
ISSN 0965�5425, Computational Mathematics and Mathematical Physics, 2011, Vol. 51, No. 6, pp. 919–941. © Pleiades Publishing, Ltd., 2011.
Original Russian Text © A.F. Izmailov, A.L. Pogosyan, 2011, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2011, Vol. 51, No. 6, pp. 983–
1006.

919

1. MATHEMATICAL PROGRAM WITH VANISHING CONSTRAINTS

Consider the mathematical program with vanishing constraints (MPVC)

(1.1)

where f : �
n
  � is a twice differentiable function, while h : �

n
  �

l
, g : �

n
  �

m
, and G, H : �

n
  �

s
 are

twice differentiable mappings. The name introduced in [1] for this class of problems is related to the fol�

lowing fact. Suppose that, for a point x ∈ �
n
, we have Hi(x) > 0 for some index i ∈ {1, 2, …, s}. Then, one

of the conditions for x to be a feasible point of problem (1.1) is that the constraint Gi(x) ≤ 0 must be satis�
fied. However, if Hi(x) = 0, then the inequality Gi(x)Hi(x) ≤ 0 is automatically fulfilled. Thus, the con�
straint Gi(x) ≤ 0 vanishes at such a point x.

Examples of applying MPVCs optimal topology design problems of mechanical structures can be
found in [1, 2].

Let  ∈ �
n
 be a feasible point of problem (1.1). Define the index sets

as well as the further partition of I+ into the subsets

and the partition of I0 into the subsets

f x( ) min, h x( ) 0, g x( ) 0,≤=

Hi x( ) 0, Gi x( )Hi x( ) 0, i≤≥ 1 2 … s,, , ,=

x

Ig Ig x( ) i 1 2 … m gi x( ), , , 0= ={ },= =

I+ I+ x( ) i 1 2 … s Hi x( ), , , 0>={ },= =

I0 I0 x( ) i 1 2 … s Hi x( ), , , 0= ={ },= =

I+0 I+0 x( ) i I+ Gi x( )∈ 0={ },= =

I+– I+– x( ) i I+ Gi x( )∈ 0<{ },= =

I0+ I0+ x( ) i I0 Gi x( )∈ 0>{ },= =
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If I00 = ∅, then we say that the lower�level strict complementarity condition holds at . It was shown in [1]
that, if this (rather stringent) condition is violated, then the constraints of problem (1.1) do not satisfy the
Mangasarian–Fromovitz constraint qualification at the point . This makes MPVCs hard to analyze and
solve numerically. Certain results concerning optimality conditions for MPVCs, their sensitivity, and
numerical methods exploiting their special structure were obtained in [1, 3–9].

Note that, by introducing an extra variable u ∈ �
s
, problem (1.1) can be reduced to the mathematical

program with complementarity constraints (MPCC)

(1.2)

The MPCCs are a relatively well studied class of problems (e.g., see [10–12; 13, Section 4.3]). However,
this reduction increases the dimension of the problem and has additionally the following serious draw�
back: for a given (local) solution  to problem (1.1), the corresponding optimal value of the extra variable
u is not determined uniquely. Moreover, (local) solutions to problem (1.2) cannot be strict; consequently,
no reasonable sufficient optimality conditions can be fulfilled for these solutions, which causes difficulties
for the analysis and numerical solution of such problems. Below, we indicate how this drawback can be
overcome by a special modification of the objective function of problem (1.2).

Let us recall certain concepts and facts from [1, 6, 7]. With a feasible point  of problem (1.1), we asso�
ciate two auxiliary “conventional” mathematical programming problems, namely, the relaxed nonlinear
program (RNLP), which has the form

  (1.3)

and the tightened nonlinear program (TNLP), which has the form

  (1.4)

Here, the symbol yI, where I is a finite set, denotes the subvector of y with the components yi, i ∈ I.
Now, we define the MPVC�Lagrangian of problem (1.1) as

where x ∈ �
n
 and μ = (μh, μg, μH, μG) ∈ �

l
 × �

m
 × �

s
 × �

s
.

A feasible point  of problem (1.1) is called a strongly (weakly) stationary point of this problem if it is a
conventional stationary point of problem (1.3) (respectively, of problem (1.4)). Thus, the weak stationarity

implies the existence of  = ( , , , ) ∈ �
l
 × �

m
 × �

s
 × �

s
 such that

(1.5)

(1.6)

It is such  that are called Lagrange multipliers of problem (1.4). The strong stationarity implies that, in
addition,

(1.7)

In this case,  is called a MPVC�multiplier corresponding to the strongly stationary point .

We say that the MPVC�linear independence constraint qualification is fulfilled at a feasible point  of
problem (1.1) if the gradients

, (1.8)

I00 I00 x( ) i I0 Gi x( )∈ 0={ },= =

I0– I0– x( ) i I0 Gi x( )∈ 0<{ }.= =

x

x

f x( ) min, h x( ) 0, g x( ) 0, G x( ) u– 0,≤ ≤=

H x( ) 0, u 0, Hi x( )ui≥ ≥ 0, i 1 2 … s., , ,= =

x

x

f x( ) min, h x( ) 0, g x( ) 0, HI0+
x( )≤ 0, HI00 I0–∪ x( ) 0, GI+0

x( ) 0,≤≥= =

f x( ) min, h x( ) 0, g x( ) 0, HI0+ I00∪ x( )≤ 0, HI0–
x( ) 0, GI+0 I00∪ x( ) 0.≤≥= =

� x μ,( ) f x( ) μh
h x( ),〈 〉 μg

g x( ),〈 〉 μH
H x( ),〈 〉– μG

G x( ),〈 〉 ,+ + +=

x

μ μh μg μH μG

∂�
∂x
������� x μ,( ) 0,=

μIg

g
0, μ 1 … m, ,{ }\Ig

g≥ 0, μI0–

H
0, μI+

H≥ 0, μI+0 I00∪

G
0, μI+– I0+ I0–∪ ∪

G≥ 0.= = =

μ

μI00

H
0, μI00

G≥ 0.=

μ x

x

hi' x( ), i 1 2 … l, gi' x( ), i Ig, Hi' x( ), i I0, Gi' x( ), i I+0 I00∪∈ ∈ ∈, , ,=
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are linearly independent. Note that this is nothing else than the conventional linear independence con�
straint qualification stated for problem (1.4) at the point . If this condition is fulfilled, then the local solu�
tion  to problem (1.1) is a strongly stationary point of this problem.

In what follows, we also need a slightly weaker constraint qualification for problem (1.1). We say that
the MPVC�strict Mangasarian–Fromovitz constraint qualification is fulfilled at a weakly stationary point 
of this problem if the traditional strict Mangasarian–Fromovitz constraint qualification holds at  for
problem (1.4). This implies the uniqueness of the Lagrange multiplier  that corresponds to  in
problem (1.4). An equivalent form of this condition expressed in terms of derivatives is given in [7].

Below, we use the piecewise second�order sufficient optimality condition

(1.9)

where

This sufficient condition is in a natural way associated with the piecewise second�order necessary optimal�
ity condition. The index 2 symbolizes the fact that, unlike the conventional critical cone of
problem (1.1) at the point , the cone C2 takes into account the second�order information about the
last constraint in (1.1).

