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1. Introduction

Among classical papers, concerning integration of equations of motion of a rigid body about a �xed

point and motion of a body in uid, we would like to quote two ones with the additional integrals of

fourth degree: the papers by Kovalevskaya [23] and by Chaplygin [7]. It is known that the general

solution of the system of six Euler{Poisson equations in the Kovalevskaya case is very complicated, it

is expressed in terms of ultraelliptic functions. Therefore, degenerate cases of this solution, when the

ultraelliptic integrals become elliptic, are of particular interest. Degeneration of quadratures results

in the fact that some polynomial related to separation of variables (in the Kovalevskaya case it is

the polynomial of �fth degree) has multiple roots for some values of integrals. Particular motions,

corresponding to these values of the �rst integrals, were �rst found by Appelrot [1]. More detailed

analysis of these motions was carried out by Ipatov [14]. It turned out [18] that they are precisely

Appelrot classes that correspond to the cases of dependence between �rst integrals. If we know the

conditions, under which the �rst integrals are dependent, in other words, the bifurcation set, we

can pro�tably study degenerate cases without separation of variables, since each class of degenerate

motions has its intrinsic properties. For the Kovalevskaya case this method was successfully realized

by Dokshevich [8, 9, 10, 11]. Finally, using Morse-type theory for integrable Hamiltonian systems

obtained by Bolsinov and Fomenko [4] it is possible to clarify the behavior of the system as a whole

in terms of some invariants. This theory also enables us to describe change of qualitative behavior

of integral trajectories during bifurcations of so-called Liouville tori. The complete classi�cation of

Kovalevskaya-type dynamical systems up to Liouville equivalence was given by Bolsinov, Fomenko

and Richter [5].

Thus, the condition of multiplicity of roots of some polynomials allows us to write down explicit

equations for bifurcation curves and then to integrate the system along the bifurcation curves. This

explicit integration helps us to give a description of local behavior of the system near the bifurcation

set, and thereafter of global behavior of the system. This approach can be used even in integrable

problems, for which separation of variables is not found.

In the original paper [7] Chaplygin considered a problem that describes a particular case of motion

of a rigid body in a perfect incompressible uid. The uid is unbounded in all directions and is at rest

at in�nity; the body is bounded by a simply-connected surface. We assume that the body and the

uid are under the gravitation force, we also assume that the weight of the body is equal to the weight
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of the uid displaced. In terms of dimensionless variables this motion is described by the following

system of the Kirchho� equations:

_s1 = �s3s2 � cr2r3 + �r3 ; _r1 = s2r3 � 2s3r2 ;

_s2 = s3s1 � cr1r3 � r3 ; _r2 = 2s3r1 � s1r3 ;

_s3 = 2cr1r2 + r2 � �r1 ; _r3 = s1r2 � s2r1 ;

(1.1)

where c; �;  are some constants. Here the vectors ~s, ~r are called the momentum and the momentum

force.

The �rst integrals of these equations have the form

f1 = r2
1
+ r2

2
+ r2

3
= f ; (geometric integral)

f2 = s1r1 + s2r2 + s3r3 = g ; (area integral)

H = 1
2
(s2

1
+ s2

2
+ 2s2

3
) + 1

2

�
c(r2

1
� r2

2
) + 2r1 + 2�r2

�
= h : (Hamiltonian)

Chaplygin [7] showed that if the area integral is equal to zero, then the system (1.1) has the additional

integral

F = (s2
1
� s2

2
+ cr2

3
� 2r1 + 2�r2)

2 + 4(s1s2 � r2 � �r1)
2 = k :

If c = 0, then the area integral is not necessarily zero, and we come to the problem on motion of

a rigid body about a �xed point in the Kovalevskaya case. Bifurcations of the �rst integrals in this

problem were studied by Kharlamov [18].

The papers by Kharlamov [15, 16, 17], by Rubanovsky [26], and by Yehia [28] are devoted to

integrable cases of motion of a rigid body bounded by a multiply-connected surface in uid. Under

the conditions as before this motion can be described in terms of dimensionless variables by the

following Kirchho�-type system of equations:

_s1 = �(s3 � �)s2 � cr2r3 + �r3 ; _r1 = s2r3 � 2s3r2 ;

_s2 = (s3 � �)s1 � cr1r3 � r3 ; _r2 = 2s3r1 � s1r3 ;

_s3 = 2cr1r2 + r2 � �r1 ; _r3 = s1r2 � s2r1 :

(1.2)

The parameter of the gyrostatic momentum � can be related to the circulation of the uid through

the holes inside the body. As before, the vectors ~s, ~r are called the momentum and the momentum

force.

