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The paper discusses methods of constructing the kinetic equation of the technology process. 

The article presents a model of the interaction of objects of labor with technological equipment, which 

is the basis for the derivation of the kinetic equation. To describe the state of the production line 

introduced numerical characteristics. 
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Problem statement and analysis of recent publications 

Modeling complex dynamic production processes is an effective method of research [1,2]. 

One of widespread classes form the production systems, in which character of the observable 

production processes has stochastic nature [2, 3, 4, 5, 6]. Regularities of inherent equilibrium states 

in production systems in many ways similar to those that take place in the physical (thermodynamic) 

systems [7, 8]. They appeared so deep and useful, that were proclaimed as some general principles   

for the thermodynamics and production systems: Le Chatelier-Samuelson, Carnot-Hicks [9]. On the 

basis of the principles of the functioning of modern mass production it can be represented as a 

stochastic process, during which the manufacturing system changes from one state to another [6,10]. 

The production process state is determined by the state of the overall number N of items of work [6]. 

In transition of the object of labor from one state to another, there is a transformation of resources 

(raw material, materials, living labor) in the prepared product as a result of purposeful influence of 

equipment. State j-th object of labor in the phase space will be described by state parameters 

),,...,,...,,( ,,2,1, Ajjjjj SSSSS =


 ),...,,...,,( ,,2,1, Ajjjjj  =


, where ,jS  (USD) value of the 

transferred α - of the technological resource or part thereof for the j-th subject of work,  ,j  (USD / 

hour), the intensity of the transfer value of α - of the resource to the j-th subject of work, Nj 0 , 

A0  [6]. The state of parameters of production process in some moment of time will be defined, 

if the parameters of the state of the object of labor are defined ),,...,,( 11 NNSS 


 and the objective 

function ),,( jjStJ 


 [11,12], and at any other time it is found from the equations of states of objects 

of labor [6,12]. However, if the number of objects of labor N is much greater than unity, then decide 

System of N0 equations second order is practically impossible [13, 14]. The last clarification requires 

a transition from the object-process description (micro-description) to aggregated streaming 

(macroscopic) description with the elements of probabilistic nature. The main difficulty in this 

specification is to highlight the characteristics of the parameters of states [15] objects of labor [1,6], 

which could be measured in the study of the actual production processes [12, 13]. Instead of 

considering the state of the production process with the parameters of the state of the objects of labor 

),,...,,( 11 NNSS 


, we will enter normalized discrete phase function of distribution of number N 

objects of labor in the phase space ),,( St  [6,16]. Each point in the space of states [15, 16, 17] will 

set the state of the object of labor. It is reasonable to expect that at large N ( 10N pc. [18], [13]) 

function is well approximated by a continuous phase distribution function of the objects of labor 

),,( 


St  by the states [6, 16, 19, 20]. If the production system produces the K kinds of products [21, 

p.445], K=10, then it will be required to get a distributing function for every k-th species ),,( 


Stk

, )...1( Kk = . Before considering the multi-axis (multiresource, A0 ) model of the production 

process, in interoperational reserves of which there are parties of K of types of interactive with each 

other and with an equipment wares), we examine patterns of processing batches N objects of the labor 

of one kind )1( N . We suppose that processing occurs over successive the M operations 



generalized production line (fig. 1), )1( M  [23]. The obtained patterns are common for both 

single-threaded and multi-threaded lines with a wide variety of resources [10, 23].   

 

 
Fig. 1. Scheme of flows of objects of labor (m - equipment and -buffer), [23] 

The construction of a kinetic equation of the production system 

We will break up phase space on such number of cells, that sizes of cell = *S  will 

contain into itself the large number of the objects of labor (fig. 2). It is possible to conduct the 

estimation of amount of wares in a cell = *S . For the process, which consists of 100M  

[13], 250M  [23, p.4589], 300M  [21, p. 445] operations with the number of items of work in 

progress 510N  [25], 410N  [13], m-th operation in the reserve contains the average number of 

items of work ( ) 310
N

M . Influence of the number of operations M on the accuracy of calculations 

is investigated in [6, p.23], where an analysis of the calculation results obtained using DES- and PDE-

models for M = 50 ( 410N ), operations with satisfactory accuracy. Along with M=50 a comparative 

analysis is executed for M = 10 operations. It is shown that this amount can be used for a rough 

approximation. Instead of fixing the exact parameters of objects of labor, we will approximately 

describe the state of the production process using the number of objects of labor in cells   with the 

coordinates of the parameters of the object of labor, ],[],,[  ++ jj SSSS  (fig. 2).  