2. THE LIFTED MPVC

The reformulation of the MPVC discussed in this section is based on the same idea as the reformulation
of the MPCC proposed in [14] and used in [15].

Namely, consider the set

which is the union of an orthant and a ray. We introduce an extra variable c and, using smooth constraints,

specify a set S in the space �
3
 of the variables (a, b, c) so that the projection of S on the plane (a, b) coin�

cides with D. For instance, this can be done as follows:

Figure 1 shows such a set S (as a mesh) and the corresponding set D.

x
x

x
x

μ x

∂2�

∂x
2

�������� x μ,( )ξ ξ, 0 ξ∀ C2\ 0{ },∈>

C2 C2 x( ) ξ �
n

h' x( )ξ∈ 0 gIg
' x( )ξ 0 HI0+

' x( )ξ,≤, 0 HI00 I0–∪
' x( )ξ 0,≥,= ={= =

GI+0
' x( )ξ 0 Gi' x( ) ξ,〈 〉 Hi' x( ) ξ,〈 〉 0 i I00 f ' x( ) ξ,〈 〉 0≤,∈,≤,≤ }.

x

D a b,( ) �
2

b 0 ab 0≤,≥∈{ },=

S a b c, ,( ) �
3

min 0 c,{ }( )2∈ b a max 0 c,{ }( )2≤,={ }.=

1.0

0.5

0
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Fig. 1.
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For i = 1, 2, …, s, the pair of constraints Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0 can be written as (Hi(x), Gi(x)) ∈ D.
The idea is that the latter constraint can be replaced by the inclusion (Hi(x), Gi(x), yi) ∈ S with an extra
variable yi. The appearance of this variable explains the name a “lifted MPVC” used for the resulting prob�
lem

(2.1)

Here, y ∈ �
s
 is the extra variable. Hereinafter, taking a maximum or a minimum and raising to a power

are understood as component�wise operations.

For a feasible point  of problem (1.1), the constraints of problem (2.1) do not, in general, uniquely
determine the extra variable y. All of its values satisfying the relations

(2.2)

are suitable. Moreover, since y does not appear in the objective function of problem (2.1), relations (2.2)
imply the following: if I0 ≠ ∅, then ( , ) cannot be a strict local solution to (2.1) whatever  is. This
causes difficulties if the lifted problem (2.1) is straightforwardly used for the numerical solution of problem
(1.1).

The reason why the solutions to problem (2.1) cannot be strong may be interpreted in one more way.
Following [14, 15], we construct the lifted problem for MPCC (1.2):

(2.3)

The last constraint yields an explicit expression for u; namely,

(2.4)

If we eliminate u using this expression, then problem (2.3) converts into (2.1). Then, the fact that the local
solutions to MPCC (1.2) are unavoidably non�strict ones implies that the local solutions to problem (2.1)
cannot be strict as well.

To overcome this difficulty, we can associate (1.2) with the problem

(2.5)

where c > 0 is a penalty parameter that takes into account unwanted variations of the variable u.

Proposition 1. Let  be a local solution to the original problem (1.1). For an arbitrary scalar c that satisfies
the inequality

(2.6)

define  ∈ �
s
 as

(2.7)

Then, the point ( , ) is a local solution to problem (2.5).

f x( ) min, h x( ) 0, g x( ) 0,≤=

min 0 y,{ }( )2
H x( )– 0, G x( ) max 0 y,{ }( )2

– 0,≤=

x

yi

= – Hi x( )( )1/2
, i I+,∈

≥ Gi x( )( )1/2
, i I0+,∈

≥ 0, i I00 I0–.∪∈⎩
⎪
⎨
⎪
⎧

x y y

f x( ) min, h x( ) 0, g x( ) 0,≤=

G x( ) u– 0, min 0 y,{ }( )2
H x( )–≤ 0, max 0 y,{ }( )2

u– 0.= =

u max 0 y,{ }( )2
.=

f x( ) ui
2

cui–( ) min, h x( )
i 1=

s

∑+ 0, g x( ) 0, G x( ) u– 0,≤ ≤=

H x( ) 0, u 0, Hi x( )ui≥ ≥ 0, i 1 2 … s,, , ,= =

x

c max 0 2max Gi x( ) i I0+∈{ },{ },>

u

u
0, i I+,∈

c/2, i I0.∈⎩
⎨
⎧

=

x u
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Proof. Suppose that inequality (2.7) is fulfilled and delete from problem (2.5) the constraints that are
known to be inactive at ( , ). Then, using (2.7), we obtain the following “local” version of problem (2.5):

(2.8)

(For every feasible point (x, u) of problem (2.5) that is close to ( , ), the relation  = 0 holds auto�

matically.) Since the constraints of problem (2.8) do not involve u, the minimization over u can be done
independently of x, and the minimum of the corresponding summand in the objective function is attained
at ui =  = c/2, i ∈ I0. This yields the required result. The proposition is proved.

The above proof gives a good reason to expect that, if  is a strict local solution to problem (1.1), then
the element  defined by (2.7) corresponds to the strict local solution ( , ) to problem (2.5).

In view of (2.4), modification (2.5) of MPCC (1.2) corresponds to the following modification of the
lifted problem (2.1):

(2.9)

The following result is an analogue of Proposition 1 for problem (2.9).

Proposition 2. Let  be a local solution to the original problem (1.1). For an arbitrary scalar c that satisfies

inequality (2.6), define  ∈ �
s
 as

(2.10)

Then, ( , ) is a local solution to problem (2.9).

Proof. The argument is entirely analogous to that used in the proof of Proposition 1, the only distinc�
tion being that, instead of (2.8), the following “local” version of problem (2.9) is considered:

. (2.11)

(The components yi (i ∈ I+) are uniquely determined; they are negative and do not affect the value of the
objective function of problem (2.9).) The proposition is proved.

The following example demonstrates the main potential drawback of the approach under discussion;
namely, even if  is a global solution to problem (1.1), the local solution ( , ) to problem (2.9) deter�
mined in accordance with (2.10) may not be a global solution no matter how large the chosen c > 0 is.
Moreover, in this example, the component  of the global solution ( , ) to problem (2.9) is not even a
local solution to problem (1.1). The MPVC�linear independence constraint qualification is fulfilled at the
point , and it is a weakly stationary point; however, it is not strongly stationary.

Example 1. Let n = 2, l = m = 0, s = 1, f(x) =  + (x2 – 1)2, G(x) = x1, and H(x) = x2. The only global

solution to the corresponding problem (1.1) is  = (0, 1), where I+0 = {1}. Formula (2.10) yields  =
⎯(H( ))1/2 = –1; consequently,  fc( , ) = 0 for all c. On the other hand, problem (2.9) has exactly one
additional stationary point ( , ), where  = (0, 0) and  = (c/2)1/2; moreover, this point is a local solu�
tion for all c > 0. Furthermore, for c > 2, we have fc( , ) = 1 + (c/2)2 – c2/2 < 0 = fc( , ). Thus, it is a
point ( , ) that is a global solution to problem (2.9).

