APPLICATIONS OF ⁹⁹Tc-NMR IN CHEMISTRY AND NUCLEAR MEDICINE

G.A. Kirakosyan^{1,2}, K.E. German², A.V. Afanasiev^{2,3}, S.N. Ryagin³, A.V. Safonov², E.A. Kataev⁴, F. Poineau⁵, K.R. Czerwinski⁵, E.V. Johnstone^{5,6}, A.P. Sattelberger⁷

¹Kurnakov Institute of General and Inorganic Chemistry RAS, Moscow, Russia
²Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia
³Medical University Reaviz, Moscow branch, Russia
⁴Institute of Chemistry, Technische Universitat Chemnitz, Chemnitz, 09107, Germany.
⁵University of Nevada – Las Vegas, Chemistry and Biochemistry Department, Las Vegas, NV, USA
⁶Global Medical Isotope Systems (GMIS), Las Vegas, NV, USA
⁷Argonne National Laboratory, Chemistry Division, Lemont, IL, USA

DOI: 10.13140/RG.2.2.16251.36642

Long-lived ⁹⁹Tc has the spin of the nucleus 9/2, so it is an NMR active isotope. Thus, ⁹⁹Tc-NMR can be applied to investigations in chemistry and nuclear medicine. Some recent advances are summarized in an excellent review by Farnan and Berthon [1]. Here we present new results on Tc speciation and analyses.

Tc speciation was investigated the in H₂SO₄ from 2 M to 18 M, and the resulting complexes were characterized by NMR exchange spectra and EXAFS spectroscopy [2]. According to NMR, the TcO₄⁻ species transformation is complete at 12 M.

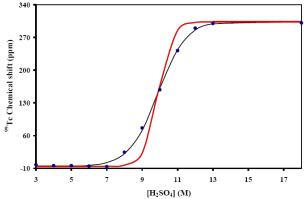


Fig.1. ⁹⁹Tc NMR shift vs. TcO₄ of KTcO₄ dissolved in 3M and 18M H₂SO₄.

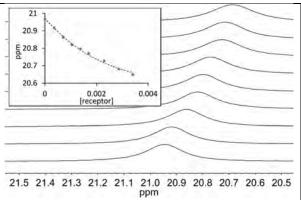


Fig. 2. Reverse ⁹⁹Tc NMR titration with ligand-receptor in CDCl₃ - 5% DMSO. Insert: experiment (blue circles) and the fitting (dashed line).

When KTcO₄ is dissolved in 12 M H_2SO_4 , EXAFS measurements on the resulting yellow solution indicated the presence of the $[TcO_3(H_2O)_3]^+$ cation.

NMR was applied to recognition receptor design and characterization. The reverse NMR-titration method, in which concentration of pertechnetate was kept constant, showed [3] good reproducibility (Fig.2). Binding constants of 4 for TcO_4 were found to be logK = 3.00.

Another application is based on the interaction of ⁹⁹Tc nucleus spins with the spins of surrounding nucleus. ⁹⁹Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen O¹⁸-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH₄TcO₄ or NaTcO₄ (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled ¹⁸O-enriched water have been studied by ⁹⁹Tc NMR.

The method is based on $^{16}\text{O}/^{17}\text{O}/^{18}\text{O}$ intrinsic isotope effects in the ^{99}Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO_4^- and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the ^{99}Tc NMR signals of the $\text{Tc}^{16}\text{O}_{4-n}^{-18}\text{O}_n$ – isotopologues. TcO_4^- ion was selected as a probe due to its high stability in aqueous solutions and the significant ^{99}Tc NMR shift induced by a single $^{16}\text{O} \rightarrow ^{18}\text{O}$ substitution (-0.43 ± 0.01 ppm) in TcO_4^- and spin coupling constant $1\text{J}(^{99}\text{Tc}-^{17}\text{O})$ (131.46 Hz), favorable for the observation of individual signals of $\text{Tc}^{16}\text{O}_{4-n}$ $^{18}\text{O}_{n-}$ isotopologues.

References

- 1. Ian Farnan and Claude Berthon. Applications of NMR in nuclear chemistry. RSC Nucl. Magn. Reson., 2016, 45, 96–141. Series: Specialist Periodical Reports, ISSN: 0305-9804, DOI: 10.1039/9781782624103-00096.
- 2. F. Poineau, K. German, P. Weck et all. Speciation and Reactivity of Technetium in Sulfuric Acid. 2011.
- 3. A. Ravi, A.S. Oshchepkov, K.E. German, G. A. Kirakosyan, A.V. Safonov, V.N. Khrustalev, E. A. Kataev / Chem. Commun. DOI: 10.1039/c8cc02048e.
- 4. Tarasov V.P., Kirakosyan G.A., German K.E. 99Tc NMR determination of the oxygen isotope content in 18O-enriched water // Magn Reson Chem. 2018;56:183–189.
- 5. Nucl. Medicine and Biology.

The work was carried out with partial funding by the Ministry of Science and Higher Education of the Russian Federation (subject No. AAAA-A16-116110910010-3)