 
Fig. 2. The unit cell of phase technological space. 

If the cell size is small enough, the approximate description will carry the equally detailed 

information as accurate does. For the technological process, consisting of several hundred operations 

it is reasonable to go to the continuous description of the parameters, that describe the operation, 

considering along with [23] the main limit when →N  and the limiting case of 1M . Due to 

the fact that the product of dSt *),,(   is the number of items of work in the cell d  phase space 

with coordinates ],[],,[  ++ jj SSSS , the integration over the volume Ω of the phase 

space (S, μ), gives the total number N of items of work that are in progress [6, 19]: 
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where 𝑆𝑑 (USD) - the cost of the product. The limits of integration S = 0 and dSS =  specify 

the range of change in the coordinates ],0[, dSSS   which determines the position of the object of 

labor along the technological route. We will accept (1) as a condition for the normalization of the 

phase distribution function ),,(  St  items of work over the states [6, 16, 19, 20], which is the law 

of conservation of articles in the production process [6]. We introduce a numerical characteristics 

 


=
0

][),,(* k

k dSt   (2) 

that reflect the essential features of the distribution of the states of the objects of labor that 

are in progress. Features (2) for the distribution function ),,(  St , we will define as moments of k-

th order [20, s.906]. Often the problem can be solved using numerical characteristics, leaving aside 

the laws of distribution. Numerical characteristics and method of moments associated to them play 

an important role in the construction of many of the statistical theory of dynamical systems [6]. 

Essential value in the models of the production process are the zero ),(][][ 00 St = and the first 

),(][][ 11 St =   moments of the distribution function of the states of the objects of labor [19] which 

determine density of distribution on the positions of objects of labor and the rate of processing 

operations on objects of labor [26, c.37]. The change of the distribution function ),,(  St  of the 

states of the of objects of labor is due to the stochastic nature of the interaction of objects with the 

equipment and with each other [23, c.4591]. This interaction is characterized by function ),,( StG  

 ),,(
),,(




StG
dt

Std
=  (3) 

which takes into account spatial layout of equipment the laws of impact of equipment on the 

subject of work for the purpose of transfer of resources and mechanisms of interaction of objects of 

labor with each other. The interaction of objects of labor with each other is determined by the 

processing priorities (processing rules FIFO, LIFO ...), and restrictions on the technological modes. 

The total derivative in (3) means differentiation along the phase trajectory of the object of labor. If 

the motion of the object of labor in the state space is deterministic and defined by the Euler equations 

for the objective function of the production system [11, 12], the equation (3) by virtue of the Liouville 

theorem becomes the identity 0),,( =StG . We write a total derivative ),,(  St  in the form 
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and represent the equation (3) as follows: 
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Equation (5) µ has the averaged intensity of transfer resources on all subjects of labor 𝑑𝛺 in 

the cell with coordinates ],[],,[  ++ jj SSSS  [6]. Replace 
dt

d
 in (5) with the 

equations defining the normative trajectory of the object of labor in the cell d  [6,11,12, 16, 20], 
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where ),(][ 1 St - the pace of processing of objects of labor equipment at the point of the 

technological route with coordinate S. Equation (6) connects the release of products in place 

technological route, specified by the coordinate S and the amount of necessary costs of technological 

resources to transform the object of labor. The ratio of the form (6) which provides the connection 

with the cost of manufacture can be determined as a function of the generalized manufacturing 

equipment located in the designated area of a technological route. The kinetic equation of 

technological process allows us to describe the evolution of the transition state of the production 

process to the equilibrium state: 
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 .0),,()0,,( == SxSx    