Nevertheless, the numerical results presented in Section 5 testify that the approach under discussion is
promising.

x u

f x( ) ui
2

cui–( ) min, h x( )
i I0∈

∑+ 0, g x( ) 0, HI0
x( )≤ 0, GI+0

x( ) 0.≤= =

x u uI+

ui

x
u x u

fc x y,( ) f x( ) max 0 yi,{ }( )4
c max 0 yi,{ }( )2

–( ) min,

i 1=

s

∑+=

h x( ) 0, g x( ) 0, min 0 y,{ }( )2
H x( )–≤ 0, G x( ) max 0 y,{ }( )2

– 0.≤= =

x

y

yi

Hi x( )( )1/2
, i– I+,∈

c/2( )1/2
, i I0.∈⎩

⎨
⎧

=

x y

f x( ) yi
4

cyi
2

–( ) min, h x( )
i I0∈

∑+ 0, g x( ) 0, –HI0
x( )≤ 0, GI+0

x( ) 0≤= =

x x y

x̃ x̃ ỹ

x̃

x1
2

x y
x x y

x̃ ỹ x̃ ỹ
x̃ ỹ x y

x̃ ỹ
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To continue the analysis of the links between problems (1.1) and (2.9), we write the Lagrangian func�
tion of the latter problem:

Here, x ∈ �
n
, y ∈ �

s
, and λ = (λh, λg, λH, λG) ∈ �

l
 × �

m
 × �

s
 × �

s
. Now, we have

(2.12)

(2.13)

Proposition 3. Let  be a feasible point of problem (1.1).
Then, the following assertions are valid for an arbitrary scalar c that satisfies inequality (2.6):

(1) Let  be a weakly stationary point of problem (1.1), and let  be a corresponding Lagrange multiplier
of problem (1.4). Let J ⊂ I00 ∪ I0– be an arbitrary index set such that

(2.14)

Then, the point ( , yJ), where the vector yJ ∈ �
s
 has the components

(2.15)

is a stationary point of problem (2.9) with  =  as a corresponding Lagrange multiplier.

(2) Let  be a strongly stationary point of problem (1.1), and let  be a corresponding MPVC�multiplier.
Then, ( , y) is a stationary point of problem (2.9) if and only if y = yJ for some set J ⊂ I00 ∪ I0–. Moreover,

for all of these stationary points, a corresponding Lagrange multiplier is  = .

(3) Let ( , y) be a stationary point of problem (2.9), and let  be a corresponding Lagrange multiplier.

Then, y = yJ for some set J ⊂ I00 ∪ I0–, and  =  satisfies relation (1.5), as well as relations (1.6) with the

possible exception of the inequality  ≥ 0.

(4) If J ⊂ I00 ∪ I0– and J ≠ ∅, then ( , yJ) is not even a local solution to problem (2.9).
Proof. It follows from (2.12) and (2.13) that the Karush–Kuhn–Tucker system (the KKT system),

which characterizes the stationary points of problem (2.9) and the corresponding Lagrange multipliers,
has the form

(2.16)

Lc x y λ, ,( ) f x( ) max 0 yi,{ }( )4
c max 0 yi,{ }( )2

–( )
i 1=

s

∑+=

+ λh
h x( ),〈 〉 λg

g x( ),〈 〉 λH
min 0 y,{ }( )2

H x( )–,〈 〉 λG
G x( ) max 0 y,{ }( )2

–,〈 〉 .+ + +

∂Lc

∂x
������� x y λ, ,( ) ∂�

∂x
������� x λ,( ),=

∂Lc

∂yi

������� x y λ, ,( ) 4 max 0 yi,{ }( )3
2cmax 0 yi,{ }– 2λi

H
min 0 yi,{ } 2λi

G
max 0 yi,{ },–+=

i 1 2 … s., , ,=

x

x μ

J i I00 μi
G

0>∈{ }.⊃

x

yi
J

Hi x( )( )1/2
, i– I+,∈

c/2( )1/2
, i I0+ I00 I0–∪( )\J( ),∪∈

0, i J,∈⎩
⎪
⎨
⎪
⎧

=

λ μ

x μ
x

λ μ

x λ

μ λ

μI0–

H

x

∂�
∂x
������� x λ,( ) 0,=

2 max 0 yi,{ }( )3
c max 0 yi,{ }( )– λi

H
min 0 yi,{ } λi

G
max 0 yi,{ }–+ 0, i 1 2 … s,, , ,= =

h x( ) 0,=

λg
0, g x( ) 0, λg

g x( ),〈 〉≤≥ 0,=

min 0 y,{ }( )2
H x( )– 0,=

λG
0, G x( ) max 0 y,{ }( )2

– 0, λG
G x( ) max 0 y,{ }( )2

–,〈 〉≤≥ 0.=
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In view of (2.6), for x = , this system converts into the system

(2.17)

If J ⊂ I00 ∪ I0– satisfies condition (2.14), then relations (1.5) and (1.6) imply that, for yJ specified by
(2.15), the pair (y, λ) = (yJ, ) satisfies system (2.17). This proves assertion (1).

Now, assume that  is a strongly stationary point of problem (1.1) and  is a corresponding MPVC�
multiplier. Using additionally relations (1.7), we conclude that, for yJ specified by (2.15), the pair (y, λ) =

(yJ, ) satisfies system (2.17) for all sets J ⊂ I00 ∪ I0–. On the other hand, assume that a pair (y, λ) ∈ �
s
 ×

(�
l
 × �

m
 × �

s
 × �

s
) satisfies (2.17). Then, setting

we obtain y = yJ. This proves assertions (2) and (3).

Finally, let j ∈ J ⊂ I00 ∪ I0–. For every t > 0, define the element y(t) ∈ �
s
 as follows: yi(t) =  (i ∈ {1,

2, …, s}\{ j}), yj(t) = t > 0 = . Then, ( , y(t)) is a feasible point of problem (2.9); moreover,

for all sufficiently small t > 0. Thus, ( , yJ) cannot be a local solution to problem (2.9), which justifies
assertion (4). The proposition is proved.

In Example 1, the point  = (0, 0), which corresponds to a global solution to problem (2.9), is at least
a weakly (though not strongly) stationary point of problem (1.1). The following example shows that, for a
stationary point ( , ) of problem (2.9), its component  may even not be a weakly stationary point for
problem (1.1).

Example 2. Let n = 2, l = m = 0, s = 1, f(x) = (x1 + 1)2 + (x2 – 1)2, G(x) = x1, and H(x) = x2. Consider
the point  = (–1, 0) for which I0– = {1}. This is not a weakly stationary point for problem (1.1) because

relation (1.5) is satisfied only by  = –2 < 0 and  = 0; thus, the condition  ≥ 0 in (1.6) is violated.

However, the corresponding lifted problem (2.9), that is, the problem

has the stationary points ( , ) and ( , ), where  = 0 and  = (c/2)1/2; moreover,  = , and

= . Furthermore, for c ≥ 2, the point ( , ) is a global solution to problem (2.9). (For 0 < c ≤ 2,
this problem has a different global solution ( , ), where  = (–1, 1) is a global solution to problem (1.1)
and  = –1.)

