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Abstract
This paper gives a solution to the old independent axiomatizability problem by presenting normal modal logics above
K4 and Grz and an intermediate logic without independent axiomatizations. Incidentally Blot's problem is solved: the
lattices of varieties of topological Boolean and pseudo-Boolean algebras are not strongly atomic. We also study the
relationship between independent axiomatizability of intermediate logics and their modal companions above S4.
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1 Introduction

This paper gives a solution to an old problem connected with the efforts to describe the lattices
of all normal modal and intermediate logics. The problem is as follows:

Does every normal modal or intermediate logic have an independent set of adorns?

For intermediate logics it was formulated by A. Tsytkin in [6], Problem 148.
A way to the negative solution to this problem is opened by the following observation in [5],

which is presented here in a form suitable for our purpose:

LEMMA 1.1

Suppose a logic L\ has an independent axiomatization. Then, for every finitely axiomatizable
logic L2 C I i , the interval of logics [Lj.Li] = {L : Lj C L C L\} contains an immediate
predecessor of Li, i.e. a logic L C L\ which has no extension lying properly between L and L\.

PROOF. If L\ is finitely axiomatizable then the existence of an immediate predecessor of L\ in
[L2, Li] follows from Zorn's Lemma.

Suppose now that L\ has an infinite independent set of axioms {ipi : t £ w}. Since Lj is
a finitely axiomatizable sublogic of L\, there is n < u> such that L? is contained in the logic
with the axioms <po,..., tpn. Let L3 be the logic with the axioms <p0,..., <pn, <pn+2, <pn+3,
Since the set of Li's axioms is independent, L2 C £3 C L\ and (pn+i & L3. And now again
Zorn's Lemma provides us with an immediate predecessor of L\ in the interval [L3 ,L\\. I

Thus, to prove that there is a logic without an independent axiomatization it suffices to produce
a finitely axiomatizable logic L3 and its proper extension L\ having no immediate predecessor
in the interval [L2, Li].

A lattice (e.g. the lattice of extensions of a given logic) is called strongly coatomic if its interval
[Lj, Li] with La C Li contains an immediate predecessor of L\. Blok in [1] proved that the
lattice of normal modal logics is not strongly coatomic (more exactly, he showed that the dual
lattice of varieties of modal algebras is not strongly atomic). However, it seems unlikely that in
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the interval [La, L\], constructed by Blok and containing no immediate predecessor of L\, the
logic Z/2 is finitely axiomatizable; in any case its semantic definition involves the set of squares
of natural numbers which can hardly be described by a finite set of axioms.

We will strengthen appropriately Blok's result to construct logics without independent axiom-
atizations lying above K4, S4, Grz and intuitionistic logic, answering incidentally his question
concerning the strong coatomicity of the lattices of intermediate logics and modal logics contain-
ing S4.

2 Preliminaries
We use standard notions and notation in the realm of non-classical logic. Here we mention only
those of them that have variants.

We denote by D+(p, 0+V>, • ' V and Qn<p the formulas cp A Dtp, tp V Of, • . . . Dtp and
n

0 • • • 0 y, respectively; <p{rp/p) means the result of replacement of all occurrences of the variable
n

p in tp with 0 .
All modal logics in this paper, except those in Section 6, are assumed to be normal, i.e.

containing K and closed under modus ponens, substitution and necessitation ip/ D <p. The
smallest normal modal logic to contain a logic L and a set of formulas F is denoted by L © F.
Intermediate logics are consistent extensions of intuitionistic logic Int closed under modus ponens
and substitution. L + F means the closure of the set L U F under the latter two rules.

Let L be a logic and F, A sets of formulas in the language of L. F is said to be an independent
set of axioms for L over A if, for every £ C F, L is the closure of S U A under the postulated
inference rules of L iff E = F. For instance, we can talk about independent axiomatization of an
intermediate logic over Int or that of a modal logic over K. If F is an independent set of axioms
for L over A = 0 then F is called an (absolutely) independent set of axioms for L. A logic L is
independently axiomatizable (over A) if there is an independent set of axioms for L (over A).

It is clear that the following lemma holds.

LEMMA 2.1

If a logic L is independently axiomatizable over a finitely axiomatizable logic then L is absolutely
independently axiomatizable.

As to our semantic apparatus, we use here differentiated general frames. Recall that a general
frame (5, P), where £ = (W, R) is a Kripke frame and P a set of possible values in 5, is
differentiated if, for every two distinct points in W, there is a set in P containing only one of
them. For more information on general frames consult [4], from which it follows in particular
that every normal modal and intermediate logic is characterized by a class of rooted differentiated
general frames.

