �ht�� �� �i�� s � ht� ���	i �ht�� �� �i��
The last of them� for instance� means� transform hs�m� ni into ht�m� n� 	i
if n � � and into ht��m� ni if n � �� For a Minsky machine P � we shall
write P � hs�m� ni � ht� k� li if starting with hs�m� ni and applying the
instructions in P � in �nitely many steps �possibly� in � steps� we can reach
ht� k� li�
We shall use the well known fact �see e�g� �Mal�cev 	
���� that the fol�

lowing con�guration problem is undecidable� given a program P and con�
�gurations hs�m� ni� ht� k� li� determine whether P � hs�m� ni � ht� k� li�
With every programP and con�guration hs�m� ni we associate the transi�

tive frame F depicted in Fig� 	
� Its points e�t� k� l� represent con�gurations
ht� k� li such that P � hs�m� ni � ht� k� li� e�t� k� l� sees the points a�t � a�k� a�l
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representing the components of ht� k� li� The following variable free formulas
characterize points in F in the sense that each of these formulas� denoted by
Greek letters with subscripts and*or superscripts� is true in F only at the
point denoted by the corresponding Roman letter with the same subscript
and*or superscript�

� � ��� ���� � � ��� � � �� ��� � �����


 � �� ��� � ����� 
� � �
 � ���
� 
� � �
� � ���
��

�� � �� � ���� � ��
� �� � ��� � ����� � ��
�
��� � �� ��
 � ���� � ���
�

��� � ��� ��
� � ����� � ���
��

��� � ��� ��
� � ����� � ���
��

�ij�� � ��
i
j � ����ij �

�
i��k

���k� �

where i � f�� 	� �g� j 
 �� The formulas characterizing e�t� k� l� are denoted
by ��t� ��k� �

�
l �� where

��t� �� �� �
t�

i��

���i � ����t�� ��� � ���� ��� � �����

We require also formulas characterizing not only �xed but arbitrary con�g�
urations�

�� � ���
�
� � ���� � ����� � ����� � p� � ��p��

�� � ��
�
� � ����� � ����� ��p� � ���p��

�� � ���
�
� � ���� � ����� � ����� � p� � ��p��

�� � ��
�
� � ����� � ����� ��p� � ���p��

Now we are fully equipped to simulate the behavior of Minsky machines by
means of modal formulas� Let us consider for simplicity only tense logics
and observe that F satis�es the condition

�x�y	z �xRzR��y � xR��zRy � xRy � xR��y � x � y��

So� for every valuation in F� a formula � is true at some point in F i
 the
formula

#� � ����� ������ ��� ����� � �

is true at all points in F� i�e�� the modal operator # can be understood
as �omniscience�� Let � be a formula which is refuted in F and does not
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contain p� and p�� With each instruction I in P we associate a formula
AxI by taking�

AxI � �� �#��t� ��� ���� �� �#��t�� ��� ���

if I has the form t � ht�� 	� �i�

AxI � �� �#��t� ��� ���� �� �#��t�� ��� ���

if I is t � ht�� �� 	i�

AxI � ��� �#��t� ��� ���� �� �#��t�� ��� ���� �
��� �#���t� ���� ���� �� �#��t��� ���� ����

if I is t � ht���	� �i �ht��� �� �i��

AxI � ��� �#��t� ��� ���� �� �#��t�� ��� ���� �
��� �#��t� ��� �

�
��� �� �#��t��� ��� �����

if I is t � ht�� ���	i �ht��� �� �i�� The formula simulating P as a whole is

AxP �
�
I�P

AxI�

Now� by induction on the length of computations and using the frame F in
Fig� 	
 one can show that for every program P and con�gurations hs�m� ni�
ht� k� li� we have P � hs�m� ni � ht� k� li i


�� �#��s� ��m� �
�
n�� �� �#��t� ��k� �

�
l � � K��t�AxP�

Thus� if the con�guration problem is undecidable for P then the tense
calculus K��t � AxP is undecidable too� In the same manner �but using
somewhat more complicated frames and formulas� one can construct unde�
cidable calculi in NExtK� and even ExtInt� for details consult �Chagrova
	

	� and �Chagrov and Zakharyaschev 	

��� The following table presents
some �quantitative characteristics� of known undecidable calculi in various
classes of logics� Its �rst line� for instance� means that there is an undecid�
able si�calculus with axioms in � variables and the derivability problem in
it is undecidable in the class of formulas in � variables� � means that the
number of variables is optimal� and � indicates that the optimal number is
still unknown�
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The number of variables in
Class of logics undecidable calculi separated formulas

ExtInt � �� 
 � � �
NExtS� � �� 
 � � 	
ExtS� � � � 	

NExtGL � 	 � 	
ExtGL � 	 � 	
ExtS � 	 � 	

NExtK� � 	 � �
ExtK� � 	 � �

These observations follow from �Anderson 	
���� �Chagrov 	

��� �Sobolev
	
��b�� and �Zakharyaschev 	

�a�� Say that a formula � is undecidable in
�N�ExtL if no algorithm can determine for an arbitrary given � whether
� � L"� �respectively� � � L���� For example� formulas in one variable�
the axioms of BWn and BDn are decidable in ExtInt� On the other hand�
there are purely implicative undecidable formulas in ExtInt� and

��p � q� � ���p � q� � ��p � �q� � ���p � �q�
is the shortest known undecidable formula in this class� Here are some modal
examples� the formula ����� � �p � ��p� is undecidable in NExtGL�
�����p � ��������p in ExtS� � in ExtK� and NExtK��t� in NExtK
and NExtK��t undecidable is the conjunction of axioms of any consistent
tabular logic in these classes� However� no non�trivial criteria are known for
a formula to be decidable� it is unclear also whether one can e
ectively
recognize the decidability of formulas in the classes ExtInt� �N�ExtS��
�N�ExtGL� ExtS� �N�ExtK��

��� Admissibility and derivability of inference rules

Another interesting algorithmic problem for a logicL is to determine whether
an arbitrary given inference rule ��� � � � � �n�� is derivable in L� i�e�� � is
derivable in L from the assumptions ��� � � � � �n� and whether it is admissi�
ble in L� i�e�� for every substitution s� �s � L whenever ��s� � � � � �ns � L�
�Note that derivability depends on the postulated inference rules in L�
while admissibility depends only on the set of formulas in L�� Admissible
and derivable rules are used for simplifying the construction of derivations�
Derivable rules� like the well known rule of syllogism