Thus, problem (2.9) can have parasitic stationary points ( , ) some of which may be its local (or even
global) solutions. Note, however, that, by assertion (3) of Proposition 3, the corresponding points  satisfy

a condition that is only slightly weaker than weak stationarity (only the inequality  ≥ 0 in (1.6) is vio�

x

∂�
∂x
������� x λ,( ) 0,=

yI+
HI+

x( )( )1/2
,–=

yi c/2( )1/2
, i I0+, yi 2yi

2
c– λi

G
–( )∈ 0, i I00, yi 2yi

2
c–( )∈ 0, i I0–,∈= = =

λIg

g
0, λ 1 … m, ,{ }\Ig

g≥ 0,=

λI+

H
0, λI+0

G
0, λI+– I0+ I0–∪ ∪

G≥ 0,= =

λI00

G
0, yI00

0, λI00

G
yI00

,〈 〉≥ ≥ 0.=

μ

x μ

μ

J i I00 I0– yi∪∈ 0={ },=

yi
J

yj
J

x

fc x y t( ),( ) fc x y
J,( )– yj t( )( )4

c yj t( )( )2
– t

4
ct

2
– 0<= =

x

x̃

x y x

x

μH μG μI0–

H

fc x y,( ) x1 1+( )2
x2 1–( )2

max 0 y,{ }( )4
c max 0 y,{ }( )2

min,–+ +=

min 0 y,{ }( )2
x2– 0, x1 max 0 y,{ }( )2

– 0≤=

x y
1

x y
2

y
1

y
2 λ

H
μH

λ
G

μG
x y

2

x̃ ỹ x̃
ỹ

x y
x

μI0–

H
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lated). In fact, weak stationarity is here a fairly strong concept of stationarity (see [9]). It is also clear that
one cannot hope for more by transiting to a lifted problem.

3. SEMISMOOTH SEQUENTIAL QUADRATIC PROGRAMMING 
METHOD FOR THE LIFTED MPVC

To solve problem (2.9), we propose the following variant of the sequential quadratic programming

(SQP) method. Let (xk, yk, λk) be the current approximation. Here, xk ∈ �
n
, yk ∈ �

s
, and λk = ((λh)k, (λg)k,

(λH)k, (λG)k) ∈ �
l
 × �

m
 × �

s
 × �

s
. The next primal approximation (xk + 1, yk + 1) ∈ �

n
 × �

s
 is sought as a

stationary point of the quadratic program

(3.1)

while the next dual approximation λk + 1 ∈ �
l
 × �

m
 × �

s
 × �

s
 is sought as the Lagrange multiplier corre�

sponding to this stationary point. Here, �k is a symmetric (n + s) × (n + s) matrix, and, for y ∈ �
s
, we set

where, for every z ∈ �
s
, the symbol diag(z) denotes the diagonal s × s matrix with z on the principal diag�

onal. Observe that

In the basic sequential quadratic programming method (see [16, Section 4.4]), �k is chosen as the
Hessian matrix of the Lagrangian function of a problem to be solved. However, in the case under discus�
sion, such a choice is impossible because both the objective function and the constraints of problem (2.9)
can only once be differentiated. On the other hand, for this problem, the derivatives of the objective func�
tion and the constraints are semismooth functions. Consequently, instead of the basic choice of �k, we
use the rule

where the expression on the right�hand side is the so�called B�differential of the gradient mapping

(x, y) (x, y, λk) : �
n
 × �

s
  �

n
 × �

s
 (the definitions of the semismoothness and B�differen�

tial can be found, for instance, in [16, Section 4.5]). Methods of this type as applied to mathematical pro�
grams with equality constraints (in particular, to lifted mathematical programs with complementary
constraints) were studied in [17, 18], as well as in a recent report [19]. In the case under discussion, the
B�differential can be calculated explicitly using (2.12) and (2.13). It consists of the matrices

(3.2)

where, for y ∈ �
s
 and λ ∈ �

l
 × �

m
 × �

s
 × �

s
, we set
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(3.4)

The situation is simpler when the local behavior of the above semismooth SQP method is analyzed
because it reduces to the conventional SQP method. Let  be a strongly stationary point of problem (1.1),

and let  = ( , , , ) be the corresponding MPVC�multiplier. Define  according to (2.10). If

the element yk ∈ �
s
 is close to , then (3.4) implies the equality

(3.5)

In view of (3.2) and (3.3), iterative subproblem (3.1) is identical to an iterative subproblem of the basic
SQP method as applied to the problem

(3.6)

where both the objective function and the constraints are twice differentiable. The constraint  –

(x) = 0 is only needed to determine the components yi (i ∈ I+), which do not appear at any other place

in problem (3.6). Consequently, this constraint can be dropped, as is the case with the corresponding lin�
earized constraint in a subproblem of the SQP method. If, in addition, we drop the constraints of problem
(3.6) that are known to be inactive at the point ( , ), then problem (2.11) used in the proof of Proposi�
tion 2 is obtained. The above analysis implies the following: for the method under discussion, the local
superlinear convergence to the stationary point ( , ) of problem (2.9) and the corresponding Lagrange
multiplier  (see assertion (2) in Proposition 3) can be justified under the same assumptions as the local
superlinear convergence of the basic SQP method to the stationary point ( , ) of problem (2.11) and

the corresponding Lagrange multiplier ( , , , ).

The weakest conditions of this sort were obtained in [20]. In addition to the continuity of the second
derivatives of the objective function and the constraints at the desired stationary point, they include the
strict Mangasarian–Fromovitz constraint qualification and the second�order sufficient optimality condi�
tion. For problem (2.11), the first of these conditions amounts to the uniqueness of the Lagrange multi�

plier ( , , , ) that corresponds to the stationary point ( , ). This condition is certainly ful�

filled automatically if the gradients

(3.7)

are linearly independent.

Proposition 4. Let  be a strongly stationary point of problem (1.1). Assume that the scalar c satisfies ine�
quality (2.6), while  is specified in accordance with (2.10).

Then, the following assertions are valid:

(1) Suppose that the MPVC�linear independence constraint qualification (1.8) is fulfilled at . Then, the
linear independence constraint qualification for the gradients in (3.7) is also fulfilled. Consequently, the strict
Mangasarian–Fromovitz constraint qualification holds at the stationary point ( , ) of problem (2.11).
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(2) Suppose that the strict Mangasarian–Fromovitz constraint qualification is fulfilled at the stationary
point ( , ) of problem (2.11). Then, the MPVC�strict Mangasarian–Fromovitz constraint qualification

holds at . 

Proof. Assertion (1) is obvious because the collection of gradients (1.8) appearing in the definition of
the MPVC�linear independence constraint qualification contains the gradients of system (3.7).