All our frames are assumed to be transitive. We will define them by drawing diagrams (directed
graphs) in which reflexive and irreflexive points are denoted by o and •, respectively, and, for
distinct points i and y, xRy means that there is a directed path from x to y. We write xRy if
xRy or x = y. So $ = (W, R) is rooted if there is x 6 W such that xRy for every y £ W\ in
this case x is called a root of J-
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FIG. 1.

3 Modal logics above K4

First we give a solution to the independent axiomatizability problem for modal logics containing
K4. Though afterwards stronger results will be obtained, we prefer to begin with logics above
K4 because in this case our construction is more transparent.

We require a number of modal formulas:

a = p A -. 0 p, a' = a(0p/p), a" = a'{0p/p) = a{02p/p),

Oi = a(0*T/p), ai+1 = a ' (0 'T /p) , a i + 2 = a '^O'

Define L2 as

= 0a , A->0 + ai+i,

= Oa,+i A->0+ ai+2,

7 = 0/3' A 0 a " A -. 0 A V = 7(0p/p),

7i+i = 7(0*T/p) = OA+i A 0ai+2 A -i 0 ft,

7t+2 = 7'(0*T/p) = Oft+s A Oa;+3 A -> 0 /?i+i (i > 0).

= K4 © {0x1,0x2,0x3,0x4,0x5.^ : ip S {a,/3,7}},

axl = a0 V O + a i , ax2 = 7 -)• O7, ax3 = 7 ->• O7',

ax4 = 0/3' A Oa" -> O7, ax5.t/> = D+(g -»• -^>) VI

where

It is not hard to verify that L? is consistent Indeed, all its axioms are valid in the frame shown
in Figure 1 with empty V.

Our first goal is to characterize the constitution of rooted differentiated frames for L2. To this
end we require the following substitution instances of its axioms:

ox2.i = 71 -+ Oli = ox2(0 lT/p),
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oxZ.i = ji -> <>7i+i = 0x3(0^/p),

ox4.i = Oft A Oai+i -> Oji = ai4(0'T/p) (t > l),

axb.cn = D+(<7 ->• -iai) V D+(-ig -)• -ia<) = oi5.a(0*T/p),

az5.ft = D+(q -> -ft) V D+(-^ -> -ft) = 0x5.^(0'T/p),

ai5.7,+1 = D+(g -> -.7^+1) V D+(--g -> -Kyi+1) = az5.7(0'T/p), (* > 0).

For each n > 1, by ff (n, V) we denote the rooted subframe of the frame in Figure 1 generated
by On\ 5(1, V) is that frame itself. Here V is a (possibly empty) set of points which see all a^s
and are seen from all ds (as it follows from the diagram, b{S do not see points in V and are not
seen from them); the accessibility relation between points in V is of no concern to us.

Observe that the points Oi, &i+i, Cj+i, for i > 0, are characterized in 5(1> V) by the formulas
<*i, ft+i. 7t+ii respectively, in the sense that under any valuation in 5(1, V) we have:

{x : x\=ai} = {en}, {x: x\= ft+i} = {bi+i}, {x : x \= 7;+i} = {c<+1},

and the points in V are exactly those points in 5(1, V) at which all Oc*iS are true and all 0ft+is
are false, for t > 0.

LEMMA 3.1

Suppose (5, P) is a rooted differentiated frame for La- Then 5 is (isomorphic to) a rooted
generated subframe of 5(1, V), for some V, and {aj}, {£>_,}, {ck} are in P, for all points Oi,bj,
ck in 5.

PROOF. Let z be the root of 5- As was done above, we classify the points in 5 according to which
of the formulas an, ft and fi are true at them.

Say that a point x in 5 is of type Oj (respectively, 6»+i, Cj+i) if a, (respectively, ft+i, 7i+i)
is true at x; x is of type au if x |= 0c*i and x \£ Qft,, for all i > 0, j > 1.

Since (5, f ) (= oi5.aj , 5 contains at most one point of type <n, for each i > 0. Indeed,
suppose there are two distinct points x, y of type a .̂ Since (5, P) is differentiated, there is
X € P such that 1 G X and j / ^ I . Define a valuation 9J in 5 by taking 5J(g) = X. Then
z ^ ax5.ai, which is a contradiction. Likewise, for each t > 1, there are at most one point of
type bi and one point of type Ci.

By the definition of a;, each point x of type Oi, if any, is irreflexive and must see a point of type
aj, for every j < i, and every point accessible from x is of type a,-, for some j < i. Therefore,
in view of their uniqueness, the points of type ai, t > 0, form a descending chain in 5-

By ox3.», each point of type a for i > 1, if any, sees a point of type c,, for every j > i, and,
by the definition of ji, a point of type a,, for every j > 0; besides, by ax2.i and the uniqueness
of points of type Ci, every such point is reflexive.