� � �� � � �

� � �
�

may replace some fragments of �xed length in derivations� thereby short�
ening them linearly� Admissible rules in principle may reduce derivations
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more drastically� Since � � L i
 the rule ��� is derivable �or admissible�
in L� the derivability and admissibility problems for inference rules may be
regarded as generalizations of the decidability problem�
If the only postulated rules in L are substitution and modus ponens� the

Deduction Theorem reduces the derivability problem for inference rules in
L to its decidability�

��� � � � � �n
�

is derivable in L i
 �� � � � � � �n � � � L�

However� if the rule of necessitation ���� is also postulated in L� we have
only

��� � � � � �n
�

is derivable in L i
 ��� � � � � �n ��L ��

For n�transitive L this is equivalent to ��n��� � � � ���n�� � � L� and so
the derivability problem for inference rules in n�transitive logics is decidable
i
 the logics themselves are decidable� In general� in view of the existential
quanti�er in Theorem 	�	� the situation is much more complicated�
Notice �rst that similarly to Harrop�s Theorem� a su�cient condition for

the derivability problem to be decidable in a calculus is its global FMP �see
Section 	���� Thus we have

THEOREM ��	 The derivability problem for inference rules in K� T� D�
KB is decidable�

Moreover� sometimes we can obtain an upper bound for the parameter m
in the Deduction Theorem� which also ensures the decidability of the deriv�
ability problem for inference rules� One can prove� for instance� that for K
it is enough to take m � �jSub�
Sub�j� In general� however� the derivability
problem for inference rules in a logic L turns out to be more complex than
the decidability problem for L� �Recall� by the way� that there are logics
with FMP but not global FMP��

THEOREM ��� �Spaan 	

�� There is a decidable calculus in NExtK the
derivability problem for inference rules in which is undecidable�

Spaan proves this result by simulating in ��L� L a decidable logic de�ned
below� the following undecidable tiling problem� given a �nite set of tiles
T � can T tile N ' N� The logic L is surprisingly simple�

L � Alt� �
�

��i��
��pi �

�
��i�j��

���pi � pj��

It is a subframe logic� so it is D�persistent and has FMP �because Alt� 
 L�
see Theorem 	��� and Proposition 	��
�� Note also that the bimodal logic
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Lu �see Section ���� is a complete and elementary subframe logic which
is undecidable because ��L is undecidable� Using this observation one can
construct a unimodal subframe logic in NExtK with the same properties�
Let us turn now to the admissibility problem� It is not hard to see that

the rules

���p � p�� p � �p
�p � ��p and

�p � q � r

��p � q� � ��p � r�

are admissible but not derivable in Int and �p ���p�� is admissible but
not derivable in any extension of S��� save those containing ��p � ��p�
in which it is derivable� �Recall that a logic L is said to be structurally
complete if every admissible inference rule in L is derivable in L� We have
just seen that Int as well as S��� are not structurally complete� For more
information on structural completeness see e�g� �Tsytkin 	
��� 	
��� and
�Rybakov 	

���� The following result strengthens Fine�s �	
�	� Theorem
according to which all logics in ExtS��� are decidable�

THEOREM ��� �Rybakov 	
��a� The admissibility problem for inference
rules is decidable in every logic containing S����

An impetus for investigations of admissible inference rules in various
logics was given by Friedman�s �	
��� problem �� asking whether one can
e
ectively recognize admissible rules in Int� This problem turned out to be
closely connected to the admissibility problem in suitable modal logics� We
demonstrate this below for the logic GL following �Rybakov 	
��� 	
�
��
First we show that dealing with logics in NExtK� it is su�cient to consider

inference rules of a rather special form� Let ��q�� � � � � q�n��� be a formula
containing no � and � and represented in the full disjunctive normal form�
Say that an inference rule is reduced if it has the form

��p�� � � � � pn��p�� � � � ��pn��p��

THEOREM ��� For every rule ��� one can e�ectively construct a reduced
rule ����� such that ��� is admissible in a logic L � NExtK i� ����� is
admissible in L�

Proof Observe �rst that if � and � do not contain p then ��� is admissible
in L i
 � � �� � p��p is admissible in L� So we can consider only rules of
the form ��p�� Besides� without loss of generality we may assume that �
does not contain �� With every non�atomic subformula � of � we associate
the new variable p�� For convenience we also put p� � pi if � � pi and
p� � � if � � �� We show now that the rule
p� �

�
fp� � p�� $ p�� � � � �� $ �� � Sub�� $ � f�����gg ��

fp� � �p�� � � � ��� � Sub�g�p�
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is admissible in L i
 ��p� is admissible in L� For brevity we denote the
antecedent of that rule by ����
��� Since every substitution instance of ����p� is admissible in L� the

rule � �V�� Sub��� � ���p� and so ��p� are also admissible in L�
��� Suppose ��p� is admissible in L and ���s is in L� for some substi�

tution s � f���p� � � � Sub�g� By induction on the construction of �
one can readily show that �� � �s � L� Therefore� �� � �s � L� Since
���s � L� we must have p�s � �� � L� from which �s � L and so p�s � L�
Thus ����p� is admissible in L�
The rule ����p� is not reduced� but it is easy to make it so simply by

representing ��� in its full disjunctive normal form ��� treating subformulas
�pi as variables� �

From now on we will deal with only reduced rules di
erent from ��p�
�which is clearly admissible in any logic�� Let

W
j �j�p� be a reduced rule

in which every disjunct �j is the conjunction of the form

��p� � � � � � �mpm � ���p� � � � � � �m�pm� �	��

where each �i and �j is either blank or �� We will identify such conjunc�
tions with the sets of their conjuncts� Now� given a non�empty set W of
conjunctions of the form �	��� we de�ne a frame F � hW�Ri and a model
M � hF�Vi by taking
�iR�j i
 �k � f�� � � � �mg���pk � �i � ��pk � �j � �pk � �j� �

	k � f�� � � � �mg���pk � �j ��pk � �i��

V�pk� � f�i � W � pk � �ig�
It should be clear that F is �nite� transitive and irre�exive�

THEOREM ��� A reduced rule
W
j �j�p� is not admissible in GL i� there

is a model M � hF�Vi de�ned as above on a set W of conjunctions of the
form ���� and such that
�i� �p� � �i for some �i � W �
�ii� �i j� �i for every �i � W �
�iii� for every antichain a in F there is �j � W such that� for every

k � f�� � � � �mg� �j j� �pk i� �i j� ��pk for some �i � a�
Proof ��� We are given that there are formulas ��� � � � � �m in variables
q�� � � � � qn such that