To prove assertion (2), we first observe that, if  is the Lagrange multiplier corresponding to the sta�

tionary point ( , ) of problem (2.9), then, by assertion (3) of Proposition 3, we have  = 0. The imme�

diate consequence is that the uniqueness of the Lagrange multiplier ( , , , ) corresponding to

the stationary point ( , ) of problem (2.11) implies the uniqueness of the Lagrange multiplier  = ( ,

, , ) that corresponds to the stationary point ( , ) of problem (2.9). Indeed, for the latter mul�

tiplier, it must hold  = 0 and  = 0, while the other components are identical to the correspond�
ing components of the multiplier for problem (2.11). Finally, by assertion (1) of Proposition 3, the unique�
ness of the multiplier corresponding to the stationary point ( , ) of problem (2.9) entails the uniqueness
of the Lagrange multiplier for the stationary point  of TNLP (1.4). This is exactly the MPVC�strict Man�
gasarian–Fromovitz constraint qualification. The proposition is proved.

The following example demonstrates that, in general, the reverse implication to that in assertion (2) of
Proposition 4 is false.

Example 3. Let n = 2, l = m = 0, s = 2, f(x) = (x1 + 1)2 + , G(·) ≡ (–1, –1), and H(x) = (x2, x2). The

only solution to problem (1.1), which is a local and a global solution at the same time, is the point  = (–1, 0),
for which I0– = {1, 2}. The corresponding TNLP is

  min,

(the constraint is repeated). The Lagrange multipliers corresponding to  = (–1, 0) in this TNLP are
specified by the system

which has the unique solution  = 0. Thus, the MPVC�strict Mangasarian–Fromovitz constraint qual�
ification holds at the point  = (–1, 0).

On the other hand, consider the corresponding lifted problem (2.9):

For every c > 0, the Lagrange multipliers at the point ( , ), where  = ((c/2)1/2, (c/2)1/2) is calculated in
accordance with (2.10), are specified by the system

which is nonuniquely solvable. Consequently, the MPVC�strict Mangasarian–Fromovitz constraint qual�
ification does not hold for the lifted problem. 

In view of (2.10), the second�order sufficient optimality condition for problem (2.11) has the form

(3.8)

x yI0

x

λ

x y λI+

H

λ
h

λ
g

λI0

H
λI+0

G

x yI0
λ λ

h

λ
g

λ
H

λ
G

x y

λI+

H
λI+, –  I0∪

G

x y
x

x2
2

x

f x( ) x1 1+( )2
x2

2
+= x2 0, x2 0≥ ≥

x

μ1
H μ2

H
+ 0, μ1

H
0, μ2

H
0,≥ ≥=

μH

x

x1 1+( )2
x2

2
max 0 y1,{ }( )4

max 0 y2,{ }( )4
c max 0 y1,{ }( )2

max 0 y2,{ }( )2
+( ) min,–+ + +

min 0 y1,{ }( )2
x2– 0, min 0 y2,{ }( )2

x2– 0,= =

–1 max 0 y1,{ }( )2
– 0, –1 max 0 y2,{ }( )2

– 0.≤ ≤

x y y

λ1
H λ2

H
+ 0, λ1

G
0, λ2

G
0,= = =

0 ∂2�

∂x
2

�������� x μ,( )ξ ξ, 12yi
2

2c–( )ηi
2

i I0∈

∑+< ∂2�

∂x
2

�������� x μ,( )ξ ξ, 4c ηi
2 ξ η,( )∀

i I0∈

∑ K\ 0{ },∈+=



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 51  No. 6  2011

A SEMISMOOTH SEQUENTIAL QUADRATIC PROGRAMMING METHOD 929

where

(3.9)

(3.10)

It is obvious that this sufficient condition is equivalent to the relation

This relation, combined with the inclusion in (3.10), immediately yields the following result.

Proposition 5. Let  be a strongly stationary point of problem (1.1), and let  be a corresponding MPVC�
multiplier. Moreover, let the piecewise second�order sufficient optimality condition (1.9) be fulfilled. Assume
that the scalar c satisfies inequality (2.6), while  is specified in accordance with (2.10).

Then, the Lagrange multiplier  corresponding to the stationary point ( , ) of problem (2.9) satisfies the
second�order sufficient optimality condition (3.8).

Combining assertion (1) of Proposition 4, Proposition 5, and the results of paper [20], we obtain the
following characterization of the local superlinear convergence of the semismooth SQP method for prob�
lem (2.9). (We recall once more that the locally semismooth SQP method for problem (2.9) is identical to
the basic SQP method for problem (2.11).)

Theorem 1. Let the function f and the mappings h, g, H, and G be twice differentiable in some neighborhood
of a strongly stationary point  of problem (1.1), and let their second derivatives be continuous at this point.
Assume that the MPVC�linear independence constraint qualification (1.8) and the piecewise second�order

sufficient optimality condition (1.9) are fulfilled at  for the (unique) MPVC�multiplier  = ( , , ,

) that corresponds to . Assume that the scalar c satisfies inequality (2.6), while  is specified in accordance
with (2.10).

Then, there is a scalar δ > 0 such that, for an arbitrary choice of the matrices �k satisfying (3.2)–(3.4) and

for every initial approximation (x0, y0, λ0) ∈ �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
) sufficiently close to ( , , ),

there exists a sequence {(xk, yk, λk)} ⊂ �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
) with the following properties: for every

k, the point (xk + 1, yk + 1) is a stationary point of problem (3.1), while λk + 1 is the corresponding Lagrange mul�
tiplier. Moreover, this sequence satisfies the inequality

,

and every such sequence converges to ( , , ) at a superlinear rate. If, in addition, the second derivatives
of f and the mappings h, g, H, and G are locally Lipschitzian with respect to , then the convergence rate is
quadratic.

Note that, as was said above, the MPVC�linear independence constraint qualification (1.8) can be
somewhat relaxed for this theorem; namely, it can be replaced by the strict Mangasarian–Fromovitz con�
straint qualification at the stationary point ( , ) of problem (2.11).

In [7], the authors proposed the so�called piecewise SQP method for solving problem (1.1). Its local
superlinear convergence was justified under the assumption that the MPVC�strict Mangasarian–Fromo�
vitz constraint qualification and the piecewise second�order sufficient optimality condition (1.9) are ful�
filled. From assertion (2) of Proposition 4 and Example 3, we see that these conditions are somewhat
weaker than what we need for the semismooth SQP method under discussion. For the active set methods
proposed in the same paper [7], the local superlinear convergence was proved using again the MPVC�strict
Mangasarian–Fromovitz constraint qualification; however, the piecewise second�order sufficient opti�
mality condition (1.9) was replaced by a slightly stronger assumption, namely, by the conventional sec�
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ond�order sufficient optimality condition. Moreover, the piecewise SQP method and the active set meth�
ods lack an obvious ready�made globalization strategy, whereas a reasonable and natural globalization
strategy for the semismooth SQP method as applied to problem (2.9) is described in Section 4.

The globalization strategy under discussion is based on the linesearch as applied to the exact penalty
function for problem (2.9). However, the direction pk = (xk + 1 – xk, yk + 1 – yk), where (xk + 1, yk + 1) is a sta�
tionary point of problem (3.1), is guaranteed to be a descent direction for this penalty function at (xk, yk)
only in the case where the matrix �k is positive definite (e.g., see [16, Lemma 5.4.1]). The matrices �k

calculated according to (3.2)–(3.4) cannot be positive definite. These matrices can be replaced by their
true quasi�Newton approximations, which, however, destroys the useful diagonal structure inherent in
�k. Below, we present a different method for obtaining positive definite modifications of �k. It uses the
structure of these matrices in much the same way as this was done in [19] for MPCCs.