If some point x in 5 sees a point of type a< and neither sees a point of type Oi+i nor is of type
di+i itself then, by the definition of ft, x is of type 6j. Besides, by axl, ax4.i and the properties
of points of types Cj and a, established above, every point accessible from x is of one of the types
OQ, ..., Oi, bi. It follows in particular that x is reflexive. For if x is irreflexive then either it sees
only points of types OQ, ..., o< and so is of type a;+i itself, contrary to our assumption, or sees
a point of type bi, contrary to the uniqueness of such a point

It should be clear from the arguments above that each point in 5 is of at most one type. We
show now that each point in 5 is of some type indeed.

Let 1 be an arbitrary point in 5- By axl, among the points y such that xRy there is at least
one point of type Oi, for some i > 0. If x sees only finitely many points of type Oi, i > 0, then,
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FIG. 2.

as was established above, x is either of type â  or of type bi, for some i. If x sees points of type
Oi for all i > 0 then we have the following alternatives. First, x sees no point of type bj, for
j > 1, which means that x is of type a^,. Second, x sees a point of type bj, for some j > 1, and
no point of type 6jt. for 0 < fc < j , which means that x of type c,. We have exhausted all the
possibilities, and so each point in 5. in particular z, is of some unique type.

The isomorphism we are after is quite clear now: we map every point of type Ot (respectively,
bi+i, c,+ i) to a, (respectively, 6i+1, c+i ) . The uniqueness of points of types a,, bl+i and Q+I
guarantees that P satisfies the desirable condition. I

Now we are in a position to define L\. Let C\ be the class of all differentiated frames for Lj
whose underlying Kripke frames have the form shown in Figure 2. Since 3(1, 0) f= La and the
frame in Figure 2 with empty V is a generated subframe of J ( l ,0 ) , C\ ^ 0. We define L\ as the
logic characterized by the class C\, i.e. put

Li = \= f}-

LEMMA 3.2

()

(ii) L\ has no immediate predecessor in the interval [Lj, L\].

PROOF, (i) By the definition of L\, we have L? C L\. This inclusion is proper, since -171 G
Lx-W

(ii) Suppose otherwise. LetLbe an immediate predecessor of L\ containing Li. SinceL C Li ,
there exists a rooted differentiated frame (5, Q) such that (5, Q) (= L and (5, Q) ^ Li. On
the other hand, since Lj C L, we have (J, Q) [= Lj and so, by Lemma 3, ($, Q) is of the form
(^(n, V), P) , for some n > 1, ^ and P . Then ->7n £ L; for, as we know, Cn \= 7 n .

Let C be the class of frames containing all the frames in C\ and also the subframe of
(5(n, V), P) generated by Cn+i, and let V be the logic characterized by C. By the defini-
tion, L C i ' C L\. Moreover, (#(n + 1,U),Q) ^ -17,,, for every U and (?, from which
->7n G I-', and c + i =̂ 7n+i, from which ->7n+i 0 -C*', while -T7n+i G Li. Therefore,
J L C L ' C L I , contrary to L being an immediate predecessor of L\. I

As a consequence of Lemmas 1.1 and 3.2 and the fact that L? is finitely axiomatizable we
obtain our main result:

THEOREM 3.3

L\ has no independent axiomatization.

REMARK 3.4

It is worth noting that L\ is recursively axiomatizable. Indeed, using Lemma 3.1 one can readily
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FIG. 3.

prove that
Li =

4 Intermediate logics

Now we show how to modify the construction above in order to obtain much stronger logics
without independent axiomatizations. First we consider intermediate logics.

The construction in Section 3 was based upon the frame in Figure 1 containing the descending
chain OQ, a i , . . . of irreflexive points. We replace it with 'Fine's ladder' (cf. [3], p.26) consisting
of the pairs of reflexive points aj,ao, a}, of,...; see Figure 3 where the points a l j and a2_it for
i = 1,2,3, play an auxiliary role.

Since in the case under consideration variable free formulas are not expressive enough—there
are only two of them (up to equivalence, of course), namely, ± and T—we shall use as a 'starting
formula' the following one:

S = (p -)• q V ->q) V (->p -> q V ->q).