The kinetic equation of the form (7) is used in [26] (2003) in the construction of balance 

models of production lines. At the same time the US Ringhofer in the study of the production 

processes of the company "INTEL" got a kinetic equation for quasi-static description of the 

production lines 
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where the coordinates of the phase space x, r - the degree of incompleteness of manufacture 

of the product (corresponding position), and the effective time of processing. Construction of kinetic 

equations is one of the major problems of statistical theory of production lines management systems 

[6,19,28]. The kinetic equation (7), (8) takes on real sense after the establishment of the form of 

function ),,( StG . At motion of the object of labor on a technological route, an equipment has an 

impact on the object of labor, changing it qualitatively and quantitatively. The stochastic process 

impact of equipment on the object of labor is described by a distribution density ),~,,(   St  of a 

random variable  , where 
~ and  - the intensity of the transfer of resources to the object of 

labor before and after exposure [27]. The cross-section random process for regulatory trajectory, that 

characterizes the rate of transfer of resources at time t at the point of a technological route with the 

coordinate S is a random variable [12]  with the distribution density ),~,,(   St . The 

probability that the result of the impact of the equipment on the object of labor the value   would 

be in range );(   d+  is the value   dSt ),~,,( , and the total probability of transition to 

any state is unity:  

 .1),~,,(
0

=


  dSt  (9) 

For regulatory technological trajectory that characterizes the change of state of object of 

labor by treating the transition from one generalized operation to another, the mathematical 

expectation of the intensity of the transfer of resources  for labor can be calculated: 

   =


0

),~,,(* dSt  (10) 

Function ),~,,(   St  is determined by the design and technological documentation or as 

a result of the experimental study [24] the state of object of labor in the transition from one operation 

to another. Fig. 3 shows the experimental technological trajectories )(xT , for a party of 920 subjects 

of work in the phase space (x, r),  



 
Fig. 3. Experimental results [24]: a – trajectory )(xT ; b, c, d - a histogram of the distribution of the 

objects of labor. 

which show the dependence of the total effective processing time of the object of labor from 

the place of treatment in the technological route. Fig. 3 shows the histograms of the distribution of 

the objects of labor on technological positions for different periods of time (b – t = 20, c – t = 30, d – 

t = 40) since the beginning of processing of party of wares. Measurements were carried out on the 

production line for the production of semiconductor products of the company "INTEL" [24] to 

examine the impact of vibrations of the effective time duration of processing on the duration of the 

production cycle. This experimental data is sufficient to construct the table function ),~,,(   St   

which is approximated by a smooth continuous function. At its construction, we consider the 

technological process which consists of a sequence of generalized operations. In the design of 

production lines to provide the required performance are using a series-parallel arrangement of 

generalized items of equipment (fig. 1) [23]. To account for the number of generalized equipment 

within the range of the generalized operation ],[ 1 mm SS − - we introduce the notion of density of 

equipment ),( StPlant  along the technological route ],0[ dS .This is because each generalized 

equipment unit consists of a plurality of sections, modules, components, subassemblies and others 

separately provided parts of common equipment distributed along a path of processing the object of 

labor within the generalized trajectory. The dependence on t in the function ),( StPlant , suggests the 

possibility of changing the amount of equipment in the time interval of the production cycle, for 

example, due to the on / off of reserve equipment units. Then the number of generalized items of 

equipment at time t within the interval of generalized operation ],[ 1 mm SS − (fig.4) can be defined as 
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Fig. 4. The density of the arrangement of equipment 1),,(),,( = mPlantnorm SStSt   

If the m-th generalized operation corresponds to only one generic unit of equipment, 

respectively the integral (11) is equal to one. Often, one generalized equipment can be represented in 

the form of successive modules, each of which in order to improve the performance of the operation 

has the ability to duplicate. Suppose that up within the module is done the ratio 
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  (fig.4) where dSStPlant ),( - the number 

of units of a generalized equipment on the segment ],[ dSSS + . In unit time a volume element 

= *S , ],[],,[  ddSSSS ++ was visited by  dSt **),,(  objects of labor on 

average, which have experienced with the }**),,({*}*),({  dStdSStPlant  acts of impact of 

equipment at the objects of labor. The probability that the result of the impact of the equipment on 

the subject of work value of a random variable µ will be in the range of )~~,~(  d+  there is the value 

 ~*)~,,,( dSt  and the total probability of transition to any state will be. 