The idea is to use the conventional quasi�Newton formulas only for the upper left block (xk, λk)

in (3.2). The diagonal entries of the lower right block ac(yk, λk) are replaced (if required) by positive scalars
so that the perturbation of the principal diagonal in ac(yk, λk) asymptotically vanishes. Namely, �k is now
constructed as

(3.11)

where Hk is a symmetric positive definite n × n matrix provided by the quasi�Newton approximation of

(xk, λk), while the vector ak ∈ �
s
 is calculated using the formula

(3.12)
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of the KKT system (2.16) for problem (2.9) (that is, the function σc vanishes at the points that satisfy (2.16)
and is positive at the other points); and M > 0 is an upper bound for the components of ak (a reasonable
choice is some “large” number). (The existence of such a bound is required in Theorem 3 on the global
convergence, while the condition M > 2c is sufficient to preserve the superlinear convergence in Theo�
rem 2.)
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where ω : � × �  � is a complementarity function applied componentwise; that is, the equality ω(a,
b) = 0 holds for this function only if a ≥ b, b ≥ 0, and ab = 0. Two most frequently used complementarity
functions are the natural residual ω(a, b) = min{a, b} and the Fischer–Burmeister function ω(a, b) =

a + b – . The symbols  (from “Natural Residual”) and  are used for these two choices of

the function .

For the numerical experiments discussed in Section 5, we used the residual . The matrices Hk were
calculated using the quasi�Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula with the
modification proposed by Powell (see [21, pp. 536, 537]).

Suppose that Hk is a positive definite matrix and σc(xk, yk, λk) > 0; that is, the current point does not
satisfy the KKT system (2.16) for problem (2.9). It is then obvious that the matrix �k determined by for�
mulas (3.11) and (3.12) is positive definite. At the same time, the following theorem shows that the above
modification preserves the superlinear convergence with respect to the primal variables. By πS, we denote
the projection operator on a closed convex set S.

Theorem 2. Let the function f and the mappings h, g, H, and G be twice differentiable in some neighborhood
of a strongly stationary point  of problem (1.1), and let their second derivatives be continuous at this point.
Let  be an MPVC�multiplier that corresponds to . Assume that the scalar c satisfies inequality (2.6), M >
2c, and  is specified in accordance with (2.10). Let the function ρ: �+  �+ be such that ρ(t) is separated

from zero by a positive constant if t is separated from zero and ρ(t)  0 as t  0+, and let σc : �
n
 × �

s
×

(�
l
 ×  × �

s
 × )  � be a certain residual of the KKT system (2.16) for problem (2.9). Assume that

the sequence {Hk} consists of symmetric n × n matrices and the sequence {(xk, yk, λk)} ⊂ �
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s
) converges to ( , , ). Let �k be the matrix calculated by formulas (3.11) and (3.12) for all suffi�

ciently large k. Assume that (xk + 1, yk + 1) is a stationary point of problem (3.1) and λk + 1 is a Lagrange mul�
tiplier corresponding to this stationary point.

If the sequence {(xk, yk)} converges at a superlinear rate, then the following analogue of the Dennis–More
condition holds:

(3.13)

Conversely, assume that the piecewise second�order sufficient optimality condition (1.9) and the analog of
the Dennis–More condition given by (3.13) are valid. Then, the sequence {(xk, yk)} converges at a superlinear
rate.
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Hence, by (3.3), we have

  0,   2c as k  ∞, (3.14)

It follows that

(3.15)

Furthermore, using (3.14), the limit relation ρ(σc(x
k, yk, λk))  0 as k  ∞, and the inequality M > 2c,

we conclude that, for all sufficiently large k,

In view of (3.12), this yields

(3.16)

Now, we show that

(3.17)

Fix i ∈ {1, 2, …, s}. If  = (ac(yk, λk))i for all sufficiently large k, then (3.17) is obviously fulfilled. Other�

wise, we define a subsequence {kj} such that  ≠ (ac( , ))i. From (3.16), we derive the inequality

as well as the relations

Here, the third equality is justified by the limit relation σc(x
k, yk, λk)  0 as k  ∞ and by the properties

of the function ρ, while the inequality follows from (3.15). Thus, relation (3.17) is proved. 
According to (3.2), (3.9), (3.11), and (3.17), condition (3.13) is equivalent to the relation

(3.18)

where

and, for all sufficiently large k, the vector ac(yk, λk) is uniquely determined by formulas (3.3) and (3.4).

The above discussion shows that the quasi�Newton semismooth SQP method for problem (2.9) ana�
lyzed in this section can be interpreted as a conventional quasi�Newton SQP method for problem (3.6);
moreover, (3.18) is the Dennis–More condition for the latter method. Now, the desired result follows
from [22, Theorem 4.1] and Proposition 5.
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4. GLOBALIZATION OF CONVERGENCE

Define the l1�exact penalty ψ : �
n
 × �

s
  � for the constraints of problem (2.9) by the formula

With this penalty, we associate the family of penalty functions ϕc, β : �
n
 × �

s
  � given by the formula

where β > 0 is the penalty parameter. The following algorithm combines the special quasi�Newton SQP
method proposed in Section 3 with the linesearch applied to the penalty functions from the above family.
(This is a traditional technique for globalizing the convergence of SQP methods; see [16, Algorithm
5.4.1].)

Algorithm 1

Preliminary step. Choose the parameters c > 0, M > 2c,  > 0, and ε, θ ∈ (0, 1). Choose the function
ρ : �+  �+ such that ρ(t) is separated from zero when t is separated from zero and ρ(t)  0 as t  0+,

and the residual σc : �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
)  � for the KKT system (2.16) of problem (2.9).

Choose the initial point (x0, y0, λ0) ∈ �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
) and set k = 0.

SQP step. If σc(xk, yk, λk) = 0, stop the process. Otherwise, choose a symmetric positive definite n × n

matrix Hk and define the matrix �k in accordance with (3.3), (3.4), (3.11), and (3.12). Compute ( ,

) ∈ �
n
 × �

s
 as a stationary point of problem (3.1) and λk + 1 ∈ �

l
 × �

m
 × �

s
 × �

s
 as the Lagrange mul�

tiplier corresponding to ( , ). Set ξk =  – xk, ηk =  – yk, and pk = (ξk, ηk).
Linesearch step. Choose

and calculate

Set α = 1. If the inequality

(4.1)

is fulfilled, set αk = α. Otherwise, replace α by θα and again check (4.1), etc. until (4.1) is fulfilled.
Set

(4.2)

increase k by one, and go to the SQP step.
In order to justify the global convergence of Algorithm 1, we need the following auxiliary facts.

Lemma 1. Assume that a bounded sequence {ak} ⊂  and a sequence {bk} ⊂ �
q
 are such that

  0,   0 as k  ∞. (4.3)

Then,

  0 as k  ∞ ∀i = 1, 2, …, q.
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Proof. Since the members of the sequence {ak} are nonnegative and the sequence is bounded, we con�
clude from the first relation in (4.3) that

  0 as k  ∞ (4.4)

for each i = 1, 2, …, q. It follows that

(4.5)

On the other hand, for each i = 1, 2, …, q, the second condition in (4.3) and the limit relation (4.4)
imply that

All the terms in the sum on the right�hand side are nonnegative because the members of {ak} are nonneg�
ative. Consequently, this limit relation holds if and only if

  0 as k  ∞.