It is not hard to see that a rooted Kripke frame 5 refutes 6 iff it contains a (not necessarily
generated) subframe of the form shown in Figure 4, with a and b having no common successors
in $. Since the frame in Figure 3 contains only one (modulo interchanging superscripts) subframe
of that sort, without loss of generality we may assume that under any valuation refuting 5 in the
frame we have:

a-2 f= P. a - 2 ^ 9 V -q, oL3 |= q,

a ^2 t= "'P. a - 2 V11v -1?. a - 3 N 9-

Now, taking the formulas

a i 3 = p A q -f ±, a l 3 = -*p A q -> ±,

al_2 = p -> q V ->q, a l 2 = -ip -+ q V ->q,

aJ+i = a ? -» aj V a?. , , a?+1 = a,1 -»• a? V oj_i (* > -2) ,

 at C
ornell U

niversity L
ibrary on July 18, 2015

http://logcom
.oxfordjournals.org/

D
ow

nloaded from
 

http://logcom.oxfordjournals.org/


On the Independent Axiomatizability of Modal and Intermediate Logics 293

C 9
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FIG. 4.

. A = a]+1 A a? + 1 -»• a,1 V a? (i > - 3 ) ,
7,+i =&-* pi+i V aJ+ 2 V a?+ 2 (t > 0),

we obtain, under a valuation refuting 8, a classification of points in the frame in Figure 3 similar
to that in Section 3:

{x : x \\f= a]} = {a}}, {x : x | ^ a?} = {a?} (i > -3) ,

\bi\ if i > 1

{x : x y, 7 t } = {c,} (i > 1).

Here x | ^ ip —t tp means a; |= (p and a; ^ V*- I' follows that

{x : aL3-Rx} = { i : a; (= p A g}, {x : a2_3Rx} = {x : i |= ->p A g},

{x : a]Rc} = {x : x (= a ? ^ } , {x : a?flx} = {x : x f= a ^ } (*' > - 2 ) ,

{x : fciilx} = {x : x \=a\Aa]}, {x : btRx} = {x : x (= at-+1 A Q - + 1 A/3I A. . . A/3j_i},

{x : clRx} = {x: x |= T} , {x : c<Ac} = {x : x |= A A . . . A f t - i } (t > 2).

Therefore, every general frame based on this Kripke frame and refuting 8 contains in its set of
possible values the sets generated by each of the points a*-, bk,Q.

hi can be defined now by adding to Int the following axioms, for i = 1,2 and — 3 < j < 1:

Axl.l = ->(aL3 A a l 3 ) V <5,

Axl.2 = (aL2 A a i 2 -»• aL3 V (p A g)) V 6,

Axl.3 = (aL2 A a i 2 -»• a i 3 V (-<p A q)) V (5,

.4x1.4 = (/?_2 A /9_i A A)) V <5,

,4x3 = C2 -> Ci V 8, Ax4 = Ci -»• f?i V 6 V ^2 V J,

where

and 4>((p

= &_x "> €n - l V ^ _ 2 , ^ = ^ n - l "^ ^ - 1 V £n-2 (n > - 1 ) ,

Cn = »/„-! -> T?n V ^ n + 1 V &+1 (U > 1)

is an abbreviation for (r A </?—)• tl>) V (</'—*• r V rp) V (J. The meaning and
purpose of the axioms above are analogous to those of the corresponding axioms in Section 3.
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LEMMA 4.1

Every frame validating 6 is a frame for L?.

PROOF. For each axiom (p of L2, we have 5 -> ip e Int. I

It follows in particular that L2 is consistent.
Given a formula ip, we denote by tp* the result of substituting in (p the formulas a\,af, a}+1,

a? + 1 (t > -3 ) for the variables n , r2, si, s2, respectively. Observe that the formulas £„, £'n,
Vn, Cn are related to a\, a}, Pi, 7, in the following way.

LEMMA 4.2

(i) (£„),* H aJ , + i + 3 6 Int, (&),• <-> o?n+i+3 e Int, forn > - 3 .
(») (»7n)* <+ ̂ n+,+3 G Int, forn > 0.
(iii) (Cn),- <-»• 7n+t+3 € Int, forn > 1.

PROOF, (i) is proved by trivial induction on n; (ii) and (iii) follow from (i). I

REMARK 4.3

If we mean by <p* the result of substituting in (p the formulas a?, a], a?+ 1 , a j + 1 (i > —3) for
fi , r2, Si, Si, respectively, then Lemma4.2 will hold with (i) replaced by
(iv) (£™)* o a 2 + i + 3 e Int, (&),' <-> a^+ i + 3 € Int, forn > - 3 .

As a consequence of Lemma 4.2 and Remark 4.3 we obtain that L^ contains the following
formulas:

Ax3.i=-yi+i -»7iV(S (t > 1),

AxA.i - T i ^ f t V a\+1 V a2
t+1 V 8 (i > 1),

Ax5.a) = 4>(a)) (i = 1,2, j > -3),

5.ft = 0(/?i) (t > 1),

(i > 1).
Note by the way that we do not need any counterparts of the formulas axi and ax2.i from
Section 3, because intuitionistic frames are a priori reflexive.