 1),~,,(
0

=


dSt   (12) 

Thus, the number of objects of labor that are experienced per unit time the impact of the 

technological equipment and took random value in the range of )~~,~(  d+  is the product of the 

transition probabilities  ~*)~,,,( dSt  on the total number of objects of labor 

 dStdSStPlant **),,(**),( , experienced the impact of the equipment. 

  dStdSStdSt Plant **),,(**),(*~*)~,,,(  (13) 

The distribution density )~,,,(  St  of a random variable µ can be expressed through the 

density distribution ),~,,(   St  of random variables  . With a uniform transfer of resources for 



all mN  objects of labor, are in-process backlog of m-th generalized operation, the random variables 

μ and   associated functional dependence [28, p.783], [29, p.117], [29, p.821]: 

 1* −= mN  (14) 

which assumes a linear law of increasing processing time of the party of objects labor with 

increase of the size of the queue 𝑁𝑚. The distribution density ),~,,(  St  of the random variable μ 

can be written as: 

 )*,~*,,(*),~,,(  mmm NNStNSt =  (15) 

The moments of a random variable µ we write through the moments of a random variable: 

 


===
0

00 1][),~,,(][  dSt  (16) 

  
 

====
0 0

11

0

1
),(][

),(][][
),~,,(

1
),~,,(][

St

St

N
dSt

N
dSt

mm 






  (17) 

 












 +










=== 



2

2
2

0 0

1

2

22

2

1

),(][

),(][

)(

][
),~,,(][














St

St

N
dSt

m

 (18) 

 


==
0

.
)(

][
),~,,(][

k

m

kk

k
N

dSt


  (19) 

where   - is the standard deviation of a random variable  . For many practical cases

1.0...005.0=







 that allows you to record approximately 
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Along with the departure of (13) objects of labor from the volume element ddS *  in the 

element of volume ddS *  objects of labor come from volume ~*ddS  in the amount of: 

  ~*~*)}~,,(**),(**),~,,( dStdSStdSt Plant  (21) 

After the integration of the difference between (13) and (21) over a range of values of ~ , 

we obtain the change in the number of objects of labor in the volume element ddS *  per unit of 

time 
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For brevity we use the notation ),,(  St= , ),(][][ Stkk  = , ),( Stff = ,  

),( StPlantPlant  = . Taking into account (16), equation (23) can be written as: 











−==



+




+







0

*~*)]~,,(*~*),~,,([),,( 






dStStStGf

St
Plant  (24) 

For multidimensional description equation (24) can be written as 
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The most interesting, from a practical point of view, cases the density distribution 

),~,,(  St  does not depend on the status of objects of labor, before exposure to the process 

equipment. Then integration of the right-hand side of (24) leads to a simplification of integro-

differential equations: 
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The conclusions 

Integro-differential equation (24), (26) is a kinetic equation that describes the processing of 

objects of labor during their movement on the technological route, it was first obtained in [26]. In the 

case where the intensity μ is slowly varying with time, const= 0  (quasi-static process), the 

kinetic equation (24) takes the form: 

};*~*)]~,,(*~*),~,,([{**
s

0




−=



+







dStSt

t
Plant ,0),( = Stf

dt

d
 (27) 

which is used in the quasi-static description of the technological process [19,28]. From 

equation constStf ),(  (6) follows ),(][*),(][ 01 StconstSt    , which requires compliance with 

performance proportional to the number of items of work the equipment in its in-process storage. It 

is difficult to realize in practical terms, except for the case of synchronization the equipment 

0),(][ 1 



St

S
 . The kinetic equation of the form (27) can be used to construct models of 

synchronized production lines. It should be noted that the equation 
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the right part of which is constructed using the method of random phases, it was obtained in 

[27, p. 788]. Built on the basis of its balance equations is used to study the synchronized production 

lines for the production of semiconductor products of "INTEL" company. Where ),( rtT  - distribution 

density of the random variable r, ),( rt - the auxiliary phase function [27, p.785]. The right side of 

the kinetic equation (28) in [27, p.788] is written in general terms, it requires further in-depth study 

of the effect as the features of processing technology as well as layouts of components and assemblies 

inside the unit of generalized equipment. 
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