Using again the nonnegativity of the sequence {ak}, we have

  0 as k  ∞.

It follows that

(4.6)

Combining (4.5) and (4.6), we obtain the desired result. The lemma is proved.
Lemma 2. Let {ak} and {bk} be given scalar sequences, and let ak ≥ 0 for all k.
If

  0,   0 as k  ∞, (4.7)

then each of the equivalent conditions

  0 as k  ∞ (4.8)

and

  0 as k  ∞. (4.9)

is fulfilled.
Proof. It is easily verified that the inequality

holds for all a ≥ 0 and b ≤ 0, while the inequality

holds for all a ≥ 0 and b > 0. Consequently, (4.7) implies (4.8). The equivalence of conditions (4.8) and
(4.9) follows from [23, Lemma 3.1]. The lemma is proved.

Note that, in general, (4.8) (and, hence, the equivalent condition (4.9)) does not imply (4.7). To see
this, it suffices to put ak = 1/k and bk = k (k = 1, 2, …).

From Lemmas 1 and 2, we derive

Proposition 6. Let the sequence {(xk, yk, λk)} ⊂ �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
) be such that {λk} is a

bounded sequence and, for all k, (λg)k ≥ 0 and (λG)k ≥ 0.
Then, for every scalar c, any of the equivalent conditions

  0 as k  ∞
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and

  0 as k  ∞

implies each of the equivalent conditions

  0 as k  ∞

and

  0 as k  ∞.

In the following theorem, we establish the global convergence properties of Algorithm 1. Although the
structure of this algorithm is fairly traditional, it does not suffice to refer to the well�known results con�
cerning the global convergence of the SQP methods (stated, for instance, in [16, Theorem 5.4.1; 24, The�
orem 17.2]). The reason is that, in general, the matrices �k in Algorithm 1 are not uniformly positive def�
inite, which is one of the basic assumptions in the traditional analysis of the global convergence of the SQP
methods.

Theorem 3. Let the function f and the mappings h, g, H, and G be differentiable on �
n
, and let their deriv�

atives satisfy the Lipschitz condition on �
n
. Assume that, in Algorithm 1, the residual σc is chosen as , ,

, or , while the matrices Hk are chosen so that the sequence {Hk} is bounded and there exists γ > 0
such that

(4.10)

for all k.

Then, for every initial approximation (x0, y0, λ0) ∈ �
n
 × �

s
 × (�

l
 × �

m
 × �

s
 × �

s
), either Algorithm 1 ter�

minates after a finite number of steps at a solution to the KKT system (2.16) for problem (2.9) or, at some iter�
ation step, the constraints of subproblem (3.1) become inconsistent or the algorithm generates an infinite
sequence {(xk, yk, λk)}. In the last case, if

(4.11)

for all sufficiently large k, then at least one of the following assertions is true:
(1) It holds that

  –∞ as k  ∞; (4.12)

(2) There exists a subsequence {( , , )} such that

  0 as j  ∞, (4.13)

In particular, every limit point of the subsequence {( , , )} satisfies the KKT system (2.16) for problem (2.9).

Furthermore, every subsequence {( , , )} such that

(4.14)

satisfies the limit relations

  0,   0 as j  ∞.

In particular, let ( , , ) be a limit point of the subsequence {( , , )}. Then, the subsequence ( ,

) converges to ( , ), and every limit point of the subsequence {( , , )} satisfies the KKT
system (2.16) for problem (2.9).

Proof. Suppose that σc(xk, yk, λk) ≠ 0 for all k. Then, combining (3.11), (3.12), (4.10), and the proper�
ties of the function ρ used in Algorithm 1, we conclude that the matrix �k is positive definite. Thus, sub�
problem (3.1) is a quadratic program with a strongly convex objective function. If the constraints of this
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problem are consistent, then the next SQP step of Algorithm 1 determines a point ( , , ).
(Note that λk + 1 = ((λh)k + 1, (λg)k + 1, (λH)k + 1, (λG)k + 1) may be nonuniquely determined.) Moreover, the

differences ξk =  – xk and ηk =  – yk satisfy the relations of the KKT system for problem (3.1):

(4.15)

If ξk = 0 and ηk = 0, then (4.15) converts into the KKT system (2.16) for problem (2.9), where x = xk, y = yk,
and λ = λk + 1; therefore, σc(xk, yk, λk + 1) = 0. Furthermore, pk = (ξk, ηk) = 0, and the result of this step in
Algorithm 1 is the point (xk + 1, yk + 1, λk + 1), where xk + 1 = xk and yk + 1 = yk. Consequently, σc(xk + 1, yk + 1,
λk + 1) = 0, which contradicts the assumption made above.

Thus, pk ≠ 0, which implies that

(see [16, Lemma 5.4.1]). Then, the linesearch performed in the algorithm terminates after a finite number
of reductions of the initial tentative value α = 1 by adopting some value αk > 0. Thus, the next approxima�
tion (xk + 1, yk + 1, λk + 1) is well determined.

If there is no subsequence {( , , )} that satisfies (4.13), then there exists δ > 0 such that

(4.16)

for all k. Due to the properties of the function ρ, there exists  > 0 such that ρ(σc(xk, yk, λk)) ≥  for all k.
It follows from (3.11), (3.12), and (4.10) that

Thus, the matrices �k are uniformly positive definite. Moreover, in view of (3.12) and the fact that {Hk} is
a bounded sequence, the sequence {�k} is also bounded. Now, the standard results concerning the global
convergence of SQP methods with linesearch (e.g., see [16, Theorem 5.4.1]) imply that either (4.12) is
fulfilled or

  0,   0 as k  ∞. (4.17)

Recall that (·, ·, λk), (·, ·, λk), (·, ·, λk), and (·, ·, λk) are Lipschitzian functions. Using (4.2)
and Proposition 6, we derive from (4.17) the limit relations

  0,   0,   0 as k  ∞,

The last of these relations contradicts (4.16).

Thus, we have shown that, if (4.12) is not fulfilled, there exists a subsequence {( , , )} that sat�
isfies (4.13).

Finally, let {( , , )} be a subsequence that satisfies (4.14). Then, the desired assertion is obtained
by repeating the above argument for this subsequence. The theorem is proved.
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Theorem 3 gives a good reason to expect that, if ( , , ) is a limit point of the sequence {(xk, yk, λk)}

generated by Algorithm 1, then ( , ) is a stationary point of problem (3.1) and  is the corresponding
Lagrange multiplier. Note, however, that, in general, the latter does not even guarantee that  is a weakly
stationary point of problem (1.1), but then the only possibly lacking ingredient of weak stationarity is the

condition  ≥ 0 (see assertion (3) of Proposition 3). Moreover, as noted above, the weak stationarity of
a MPVC is actually a fairly strong concept of stationarity.