LEMMA 4.4

If a rooted differentiated frame (£, P) for Li refutes 6 then 5 is (isomorphic to) a generated
subframe of a frame of the form shown in Figure 3, with the sets generated by each of its points
a*, bk, ci belonging to P.

PROOF. The proof is similar to that of Lemma 3.1, so we leave almost all the details to the reader.
The main difference concerns the use of 5.

Suppose # = (W, R) and z is the root of 5 refuting 6 under a valuation 9J of the variables p
and q in (J, P). As was observed above, 5 must contain a subframe shown in Figure 4, with a
and b having no common successors in 5. and

c |H= "-3. d |H= a-3- a r «-2. & \W a l a .

(As in the proof of Lemma 3.1, one might call c, d, a, b points of types a]_3, a l 3 , aLj, a l 2 ,
respectively.)

Let us show first that each point x in £ sees c or d. Indeed, suppose otherwise. Since z \£ 6
and ($, P) \= Axl.l, we have z \= ->(a}_3 A a l 3 ) and sox |£ a ! 3 or x \£ o?_3. Assume
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for definiteness that x ^ aL3 , i.e. there is a point y such that xRy and y \\fc al_3. Since
->xRc, it follows that y / c. Then there is a set X e P such that either y e X, c & X or
y & X, c G X. In the former case, by taking 93(r) = X we obtain that y \\fc r ApAq -t ±
and c |̂ £ p A </ -> r V ±, whence z ^ j4z5.al3 , which is a contradiction. The latter case is
considered analogously.

Thus, 5 has exactly two final points, namely c and d, with x = c whenever i ||£ aL 3 and

x = d whenever x | ^ a i 3 .
Now we show that each point in J different from c and d sees o or 6. Again we prove this by

reductio ad absurdum. Suppose i / c, i / d, ->xRa and ->xRb. As was established above,
xRc or xi?d. Assume for definiteness that xRc. Then x ^ crl3- Besides we have x \£ p Aq,
for otherwise x | ^ a!_3, from which x = a Since z |= .Ail.2, we obtain then either x \fc o}_2

or x \fc a?_2- I" the former case there exists a point y accessible from x such that y ^ a and
y |t^ <*!-2- Choosing a set in P separating y and a, we can prove in the same way as above
that z \fc Ax5.a]_2- The latter case and the case when xRd are considered analogously. Taking
into account the differentiatedness of our frame, we obtain also that {c}, {d} E P, because
{c} — {x : x \= p A q) and {d} = {x : x \= -<p A q}.

Observe that if xRa and -<xRd then x — a. Indeed, since c and d are the only final points
in 3", we have x (= ->-•?. Let us change, if necessary, the valuation 9J in such a way that
5J(p) = QJ(-i-ip). It should be clear that we still have z \£ 6 and besides x \\£ al_2 and
a | ^ aL2- Therefore, in view of (#, P) \= Axb.al_2, we have x = a. Likewise we can show
that if xRb and ->xRc then x = b.

The axioms Axh.al_2 and Axb.o?_2 guarantee that a and b are the only points satisfying
a \\£ a - a an<^ b IV1 Q -2 - respectively.

Let x be a point in 5 different from a, 6, c, d. Then xRa or xRb. Suppose xRa and -<xRb. As
was shown above, i / id and so x \\£ a1_1. And using the axiom j4i5.aLi w e s e e that i is the
only point in 3 with this property. Similarly, if -ixRa and xRb then x is the unique point such
that x | ^ a l l • Finally, if x sees both a and b then x ^ aLj V a?_2 and hence, by AxlA (its
conjunct #2, to be more exact), x\fc a1_1 Aatlt i.e. x sees a point y such that either y | ^ arLi
or y |̂ = a l j and such y is unique.

Since a J= a2_3 and x ^ a l 3 whenever ->aRx, the subset of W generated by a is {x : x\=
a2_z } € P. In the same way one can prove that the subset of W generated by 6 is also in P.

The rest of the proof resembles that of Lemma 3.1. I

Now we define L\ as the intermediate logic characterized by the class of all differentiated
frames validating 6 and all differentiated frames for Li whose underlying Kripke frames have the
form shown in Figure 3, but with the points Cj removed.

LEMMA 4.5

( i ) L a C L i .
(ii) L\ has no immediate predecessor in the interval [Lj, L{\.