W
j �

�
j � GL and p�� �� GL� where by �� we de�

note �f���p�� � � � � �m�pmg� This is equivalent to MGL�n� j� Wj �
�
j and

MGL�n� �j� p��� De�ne W to be the set of those disjuncts �j in
W
j �j whose

substitution instances ��j are satis�ed in MGL�n�� Clearly W �� �� Let us
check �i� ! �iii��
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�i� Take a point x in MGL�n� at which p�� is false� Since MGL�n� j�W
j �

�
j � we must have x j� ��i for some i� One of the formulas p

�
� or �p�� is a

conjunct of ��i � Clearly it is not p
�
�� Therefore� �p� � �i�

�ii� It su�ces to show that� for all �i � W and k � f�� � � � �mg� �i j� �pk
i
 �pk � �i� Suppose �i j� �pk� Then there is �j � W such that �iR�j
and �j j� pk� By the de�nition of V and R� this means that pk � �j
and �pk � �i� Conversely� suppose �pk � �i� Then x j� ��i and in
particular x j� �p�k for some x inMGL�n�� Let y be a �nal point in the set
fz � x�� z j� p�kg� Since MGL�n� is irre�exive� we have y j� p�k� y �j� �p�k
and y j� ��j for some �j � W � It follows that �iR�j and �j j� pk� from
which �i j� �pk�
�iii� Let a be an antichain in F� For every �i � a� let xi be a �nal point

in the set fy � WGL�n� � y j� ��i g� It should be clear that the points
fxi � �i � ag form an antichain b in FGL�n� and so� by the construction of
FGL�n�� there is a point y in FGL�n� such that y�� b�� Then the formula
�j � W we are looking for is any one satisfying the condition y j� ��j � as
can be easily checked by a straightforward inspection�

��� The proof in this direction is rather technical� we con�ne ourselves
to just a few remarks� Let M be a model satisfying �i�!�iii�� To prove thatW
j �j�p� is not admissible in GL we require once again the n�universal

modelMGL�n�� but this time we take n to be the number of symbols in the
rule� By induction on the depth of points in M one can show that M is a
generated submodel of MGL�n��

Our aim is to �nd formulas ��� � � � � �m such that MGL�n� j�
W
j �

�
j and

MGL�n� �j� p�� �here again �
� � �f���p�� � � � � �m�pmg�� Loosely� we need

to extend the properties of M to the whole model MGL�n�� To this end
we can take the sets f�ig in FGL�n� and augment them inductively in such
a way that we could embrace all points in FGL�n�� At the induction step
we use the condition �iii�� and the required ��� � � � � �m are constructed with
the help of �i� and �ii�� roughly� they describe in MGL�n� the analogues of

the truth�sets in M of the variables in our rule� �

A remarkable feature of this criterion is that it can be e
ectively checked�
Thus we have

THEOREM ��� There is an algorithm which� given an inference rule� can
decide whether it is admissible in GL�

In a similar way one can prove

THEOREM ��� �Rybakov 	
��� The admissibility problem in Grz is de�
cidable�
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We show now that the admissibility problem in Int can be reduced to
the same problem in Grz and so is also decidable� To this end we require
the following

THEOREM ��� �Rybakov 	
��b� A rule ��� is admissible in Int i� the
rule T ����T ��� is admissible in Grz�

As a consequence of Theorems ��� and ��� we obtain

THEOREM ��
 �Rybakov 	
��b� The admissibility problem in Int is de�
cidable�

Although there are many other examples of logics in which the admis�
sibility problem is decidable and the scheme of establishing decidability is
quite similar to the argument presented above� proofs are rather di�cult
and only in few cases they work for big families of logics as in �Rybakov
	

��� Besides� all these results hold only for extensions of K� and Int�
For logics with non�transitive frames� even for K� the admissibility problem
is still waiting for a solution� The same concerns polymodal� in particular
tense logics� Chagrov �	

�b� constructed a decidable in�nitely axiomatiz�
able logic in NExtK� for which the admissibility problem is undecidable�
It would be of interest to �nd modal and si�calculi of that sort�

A close algorithmic problem for a logic L is to determine� given an ar�
bitrary formula ��p�� � � � � pn�� whether there exist formulas ���� � � � �n such
that ����� � � � � �n� � L� Note that an �equation� ��p�� � � � � pn� has a so�
lution in L i
 the rule ��p�� � � � � pn��� is not admissible in L� This obser�
vation and Theorem ��� provide us with examples of logics in which the
substitution problem is decidable �see e�g� �Rybakov 	

���� We do not
know� however� if there is a logic such that the substitution problem in it is
decidable� while the admissibility one is not�

The inference rules we have dealt with so far were structural in the sense
that they were �closed� under substitution� An interesting example of a
nonstructural rule was considered by Gabbay �	
�	a��

� � ��p � p�� where p �� Sub�
�

�

It is readily seen that this rule holds in a frame F �in the sense that for every
formula � and every variable p not occurring in �� � is valid in F whenever
��p � p� � � is valid in F� i
 F is irre�exive and that K is closed under
it �since K is characterized by the class of irre�exive frames�� We refer the
reader to �Venema 	

	� for more information about rules of this type�
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��� Properties of recursively axiomatizable logics

Dealing with in�nite classes of logics� we can regard questions like �Is a
logic L decidable��� �Does L have FMP��� etc�� as mass algorithmic prob�
lems� But to formulate such problems properly we should decide �rst how
to represent the input data of algorithms recognizing properties of logics�
One can� for instance� consider the class of recursively axiomatizable log�
ics �which� by Craig�s �	
��� Theorem� coincides with that of recursively
enumerable ones� and represent them as programs generating their axioms�
However� this approach turns out to be too general because the following
analog of the Rice!Uspenskij Theorem holds�

THEOREM ��	� �Kuznetsov� No nontrivial property of recursively axiom�
atizable si�logics is decidable�

Of course� nothing will change if we take some other family of logics� say
NExtK�� The proof of this theorem �Kuznetsov left it unpublished� is very
simple� we give it even in a more general form than required�

PROPOSITION ��		 Suppose L� and L� are logics in some family L� L�
is recursively axiomatizable� L� � L�� L� is �nitely axiomatizable �say� by
a formula ��� and a property P holds for only one of L�� L�� Then no
algorithm can recognize P� given a program enumerating axioms of a logic
in L�
Proof Let ��� ��� � � � be a recursive sequence of axioms for L�� Given an
arbitrary �Turing� Minsky� Pascal� etc�� program P having natural numbers
as its input� we de�ne the following recursive sequence of formulas �where
�n�� and �n�� are the �rst and second components of the pair of natural
numbers with code n under some �xed e
ective encoding��

�n �

�
�n if P does not come to a stop on input �n�� in �n�� steps
� otherwise�

This sequence axiomatizes L� if P does not come to a stop on any input and
L� otherwise� It is well known in recursion theory that the halting problem
is undecidable� and so the property P is undecidable in L as well� �

The reader must have already noticed that this proof has nothing to
do with modal and si�logics� it is rather about e
ective computations� To
avoid this unpleasant situation let us con�ne ourselves to the smaller class
of �nitely axiomatizable modal and si�logics and try to �nd algorithms rec�
ognizing properties of the corresponding calculi� However� even in this case
we should be very careful� If arbitrary �nite axiomatizations are allowed
then we come across the following
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THEOREM ��	� �Kuznetsov 	
��� For every �nitely axiomatizable si�logic
L �in particular� Int� Cl� inconsistent logic�� there is no algorithm which�
given an arbitrary �nite list of formulas� can determine whether its closure
under substitution and modus ponens coincides with L�

Needless to say that the same holds for �normal� modal logics as well�
Fortunately� the situation is not so hopeless if we consider �nite axiom�
atizations over some basic logics� For instance� by Makinson�s Theorem�
one can e
ectively recognize� given a formula �� whether the logic K � �
is consistent� Other examples of decidable properties in various lattices of
modal logics were presented in Theorems 	��
� 	�
�� 	�	�	� and ����� In the
next section we consider those properties that turn out to be undecidable
in various classes of modal and si�calculi�

��� Undecidable properties of calculi

The �rst �negative� algorithmic results concerning properties of modal cal�
culi were obtained by Thomason �	
��� who showed that FMP and Kripke
completeness are undecidable in NExtK� and consistency is undecidable in
NExtK�t� Later Thomason�s discovery has been extended to other proper�
ties and narrower classes of logics� In fact� a good many standard properties
of modal and si�calculi �in reasonably big classes� proved to be undecidable�
decidable ones are rather exceptional�

In this section we present three known schemes of proving such kind of
undecidability results� Each of them has its advantages �as well as disad�
vantages� and can be adjusted for various applications� The �rst one is due
to Thomason �	
����

Let L�n� be a recursive sequence of normal bimodal calculi such that no
algorithm can decide� given n� whether L�n� is consistent� Such sequences�
as we shall see a bit later� exist even in NExtK��t� Suppose also that L� is
a normal unimodal calculus which does not have some property� say� FMP�
decidability or Kripke completeness� Consider now the recursive sequence of
logics L�n�&L� with three necessity operators� If L�n� is inconsistent then
the fusion L�n�&L� is inconsistent too and so has the properties mentioned
above� And if L�n� is consistent then� in accordance with Proposition ����
L�n� & L� is a conservative extension of both L�n� and L�� which means
that it is Kripke incomplete� undecidable and does not have FMP whenever
L� is so� Consequently� the three properties under consideration cannot be
decidable in the class NExtK�� for otherwise the consistency of L�n� would
be decidable� By Theorem ��	�� these properties are undecidable in NExtK
as well� Note however that� since Thomason�s simulation embeds polymodal
logics only into �non�transitive� unimodal ones� this very simple scheme
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does not work if we want to investigate algorithmic aspects of properties of
calculi in NExtK� and ExtInt�
To illustrate the second scheme let us recall the construction of the un�

decidable calculus in NExtK��t discussed in Section ��	� First� we choose a
Minsky program P and a con�guration a � hs�m� ni so that no algorithm
can decide� given a con�guration b� whether P � a� b� �That they exist is
shown in �Chagrov 	

�b��� Then we put � � � and add to K��t � AxP
one more axiom

��� �#��s� ��m� �
�
n�� �� �#��t� ��k� �

�
l ��� ��

where c � ht� k� li is an arbitrary �xed con�guration� The resulting calculus
is denoted by L�c�� Suppose that P � a �� c� Then one can readily check
that the new axiom is valid in the frame F shown in Fig� 	
 and prove that
P � hs�m� ni � ht�� k�� l�i i


�� �#��s� ��m� �
�
n�� �� �#��t�� ��k� � �

�
l�� � L�c��

Therefore� L�c� is undecidable� consistent and does not have FMP� And if
P � a� c then L�c� is clearly inconsistent� It follows by the choice of P and
a that consistency� decidability and FMP are undecidable in NExtK��t� In
fact� the argument will change very little if we take as � the axiom of some
tabular logic in NExtK��t� So we obtain

THEOREM ��	� The properties of tabularity and coincidence with an ar�
bitrary �xed tabular logic �in particular� inconsistent� are undecidable in
NExtK��t

Moreover� these results �except the consistency problem� of course� can
be transferred to logics in NExtK� We demonstrate this by an example�
complete proofs can be found in �Chagrov 	

���
We require the frame which results from that in Fig� 	
 by adding to it

a re�exive point c� and an irre�exive one c� so that c� sees all other points
save a and b and is seen itself only from a and b� As before� we denote the
frame by F�

PROPOSITION ��	� Let � be a formula refutable at some point in F dif�
ferent from c� and �� � K � �� Then the problem of deciding� for an
arbitrary formula �� whether K� � � K� � is undecidable�

Proof It should be clear that � contains at least one variable� say r� and
there are points in F at which r has distinct truth�values �under the valua�
tion refuting ��� c� and c� are then the only points in F where the formulas
	� � �

�r � ���r and
	� � �	� � �r ��r ���r� � ��r ���r ����r�
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are true� respectively� Observe that from every point in F save c� we can
reach all points in F by � � steps� So we can take # � ���� The formulas
� and � should be replaced with � � �	� ���	�� � � �	� ����	� which
�under the valuation refuting �� are true only at a and b� respectively� Now
consider the logic