5. NUMERICAL RESULTS

In this section, we present the results obtained by a numerical comparison of Algorithm 1 with certain
alternative methods. To this end, 23 MPVCs were taken from all publications concerning this problem
class and available to the authors.

For brevity, the number 1 is attributed to Algorithm 1 in which the matrices Hk are calculated as
explained above, that is, by using the BFGS formula with the Powell modification. Number 2 is attributed
to an analogue of Algorithm 1 in which the matrices �k are solely calculated on the basis of the BFGS
formula with the Powell modification (rather than using the special method adopted in Algorithm 1).
Number 3 is used for the conventional quasi�Newton SQP method (which means the BFGS formula with
the Powell modification) combined with the linesearch performed for an l1�exact penalty function; this
method is directly applied to problem (1.1) (with no “lifting” or any other modifications). All the three
methods were implemented without invoking any ways of overcoming the possible inconsistency of con�
straints in the subproblems, as well as ways of overcoming the Maratos effect (see [16, p. 230]).

For the parameters in Algorithm 1 and the corresponding parameters in the other algorithms, we chose

the values c = 200,  = 1, ε = 10–4, and θ = 0.5. The parameter M, which was introduced for theoretical
justification of the global convergence, should in practice be chosen so that, under normal conditions, it
does not affect the computational process. Since there is no obvious reasonable rule for the choice of M,
it was set equal to +∞ in our calculations.

The function ρ was defined by the formula

At each iteration step, the penalty parameter βk was calculated as

Note that this choice may not satisfy condition (4.11) in Theorem 3 on the global convergence; however,
it has an appealing simplicity and works well in practice because it allows one to reduce large values of the
penalty parameter possible at the early steps of the process. In more complicated rules for the choice of βk

(e.g., see [21, Section 18.3; 24, Section 17.1]), the above property and the validity of (4.11) can certainly
be combined.

Our calculations were performed in the Matlab environment. Quadratic subproblems were solved using
quadprog, the Matlab built�in solver. The stopping criterion used for Algorithms 1 and 2 was

Algorithm 3 was terminated when the analogous residual of the KKT system for the original problem (1.1)
was less than 10–6.

If the required accuracy was not attained during 500 iteration steps or, for some reason, the method was
not able to execute the current step, the corresponding run was regarded as unsuccessful.

For each test example, we performed 100 runs of each algorithm from randomly generated initial
points (which were the same for all the algorithms). The primal initial points x0 were chosen from a cube
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centered at the solution , which was known for each test, the edges of the cube being equal to 20. For
Algorithms 1 and 2, the initial value of the auxiliary variable was determined by the rule

For all the algorithms, the initial values of the dual variables were generated in a similar way, but the cube
was centered at the zero and additional inequality constraints were used for the components correspond�
ing to the nonnegativity requirements.

In the case of a successful run, convergence to the solution was declared when the distance from the
final primal approximation xk to  was less than 10–3.

For all of the three methods, an idea of the relative average number of the outer and inner iterations
can be gained from Fig. 2. Inner iteration steps are understood as the steps of quadprog. The results are
shown in the form of the so�called “performance profiles”. This aggregated method for representing the
results of numerical experiments was first proposed in [25]. For each algorithm, we present the graph of
the function defined as follows. (Hereinafter, the graphs corresponding to Algorithms 1–3 are depicted in
solid line, dotted line, or dashed line, respectively.) Its value at τ ∈ [1, +∞] is the relative sum (with respect
to the total number of problems) of the fractions of successful runs taken over the problems for which the
result (in this case, the average number of iteration steps) of the corresponding algorithm was at most
τ times worse (in this case, greater) than the best result (over the three algorithms). In a sense, this value
can be interpreted as the probability of the event that, for a problem in the given set, the result of a run of
the corresponding algorithm is at most τ times worse than the best result. It is assumed that the result of
an unsuccessful run is indefinitely worse than that of any successful run. The exact formulas for the func�
tions whose graphs are represented in the performance profiles of the type we use here can be found in
[26]. The value of such a function at τ = 1 can be interpreted as a measure of the “pure” efficiency of the
corresponding algorithm, that is, as the probability that this algorithm will be the best, while its value at
τ = +∞ can be interpreted as a measure of the “pure” robustness, that is, as the probability that a run is
successful.

It can be seen that Algorithm 3 is slightly more efficient than Algorithm 1 in terms of the number of
outer iteration steps (see part (a) of Fig. 2), whereas the situation is opposite in terms of the number of
inner iteration steps (see part (b)). In either term, Algorithm 2 is less efficient than the two other algo�
rithms. On the other hand, Algorithm 3 clearly yields to the two other algorithms in terms of robustness.

A similar form of representation is used in Fig. 3 for the data concerning the relative average number
of evaluations of the functions specifying the constraints (see part (a)) and the analogous number for their
derivatives (see part (b)) per successful run. Figure 4a shows the relative average number of evaluations of
the objective function. In all the cases, the results are similar to those in Fig. 2a.

In addition to efficiency and robustness, an important feature of an algorithm is the quality of its final
approximations, that is, the portion of the cases when the algorithm converges to the genuine solution
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rather than to a nonoptimal stationary point. For the algorithms under discussion, this characteristic is
illustrated by Fig. 4b. The result of an algorithm is understood here as the inverse of the number of con�
vergencies to the solution. Note that the result was set equal to +∞ if the algorithm never converged to the
solution. Such occasions make an additional contribution to the total number of unsuccessful runs, which
somewhat reduces the robustness performance of the algorithms in Fig. 4b compared to the previous per�
formance profiles.
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Figure 4b shows that, in terms of the convergence to the solution, Algorithms 1 and 2 demonstrate bet�
ter performance than Algorithm 3. This somewhat surprising result is a consequence of the fact that Algo�
rithm 3 has a lower general robustness.

The pie diagrams in Fig. 5 are aimed at giving an indication of the ability of an algorithm to achieve
smaller values of the objective function (compared to the other algorithms) in the case of successful runs.
In these cases, the resulting primal approximation is feasible or almost feasible; consequently, the attained
value of the objective function can be considered as another reasonable measure of the behavior of the cor�
responding algorithm. The diagrams in Fig. 5 were obtained as follows. For each algorithm and for each
problem, the average attained value of the objective function per successful run was calculated. If this value
is minimal (over the three algorithms), then the corresponding algorithm falls into the category “best” (see
Fig. 5a); if this value is maximal, then it falls into the category “worst” (see Fig. 5b). The average attained
value of the objective function was regarded as equal to the minimal (maximal) value if it differed from the
latter by less than 10–3. Note that, for some problems, an algorithm could fall into both above categories
if the average attained values of the objective function were identical for all the three algorithms. After the
number of occurrencies of each algorithm in each category was determined, these numbers were summed
inside each category. The fraction of each algorithm is shown in Fig. 5. In terms of the above characteris�
tics, all the three algorithms are comparable, although Algorithm 2 somewhat yields to the two other algo�
rithms.

We sum up as follows. Unlike the conventional methods as applied directly to the original problem (1.1), the
proposed approach has justified global and local superlinear convergence. Moreover, the numerical results
indicate that this approach is also quite competitive from a practical viewpoint.
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