PROOF, (i) L? C L\ is a consequence of Lemma 4.1. That this inclusion is proper will follow
from the fact that 71 (E L\ — Li. To establish the latter it suffices to show that the Kripke frame
5 = (W, R) in Figure 3 with V = 0 validates all the axioms of L2. We verify this claim only
for Ax3 and Ax5.&.

Suppose that under some valuation in J we have x ^ £i V 6 and show that x ^ Ca- Since
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"112 "121 "221 "212 t>2111
0 0 0 0

"211

x t* £i, there is a point x' such that xRx' and

x' |= uo, (4.1)

x'fcm, (4-2)
I '^JV^ (4.3)

The latter provides us with points j/i , J/J such that x'Ryi, x'Ry2 and

Vi It* £2, J/2 It* ft-

Clearly, j/i and J/J do not see each other and there are points z n , z u , ZJI , Z22 such that yiRzu,
yiRz2i, for t = 1,2, and

_ 11 / r „, 11 / W _ ( 1 / £ / „ 11 / ^

1̂1 IP1 Si, *12 |p^ ?0» 21 |p" s i , *22 1^ SO*

So there are points " m , "112. "121. "211. "212. "221 such that zuRum, Z12RU121, Z2ii?"2ii»
Z22^"22i1 f°r * = 1,2, and

n / > 11/ ^ / 11/ (•/ 11/ >•/ 11/ >• 11/ ^

" i l l Ir^ SO, "112 |f^ S 1 , "121 IF" S 1, "211 \T~ ^fl, "212 \tr C 1> "221 |p̂ ~ C 1'

.Thefirstand the fourth of these conditions give us points Uini anduani such that u n i i J u n n ,

^ l in it* e~i» ^111 it* e i i -

it follows that J contains a subframe of the form shown in Figure 5 where the points in each

of the following sets are not necessarily distinct:

{"1111^22}, {"211,212}, {"112,"121,^2111}, {"212,"221,^1111}-

Comparing this diagram with J we can conclude that modulo interchanging superscripts one may
assume that, for some i > —3,

{"2i2,"22i,uiin} = {a,-}, {"112,"121,^2111} = {<*<},
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•zu = a<+2, 221 = a?+2 , j/i = aJ+3 , t/2 = a;+3-

Thus, for some t > — 3 and j = 0,1,2,3, we have

from which by induction on j one can show that, for j > — 1,

{x : x | £ &•} = {«S+J+i}, {x : x ^ £•} = {a? + i + 1 } . (4.4)

Immediately from (4.4) we obtain that

{x : x |t& ^ } = {6 i + J + 1 } , {x : x | ^ C,} = {ci+i+i}, (4.5)

where j > - 1 , i + j + 1 > 1, and if i + j + 1 < 0 then

{x : x |t& i,,-} = {x:x\^ Q) = 9.

The conditions (4.1M4-5) show that

--x'itti+i, x'Rbi+2, x'Ral+3, x'Ral+3,

which is possible only if x' = Ci+2. Therefore, we have xRa+2Rci+3, Ci+z | ^ C2 (by (4.5))
and sox ^ C2-

Let us consider now Ax5.& and suppose that under some valuation it is refuted in 3- Using
almost the same argument as above we can establish (4.4). So there is only one point x in 3" such
that x |t^ £2- However, by the refutability of $(£2). we must have two points xi and Xi such
that

It follows that X! / xa, x\ | ^ ^2 and xj \\fc ^2, which is a contradiction.
(ii) is proved in the same way as (ii) in Lemma 3.2. I

As a consequence of Lemmas 4.5 and 1.1 and the fact that Li is finitely axiomatizable, we
obtain

THEOREM 4.6

There is an intermediate logic without an independent axiomatization.

Lemma 4.5 provides us with an interval [L2, L{\ of intermediate logics in which L\ has no
immediate predecessors. This result and the Blok-Esakia Theorem, according to which the
lattices of varieties of pseudo-Boolean (alias Heyting) algebras and Grzegorczyk algebras are
isomorphic, give a solution to Blok's problem in [1]:

THEOREM 4.7

(i) The lattice of varieties of pseudo-Boolean algebras is not strongly atomic.
(ii)Thelatticeof varieties of topological Boolean (and even Grzegorczyk) algebras is not strongly
atomic.

Slightly modifying the construction above one can prove
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THEOREM 4.8

(i) There exists a normal extension of the G6del-L6b provability logic GL = K4 © Q(Op ->
p) —>• Dp without an independent axiomatization.

(ii) The lattice of varieties of diagonalizable algebras is not strongly atomic.