L�c� � K�AxP � ��� �#��s� ��m� �
�
n�� �� �#��t� ��k� �

�
l ��� ��

If P � a� c then L�c� �K� �� And if P � a �� c then� using the fact that
the set of points in F where � is refutable coincides with the set of points
from which every point of the form e�x� y� z� is accessible by three steps�

one can show that F j� L�c� and so L�c� ��K� �� �

Putting� for instance� � � �p � p� we obtain then that the problem of
coincidence with Log� is undecidable in NExtK� Likewise one can prove the
following

THEOREM ��	� �i� If a consistent �nitely axiomatizable logic L is not a
union�splitting of NExtK then the axiomatization problem for L above K is
undecidable�
�ii� The properties of tabularity and coincidence with an arbitrary �xed

consistent tabular logic are undecidable in NExtK�
�iii� The problem of coincidence with an arbitrary �xed consistent calculus

in NExtD� or in NExtGL is undecidable in NExtK�
�iv� The properties of tabularity and coincidence with an arbitrary �xed

tabular �in particular� inconsistent� logic are undecidable in ExtK��

Of the algorithmic problems concerning tabularity that remain open the
most intriguing are undoubtedly the tabularity and local tabularity prob�
lems in NExtK�� Note that a positive solution to the former implies a
positive solution to the latter�
Now we present the second scheme in a more general form used in �Cha�

grov 	

�b� and �Chagrov and Zakharyaschev 	

��� Assume again that the
second con�guration problem is undecidable for P and a� and let � be a
formula such that L��� has some property P � where L� is the minimal logic
in the class under consideration� Associate with P � a and a con�guration
b formulas AxP and ��a� b� such that ��a� b� � L� � AxP i
 P � a � b�
Besides� � and AxP are chosen so that AxP � L� � �� Now consider the
calculus

L�b� � L� �AxP � ��a� b�� �� ��

where � is some formula such that � � L���� If P � a� b then we clearly
have L�b� � L� � � and so L�b� has P � but if P � a �� b then the fact
that L�b� does not have P must be ensured by an appropriate choice of ��
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�In the considerations above we did not need �� i�e�� it was su�cient to put
� � ��� With the help of this scheme one can prove the following
THEOREM ��	� �i� The properties of decidability� Kripke completeness as
well as FMP are undecidable in the classes ExtInt� �N�ExtGrz� �N�ExtGL�
�ii� The interpolation property is undecidable in �N�ExtGL�
�iii� Halld�en completeness is undecidable in ExtInt� �N�ExtGrz� ExtS�

These and some other results of that sort can be found in �Chagrov
	

�b�c� 	

�� 	

��� �Chagrova 	

	�� �Chagrov and Zakharyaschev 	

��
	

�b��
The third scheme was developed in �Chagrova 	
�
� 	

	� and �Chagrov

and Chagrova 	

�� for establishing the undecidability of certain �rst order
properties of modal calculi �or formulas�� The di
erence of this scheme from
the previous one is that now we use calculi of the form

L�b� � L� �AxP � ��a� b� � ��

where AxP satis�es one more condition besides those mentioned above�
it must be �rst order de�nable on Kripke frames for L�� If P � a � b

then the formula AxP � ���a� b� � �� is equivalent to AxP in the class of
Kripke frames for L� and so is �rst order de�nable on that class or its any
subclass� And if P � a �� b then by choosing an appropriate � one can
show that AxP � ���a� b�� �� is not �rst order de�nable on� say� countable
Kripke frames for L�� as in �Chagrova 	
�
�� or on �nite frames for L�� as in
�Chagrov and Chagrova 	

��� In this way the following theorem is proved�

THEOREM ��	� �i� No algorithm is able to recognize the �rst order de�n�
ability of modal formulas on the class of Kripke frames for S� and even the
�rst order de�nability on countable ��nite� Kripke frames for S�� The prop�
erties of �rst order de�nability and de�nability on countable ��nite� Kripke
frames of intuitionistic formulas are undecidable as well�
�ii� The set of modal or intuitionistic formulas that are �rst order de�

�nable on countable ��nite� frames but are not �rst order de�nable on the
class of all �respectively� countable� Kripke frames mentioned in �i� is un�
decidable�

We conclude this section with two remarks� First� all undecidability
results above can be formulated in the stronger form of recursive insepa�
rability� For instance� the set of inconsistent calculi in NExtK��t and the
set of calculi without FMP are recursively inseparable� And second� some
properties are not only undecidable but the families of calculi having them
are not recursively enumerable� for example� the set of consistent calculi in
NExtK��t is not enumerable� However� for the majority of other properties
the problem of enumerability of the corresponding calculi is open�



��� M� ZAKHARYASCHEV� F� WOLTER� AND A� CHAGROV

��� Semantical consequence

So far we have dealt with only syntactical formalizations of logical entail�
ment� However� sometimes a semantical approach is preferable� Say that a
formula � is a semantical consequence of a formula � in a class of frames
C if � is valid in all frames in C validating �� �One can consider also the
local� i�e�� point�wise variant of this relation�� Note that � is a consequence
of � in the class of� say� Kripke frames for S� i
 � is a consequence of
��p � ��p� � ��p � p� � � in the class of all Kripke frames� But the
consequence relation on �nite frames is not expressible by modal formulas
�as was shown in �Chagrov 	

��� if ��p � ��p� � � is valid in arbitrarily
large �nite rooted frames then it is valid in some in�nite rooted frame as
well��
In parallel with constructing and proving the undecidability of modal and

si�calculi we can obtain the following

THEOREM ��	� The semantical consequence relation in the class of all
�K��� S��� Int�� Kripke frames is undecidable� Moreover� if j� denotes one
of these relations then there is a formula � �a formula �� such that the set
f� � � j� �g is undecidable�

In a sense� formulas � and �� for which f� � � j� �g is undecidable are
analogous to undecidable calculi and formulas� respectively� However� this
analogy is far from being perfect� for every formula �� the sets f� � � � �g
and f� � � �� �g are recursively enumerable� which contrasts with

THEOREM ��	
 �Thomason 	
��a� There exists a formula � such that
f� � � j� �g is a complete +�� set�

Unfortunately� Thomason�s �	
��b� 	
��b� 	
��c� results have not been
transferred so far to transitive frames� although this does not seem to be
absolutely impossible�
Chagrov �	

�a� �see also �Chagrov and Chagrova 	

��� developed a tech�

nique for proving the analog of Theorem ��	� for the consequence relation
on all �K��� S��� GL�� Int�� �nite frames� Moreover� since this relation is
clearly enumerable� instead of �undecidable� one can use �not enumerable��

��� Complexity problems

Having proved that a given logic is decidable� we are facing the problem of
�nding an optimal �in one sense or another� decision algorithm for it� The
complexity of decision algorithms for many standard modal and si�logics is
determined by the size of minimal frames separating formulas from those
logics� For instance� as was shown by Ja�skowski �	
��� and McKinsey
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�	
�	�� for every � �� S� �or � �� Int� there is a frame F j� S� with
� �jSub�j points such that F �j� �� The same upper bound is usually
obtained by the standard �ltration� Is it possible to reduce the exponential
upper bound to the polynomial one� This question was raised by Kuznetsov
�	
��� for Int� It turned out� however� that it concerns not only Int� First�
Kuznetsov observed �for the proof see �Kuznetsov 	
�
�� that if the answer
to his question is positive� i�e�� Int has polynomial FMP� then the problem
�Are Int and Cl polynomially equivalent�� has a positive solution as well�
�Logics L� and L� are polynomially equivalent if there are polynomial time
transformations f and g of formulas such that � � L� i
 f��� � L� and
� � L� i
 g��� � L��� Then Statman �	
�
� showed that the problem �� �
Int�� is PSPACE�complete and so Kuznetsov�s problem is equivalent to
one of the �hopeless� complexity problems� namely �NP � PSPACE���

Complexity function

For a logic L with FMP� we introduce the complexity function

fL�n� � max
l����n
���L

min
Fj�L
F�j��

jFj �

where l���� the length of �� is the number of subformulas in � and jFj the
number of points in F� If there is a constant c such that

fL�n� � �c�n �or fL�n� � nc or fL�n� � c � n��
L is said to have the exponential �respectively� polynomial or linear� �nite
model property� The following result shows that Int does not have polyno�
mial FMP�

THEOREM ���� �Zakharyaschev and Popov 	
�
� log� fInt�n� * n�

Proof The exponential upper bound is well known and to establish the
lower one it is su�cient to use the formulas

�n �

n���
i��

���pi�� � qi��� � �pi�� � qi���� qi�� ��p� � q�� � �p� � q���

It is not hard to see that �n �� Int and every refutation frame for �n contains
the full binary tree of depth n as a subframe� �

Likewise the same result can be proved for many other standard super�
intuitionistic and modal logics whose FMP is established by the usual �l�
tration and whose frames contain full binary trees of arbitrary �nite depth�
Such are� for instance� KC� SL� K�� S�� GL� In the case of K the length of
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formulas that play the role of �n is not a linear but a square function of n�
which means that fK�n� 
 �

p
c�n� for some constant c � �� and so K does

not have polynomial FMP either� As was shown in �Zakharyaschev 	

���
all co�nal subframe modal and si�logics have exponential FMP� It seems
plausible that log� fL�n� * n for every consistent si�logic L di
erent from
Cl and axiomatizable by formulas in one variable�
The construction of Theorem ���� does not work for logics whose frames

do not contain arbitrarily large full binary trees� Such are� for instance�
logics of �nite width or of �nite depth� and the following was proved in
�Chagrov 	
����

THEOREM ���	 �i� The minimal logics of width n � � in NExtK�� NExtS��
NExtGrz� NExtGL� ExtInt have polynomial FMP�
�ii� Lin and all logics containing S��� have linear FMP�
�iii� The minimal logics of depth n in NExtGrz� NExtGL� ExtInt have

polynomial FMP� with the power of the corresponding polynomial � n� 	�
�iv� The minimal logics of depth n in NExtK�� NExtS� have polynomial

FMP� with the power of the corresponding polynomial � n�

Proof �i� is proved by two �ltrations� First� with the help of the standard
�ltration one constructs a �nite frame separating a formula � from the given
logic L and then� using the selective �ltration� extracts from it a polynomial
separation frame� it su�ces to take a point refuting � and all maximal
points at which � is false� for some �� � Sub� �in the intuitionistic case
� � � � Sub� should be considered�� �ii� is proved analogously�
To illustrate the proof of �iii� and �iv�� we consider the minimal logic L of

depth � in NExtGL� Suppose � �� L� Then there is a transitive irre�exive
model M of depth � � refuting � at its root r� Let ��i� for 	 � i � m� be
all �boxed� subformulas of �� For every i � f	� � � � �mg� we choose a point
refuting �i� if it exists� And then we do the same in the set x�� for every
chosen point x� Let M� be the submodel formed by the selected points and
r� Clearly� it contains at most 	"m"m� points� And by induction on the
construction of formulas in Sub� one can easily show that M� refutes � at
r�
To prove the lower bound one can use the formulas

�n � ��
n�
i��

��pi�� � pi� �
n�
i��

��qi�� � qi� �
n�
i��

����� ����pi�� � pi�� � ���� �
n�
i��

���qi�� � qi���

which are not in L and every separation frame for which contains the full
n�ary tree of depth �� i�e�� at least 	 " n" n� points� �
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� � �� � � � � � � �� � � � � � � �
a� a� a� an b� b� bf	n


Figure ���

However� even if frames for a logic with FMP do not contain full �nite
binary trees its complexity function can grow very fast� witness the following
result of �Chagrov 	
��a��

THEOREM ���� For every arithmetic function f�n�� there are logics L of
width � in NExtK� and of width � in ExtInt� NExtGrz� NExtGL having
FMP and such that fL�n� 
 f�n��

Proof We construct a logic L � NExtK��� whose complexity function
grows faster than a given increasing arithmetic function f�n�� De�ne L to
be the logic of all frames of the form shown in Fig� ��� To see that L satis�es
the property we need� consider the sequence of formulas

�� � p� � ���p� � ����p � p�� p���

�i�� � pi�� ����pi�� � �i��

Since these formulas are refuted at points of the form aj in su�ciently large
frames depicted in Fig� ��� they are not in L� And since L contains the
formulas

��n � ���f	n
��� ��f	n
���
�n cannot be separated from L by a frame with � f�n� points� �

For logics of �nite depth this theorem does not hold� since according
to the description of �nitely generated universal frames in Section 	��� for
every L � NExtK�BDk �k 
 ��� we have

fL�n� � ��
��
��
c � n

�
k � �

for some constant c � �� And as was shown in �Chagrov 	
��a�� one cannot
in general reduce this upper bound�

THEOREM ���� For every k 
 �� there are logics L of depth k in NExtGrz�
NExtGL� ExtInt such that

fL�n� 
 ��
��
��
n
�

k � �
�
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Proof We illustrate the proof for k � � in NExtGL� Let L be the logic
characterized by the class of rooted frames Fm for GL of depth � de�ned
as follows� Fm contains m dead ends� every non�empty set of them has a
focus� i�e�� a point that sees precisely the dead ends in this set� and besides
the root there are no other points in Fm� It should be clear that L does not
contain the formulas

�m �
n�
i��

��pi�� � pi��
n�
i��

���pi � pi����

On the other hand �n is not refutable in a frame for L with � �m points
because the following formulas are in L�

��m �
�

X�f������mg�X ���
��
�
i�X

�
i �
�

i��X���i�m
��
i��

where 
i � p� � � � � � pi � �pi�� � � � � � �pm��� �

Note� however� that the logics constructed in the proofs of the last two
theorems are not �nitely axiomatizable� We know of only one �very com�
plex� calculus with FMP�

THEOREM ���� log� log� fKP�n� * n�

For the proof see �Chagrov and Zakharyaschev 	

��� where the reader
can �nd also some other results in this direction�

Relation to complexity classes

Let us return to the original problem of optimizing decision algorithms for
the logics under consideration� First of all� it is to be noted that there is
a natural lower bound for decision algorithms which cannot be reduced�
we mean the complexity of decision procedures for Cl� This is clear for
�consistent� modal logics on the classical base� and by Glivenko�s Theorem�
every si�logic �contains� Cl in the form of the negated formulas� Thus�
if we manage to construct an e
ective decision procedure for some of our
logics then Cl can be decided by an equally e
ective algorithm� �We remind
the reader that all existing decision algorithms for Cl require exponential
time �of the number of variables in the tested formulas�� On the other
hand� only polynomial time algorithms are regarded to be acceptable in
complexity theory��
So� when analyzing the complexity of decision algorithms for modal and

si�logics� it is reasonable to compare them with decision algorithms for Cl�
For example� if a logic L is polynomially equivalent to Cl then we can regard
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these two logics to be of the same complexity� Moreover� provided that
somebody �nds a polynomial time decision procedure for Cl� a polynomial
time decision algorithm can be constructed for L as well� The following
theorem lists results obtained by �Ladner 	
���� �Ono and Nakamura 	
����
�Chagrov 	
���� and �Spaan 	

���

THEOREM ���� All logics mentioned in the formulation of Theorem ����
are polynomially equivalent to Cl�

Proof We illustrate the proof only for the minimal logic L of depth � in
NExtGL using the method of �Kuznetsov 	
�
�� Suppose � is a formula
of length n� By Theorem ���	� the condition � �� L means that M �j� ��
for some model M � hF�Vi based on a frame F for GL of depth � � and
cardinality � c � n�� We describe this observation by means of classical
formulas� understanding their variables as follows� Let x� y� z be names
�numbers� of points in F� for 	 � x� y� z � c � n�� With every pair hx� yi of
points in F we associate a variable pxy whose meaning is �x sees y�� And
with every � � Sub� and every x we associate a variable q�x which means
�� is true at x�� Denote by � the conjunction

q�� � q�� � � � � � q�
c�n� �

It means that � is true inM� And let � be the conjunction of the following
formulas under all possible values of their subscripts�

�pxx� pxy � pyz � pxz� q
�x � �q�x �

q���x � q�x � q�x � q���x � q�x � q�x � q��x �
c�n��
y��

�pxy � q�y ��

�The �rst two formulas say that R is irre�exive and transitive and the rest
simulate the truth�relation in M�� Finally� we de�ne a formula saying that
our frame is of depth � ��

� �
�

��x�y�z�u�c�n�
��pxy � pyz � pzu��

The formula ������ is of length� ���c�n��� and can be clearly constructed
by an algorithm working at most linear time of the length of �� It is readily
seen that � �� L i
 ������ is satis�able in Cl� Thus we have polynomially
reduced the derivability problem in L to that in Cl� Since the converse
reduction is trivial� L and Cl are polynomially equivalent� �

The reader must have noticed that Theorem ���� lists almost all logics
known to have polynomial FMP� Kuznetsov �	
��� conjectured that every
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calculus having polynomial FMP is polynomially equivalent to Cl� This
conjecture is closely related to some problems in the complexity theory of
algorithms� We remind the reader that NP is the class of problems that
can be solved by polynomial time algorithms on nondeterministic �Turing�
machines� AnNP �complete problem is a problem inNP to which all other
problems in NP are polynomially reducible� �For more detailed de�nitions
consult �Garey and Johnson 	
�
��� The most popular NP �complete prob�
lem is the satis�ability problem for Boolean formulas� i�e�� the nonderiv�
ability problem for Cl� So the nonderivability problem for all logics listed
Theorem ���� is NP �complete and Kuznetsov�s conjecture is equivalent to
a positive solution to the problem whether the nonderivability problem for
every calculus with polynomial FMP is NP �complete�
Note that if coNP � NP �for the de�nition of the class coNP see

�Garey and Johnson 	
�
�� we just mention that the derivability problem
in Cl is coNP �complete� then Kuznetsov�s conjecture does hold� But
since �coNP � NP �� belongs to the list of �unsolvable� problems un�
der the current state of knowledge� it may be of interest to �nd out whether
Kuznetsov�s conjecture implies coNP �NP �
Another complexity class we consider here is the class PSPACE of

problems that can be solved by polynomial space algorithms� A typical
example of a PSPACE�complete problem is the truth problem for quan�
ti�ed Boolean formulas� The following theorem �which summarizes results
obtained by Ladner �	
���� Statman �	
�
�� Chagrov �	
��a�� Halpern and
Moses �	

�� and Spaan �	

��� lists some PSPACE�complete logics�

THEOREM ���� The nonderivability problem �and so the derivability prob�
lem� in the following logics is PSPACE�complete� Int� KC� K� K&K�
S�� S�& S�� S�& S�� GL� Grz� K�t and K��t�

It follows in particular that complexity is not preserved under the for�
mation of fusions of logics �under the assumption NP �� PSPACE��
since nonderivability in S� is NP �complete� For more information on the
preservation of complexity under fusions consult �Spaan 	

���
Finally we note that the nonderivability problem in logics with the univer�

sal modality or common knowledge operator is mostly even EXPTIME�
complete� witness Ku �Spaan 	