PROOF. The only essential difference from the proof of Theorem 4.6 is that all reflexive circles
o in Figure 3 are replaced with irreflexive bullets • and instead of intuitionistic formulas we use
their modal counterparts in GL (for instance, obtained from them by prefixing D + to their every
subformula). The Kripke frame 3" in Figure 3 (with V = 0) does not validate the Lob axiom.
However, by defining the set of possible values P in J as the family of all finite and cofinite
subsets in 5, we obtain (J, P) (= D(Dp ->• p) -> Dp. I

5 Modal logics above S4

Now we consider the correlation between the independent axiomatizability of intermediate logics
and normal modal logics above S4. We remind the reader that there is a lattice homomorphism p
from the lattice of normal extensions of S4 onto the lattice of extensions of Int, which is defined
as follows: for every normal logic M D S4,

pM = {ip: T<p<E Af},

where T is the Godel translation prefixing D to every subformula of an intuitionistic formula.
The logic M is called a modal companion of pM. The set of all modal companions of an
intermediate logic L = Int + {(/?, : i € /} forms the infinite interval of logics [TL, aL], where

TL = S4 © {T<fi : i € / } C S5,

aL = TL © Grz = rL® D(D(p -> Dp) ->• p) ->• p,

with a being the Blok-Esakia isomorphism between the lattices of extensions of Int and normal
extensions of the Grzegorczyk system Grz mentioned at the end of Section 4. It should be clear
that if M is an immediate predecessor of TL\ in the interval [TLI, TL\] then pM is an immediate
predecessor of L\ in the interval [Z^^i] - (Indeed, by the definition of TLI, we have pM C L\.
And if pM C pM + (f C L\, for some ip, then T(f & M, M © Tip = TL\ and so, since p is a
homomorphism, p(M © T(p) = pM + (p — L\, which is a contradiction.) For more information
on modal companions of intermediate logics and references consult [2].

It follows directly from these facts and Lemma 4.5 that in the intervals [ T L 2 I T L I ] and
[aL^,aLi], where L\ and L2 are the intermediate logics constructed in Section 4, the modal
logics TL\ and oL\ have no immediate predecessors, respectively. Thus we obtain

THEOREM 5.1

There is a normal modal logic in the interval [S4, S5] and a normal logic containing Grz without
independent axiomatizations.

Another consequence of the properties of r and a mentioned above is

THEOREM 5.2

For every intermediate logic L, the following conditions are equivalent:

• L is independently axiomatizable over Int;
• TL is independently axiomatizable over S4;
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• ah is independently axiomatizable over Grz.

The maps p, r and a can be characterized with the help of the modal and intuitionistic
canonical formulas, which are denoted here by a ( J , 3D, X) and 0(3,?D, -L), respectively; for a
brief exposition and further references consult [7] or [2]. Namely, a normal logic M D S4 is a
modal companion of an intermediate logic

L = I n t + {/?(&, 2) i f±): » e / }

iff M can be represented in the form

M = S4 ©{«(£„ £ < , ! ) : i G I) © {a(Gjt <£j,±) : j € J} ,

where each (9 ,̂ for j G J, contains at least one proper cluster, in particular,

rL = S4©{a(S,,2)i,±): i € / } ,

(°°) is the two-point cluster.

THEOREM 5.3

If an intermediate logic L has an infinite independent axiomatization over Int then every logic in
the interval [TL, aL] is independently axiomatizable (over S4).

PROOF. Suppose L = Int + {<pi : i G u;} with independent axioms ipi. According to the
characterization above, every logic M € [TL, aL] can be represented as

M = S 4 © {T<pi : i e u)} © {a(J8t,®i, l ) : i £ w } ,

where each Ji, for i e u , contains a proper cluster. Therefore,

M = S4 © {TV A a(S"<, 2);, 1) : iEu>}.

The latter axiomatization is independent over S4, for otherwise we would have, for some t € u>,

TV; 6 M' = S4 © {TVj A atfj&j, ±) : j € w, j # i}

and hence
' = Int + {v?j : j e w, j ^ t} ,

which is a contradiction. By Lemma 2.1, M is absolutely independently axiomatizable. I

That L in Theorem 5.3 is infinitely independently axiomatizable over Int is essential. For, as
is shown by the following theorem, Int itself has a modal companion without an independent
axiomatization.

THEOREM 5.4

The interval [r lnt , <rlnt] = [S4, Grz] contains a logic without an independent axiomatization.

PROOF. (A sketch.) We point out how to change the proof of Theorem 4.6 in order to obtain the
logic we need.

As a 'starting formula' S, we take a modal formula which is refuted in a rooted Kripke frame
J iff 5 contains a subframe shown in Figure 4, a and b have no common successors in 5 and d
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(or c) is contained either in a proper cluster or in an infinite strictly ascending chain. Besides, in
the frame in Figure 3 we replace a i 3 with the two-point cluster.

Then we construct a finite number of axioms for Li in such a way that the modal counterpart
of Lemma 4.4 holds for every rooted differentiated frame for Li refuting 5. And L\ is defined
as the logic characterized by the class of all differentiated (reflexive) frames validating 6 and all
differentiated frames for Li of the form shown in Figure 3 with a i 3 replaced by the two-point
cluster and the points Cj, i > 1, removed. This class contains all the finite partially ordered
frames (since all of them validate 6) which means that pL\ = Int. The fact that L\ has no
independent axiomatization is proved in the same way as in Sections 3 and 4. I

That the property of independent axiomatizability is not in general preserved while passing from
an intermediate logic to its arbitrary modal companion can hardly be regarded as a great surprise.
Many other properties (such as the decidability, finite model property, Kripke completeness, etc.)
behave in this respect in the same way. What is rather unexpected is that unlike the other 'good'
properties of logics (at least those known to us) the independent axiomatizability is not in general
preserved under the map p.

THEOREM 5.5

There is an independently axiomatizable normal modal logic M D S4 such that pM does not
have an independent axiomatization.

PROOF. We are going to construct an independently axiomatizable modal logic M such that
pM = L\, where L\ is the intermediate logic without an independent axiomatization constructed
in the proof of Theorem 4.6. By the definition of L\ and the proof of Lemma 4.5 (i), each subframe
&i of the frame in Figure 3 generated by fr;, for i 6 w, validates L\ and so each frame fo, which
is obtained from <5, by replacing bi with the two-point cluster is a frame for TL\ . For tGw.we
denote by /?* the formula

T(aJ+1 A a?+1) -> T(a] V a?) V ( • ( • ( r -» Dr) -> r) -+ r),

where a* 's are taken from the proof of Theorem 4.6. It is not hard to verify that Si V1 P* anc '
3 j |= /?*, for every j ^ t. Therefore, the set {/?* : i € u>} is independent over rL\.

Let {<pi : t G w} be a set of axioms for L\ over Int. Then, by defining M as

S4 ®{T(fi: i Gw}0{/3* : iEu>}, (5.1)

we clearly have T I C M C <JL, with

S4 © {Tifi A0* : i e w}

being an independent axiomatization of M. I

REMARK 5.6

It may be of interest that it is impossible to extract an independent set of axioms for M from the
axiomatization (5.1). By using the logic L\ constructed in the proof of Theorem 4.6, it is not
difficult to construct an intermediate logic with the same property.

6 Open problems

We conclude the paper with some questions to which we could not find answers.
The first three questions concern the difference between absolutely independent axiomatizabil-

ity and independent axiomatizability over a finitely axiomatizable logic.
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• Is an absolutely independently axiomatizable logic L\ containing a finitely axiomatizable
logic L2 independently axiomatizable over L?!

• Does the conversion of Lemma 1.1 hold?

• Do Theorems 5.2 and 5.3 hold in the case of absolutely independent axiomatizability?

Our fourth question is connected with the fact that there are two ways of axiomatizing modal
logics, namely, with the rule of necessitation and without it. The results above establish the
existence of modal logics having no independent axiomatizations only of the former kind. In the
proof of Theorem 3.3 the rule of necessitation was used together with the formulas ax3.i, which
can be rewritten as D - ^ + i —• -vyi, to ensure that -17; is in an extension of L? whenever ->~fj
belongs to it, for some j > i. Without this rule the set {~>7i : i > 1} is independent over L?,
and it is not hard to show that L\ = L? + {D+-i7i : i > 1}. In the proof of Theorem 5.1
we used the Blok-Esakia isomorphism between the lattices of intermediate logics and normal
extensions of Grz, with the condition of normality being essential here (for details see [2]).

• Do there exist modal logics having no independent axiomatizations without the postulated
rule of necessitation (for instance, extensions of Solovay's system S)?

One can show, using the mystical part V of the frames in Figure 1 and 3 that all the logics without
independent axiomatizations above have rooted frames of infinite width and depth. Besides, the
frames in Figure 1 and 3 are closely related to the frame which was used in [3] for constructing
an incomplete modal logic. So our three final questions are:

• Do there exist Kripke complete (modal or intermediate) logics without independent axioma-
tizations?

• Do there exist (modal or intermediate) logics without independent axiomatizations but with
the finite model property?

• Do there exist (modal or intermediate) logics of finite width or finite depth without independent
axiomatizations?

(As to the last question, our conjecture is that such logics do not exist.)
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