�� and S�EC� �Halpern and Moses 	

���

� APPENDIX

We conclude this chapter with a �by no means complete� list of references for
those directions of research in modal logic that were not considered above�

� Congruential logics� These are modal logics that do not necessar�
ily contain the distribution axiom ��p � q� � ��p � �q� but are
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closed under modus ponens and the congruence rule p � q��p� �q�
Segerberg �	
�	� and Chellas �	
��� de�ne a semantics for these logics�
Lewis �	
��� proves FMP of all congruential non�iterative logics and
Surendonk �	

�� shows that they are canonical� Do)sen �	
��� consid�
ers duality between algebras and neighbourhood frames and Kracht
and Wolter �	

�a� study embeddings into normal bimodal logics�

� Modal logics with graded modalities� The truth�relation for their pos�
sibility operators �n is de�ned as follows� x j� �np i
 there exist at
least n points accessible from x at which p holds� An early reference
is �Fine 	
���� more recent are �van der Hoek 	

�� �applications to
epistemic logic� and �Cerrato 	

�� �FMP and decidability��

� Modal logics with the di�erence operator or with nominals �or names��
The semantics of nominals is similar to that of propositional variables�
the di
erence is that a nominal is true at exactly one point in a frame�
For the di
erence operator ����� we have x j� ����p i
 p is true every�
where except x� De Rijke �	

��� Blackburn �	

�� and Goranko and
Gargov �	

�� study the completeness and expressive power of systems
of that sort� Closely related to the di
erence operator is the modal
operator �i� for inaccessible worlds� x j� �i�p i
 p is true in all worlds
which are not accessible from x� see �Humberstone 	
��� and �Goranko
	

�a��

� Modal logics with dyadic or even polyadic operators� For duality theory
in this case see �Goldblatt 	
�
�� An extensive study of Sahlqvist�
type theorems with applications to polyadic logics is �Venema 	

	��
For connections with the theory of relational algebras see �Mikulas
	

�� and �Marx 	

��� In those dissertations the reader can �nd also
recent results on arrow logic� i�e�� a certain type of polyadic logic which
is interpreted in Kripke frames built from arrows� An embedding
of polyadic logics into polymodal logics is discussed in �Kracht and
Wolter 	

�b��

� Bisimulations� Bisimulations were introduced in modal logic by van
Benthem �	
��� to characterize its expressive power� see also �de Rijke
	

��� Visser �	

�� used bisimulations to prove uniform interpolation�
Recently� bisimulations have attracted attention because they form a
common tool in modal logic and process theory� We refer the reader
to collection �Ponse et al� 	

�� for information on this subject�

� Modal logics with �xed point operators� i�e�� modal logics enriched by
operators forming the least and greatest �xed points of monotone
formulas� These systems are also called modal ��calculi� Under this
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name they were introduced and studied by Kozen �	
��� 	
���� see
also �Walukiewicz 	

�� 	

�� and �Bosangue and Kwiatkowska 	

���

� Proof theory� Early references to studies of sequent calculi and natural
deduction systems for a few modal logics can be found in Basic Modal
Logic� More recently� �non�standard� sequent calculi for modal log�
ics have been considered by Do)sen �	
��b�� Masini �	

�� and Avron
�	

��� see also collection �Wansing 	

�� and the chapter Sequent
systems for modal logics in this Handbook� For natural deduction
systems see Borghuis �	

��� tableau systems for modal and tense
logics were constructed in �Fitting 	
���� �Rautenberg 	
���� �Gore
	

�� and �Kashima 	

��� Orlowska �	

�� develops relational proof
systems� Display calculi for modal logics were introduced by Belnap
�	
���� see also �Wansing 	

�� and collection �Wansing 	

���
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inference rule

admissible� 	�

derivable� 	�


interpolant� �

post�� ��

interpolation property� �

for a consequence relation� ��

intersection of logics� �
intuitionistic frame� 		�
intuitionistic modal frame� 	��
intuitionistic modal logic� 	��

Jankov formula� �


Kreisel!Putnam logic� 	��
Kripke frame� 


L�ob axiom� ��
linear tense logic� 
�
local tabularity� ��
logic of a class of frames� 


Medvedev�s logic� 	��
minimal tense extension� 
�
Minsky machine� 	��
modal companion� 		

modal degree� ��
modal matrix� ��

negative formula� �	
Nishimura formula� 		�

Noetherian frame� ��
nominal� 	��
non�eliminability� ��
non�iterative logic� ��
normal �lter� ��
normal form� ��

open domain� ��� 		�

p�morphism� 		
persistence� 	

polymodal frame� �	
polymodal logic� ��
polynomially equivalent logics� 	�	
positive formula� �	
pretabularity� ��
prime �lter� 		�
prime formula� �
pseudo�Boolean algebra� 			

quasi�normal logic� �


reduced frame� ��
reduction� 		� �	

weak� 	��
re�ned frame� 		
re�ned re�ned� �	
replacement function� 
�
Rieger!Nishimura lattice� 		�
root� 
� �	
rooted frame� 


Sahlqvist formula� ��� ��
Scott logic� 	��
semantical consequence� 	��
si�fragment� 		

si�logic� 			
simulation of a frame� 
�
simulation of a logic� 
�
skeleton� 		�
skeleton lemma� 		�
Smetanich logic� 		�
splitting� 	�



ADVANCED MODAL LOGIC ���

union�� 	�
splitting pair� �
standard translation� ��
strict Kripke completeness� 	�
strict sf�completeness� ��
strong global completeness� ��
strong Kripke completeness� �	
strongly positive formula� ��
structural completeness� 	�	
subframe� ��� ��� ��� �	� 		�

co�nal� ��� ��
generated� 
� �	

subframe formula� ��
subframe logic� ��� ��

quasi�normal� ��
subreduction� ��

co�nal� ��
quasi�� �	
weak� 	��

sum of logics� �
superamalgamability� ��
superintuitionistic logic� 			
surrogate� ��
surrogate frame� 	��

t�line logic� 	��
tabularity� ��
Tarski�s criterion� �
tense frame� 
�
tense logic� 
�
tight frame� 		
time�line� 	��
topological Boolean algebra� 		�

undecidable formula� 	�

uniform formula� ��
uniform interpolation� ��
universal frame of rank n� 	�
universal modality� ��
untied formula� ��
upward closed set� 


weak Kreisel!Putnam formula� 		�
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