The �rst integrals of these equations have the form

f1 = r2
1
+ r2

2
+ r2

3
= f ; (geometric integral)

f2 = s1r1 + s2r2 + (s3 + �)r3 = 0 ; (area integral)

H = 1
2
(s2

1
+ s2

2
+ 2s2

3
) + 1

2

�
c(r2

1
� r2

2
) + 2r1 + 2�r2

�
= h ; (Hamiltonian)

F = (s2
1
� s2

2
+ cr2

3
� 2r1 + 2�r2)

2 + 4(s1s2 � r2 � �r1)
2+

+ 8�(s3 � �)(s2
1
+ s2

2
)� 8�r3

�
s1(2 + cr1) + s2(2� � cr2)

	
= k : (additional integral)

Note that the additional integral F was also found by Yehia [28].

If c = 0, then the area integral is not necessarily zero, and we come to the problem on motion

of a heavy gyrostat under the Kovalevskaya conditions imposed on the distribution of mass. The

papers [13] and [20] are devoted to the topological analysis of this problem.

Notice that with the help of some linear changes of variables, time, and parameters, we can make

the value f of the geometric integral and the constant c equal to 1. These changes do not inuence

on the topological analysis of the problem, and in what follows we take f = 1, c = 1.
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The systems (1.1) and (1.2) are Hamiltonian on the orbitM4 = ff1 = 1; f2 = 0g. The additional

integrals are almost everywhere independent with the Hamiltonians, therefore, the systems are com-

plete integrable by Liouville. According to the Liouville {Arnold theorem [2], the nonsingular compact

common level of the �rst integrals is a union of tori �lled with quasi-periodic trajectories. After going

through the singular levels of the �rst integrals, these tori bifurcate in some manner.

In the paper we study topology of energy surfaces Q3

h = fH = 2hg and obtain the bifurcation sets,

we also describe bifurcations of Liouville tori in the Chaplygin problem and its generalization. For some

values of the parameters we calculate the Fomenko invariant and partially the Fomenko{Zieschang

invariant.

The author expresses his deep gratitude to O.E.Orel for useful advices and discussions.

2. Necessary de�nitions

The momentum mapping is a mapping �: M4
! R

2 that assigns to a point on the manifold the pair

of values of the functions H and F at this point: x !
�
H(x); F (x)

�
. Obviously, a Liouville torus is

mapped into a single point. The set of singularities of the momentum mapping is the set of points

of M4, at which the functions H and F are dependent: K = fx 2M4 : rank d�(x) < 2g. The image

� = �(K) of this set is called the bifurcation set. By Q3

h = fx 2M4
jH(x) = hg we denote the energy

surface. In what follows we assume that this surface is nonsingular and compact.

Fig. 1

In [12] Fomenko obtained the Morse-type theory for integrable

Hamiltonian systems. In the framework of this theory global behav-

ior of a system on an energy surface can be described with the help

of some graph. The edges of the graph (=molecule) correspond to

one-parameter families of nonsingular Liouville tori, and its vertices

(=atoms) describe bifurcations of these tori on singular levels of the

integral F . This graph is denoted by W (Q3

h) and called the Fomenko

invariant. Besides, if we complete the molecule W with some numer-

ical marks ri; "i; nk, we obtain the Fomenko{Zieschang invariant, or

the marked molecule, which is denoted by W �. In particular, the numerical marks ri describe the rules

of gluing of Liouville tori on the edges of the molecule.

The simplest bifurcations (atoms) are denoted by the characters A, B, A�: the bifurcation A

characterizes degeneration of a torus into a circle, B denotes splitting of a torus into two ones (or,

conversely, gluing of two tori), and A� | the complicated bifurcation of a torus to another torus.

Besides, in integrable problems with some symmetries one can meet atoms C2 and P4. The �rst

of them describes a symmetric bifurcation of two tori to two tori, and the second | a symmetric

bifurcation of two tori to four tori. The atoms C2 and P4 are illustrated in Fig. 1.

In what follows we use a notation �(�) for the bifurcation set; therefore, �(0) is a bifurcation set

for the classical Chaplygin problem [7].

Fig. 2. Loop

molecule with the

atoms C2 and P4

Further notions and de�nitions are related to stationary points of the sys-

tems (1.1) and (1.2). The rank of a point x 2 M4 is the rank of the momentum

mapping rank d�(x) at this point. Let x 2 M4 be a point of zero rank, and sup-

pose �(x) = (k; h). Let U be a small regular neighborhood of the point (k; h) such

that its boundary @U intersects the bifurcation diagram transversely at minimal

number of points. The loop molecule W (��1(@U)) completely describes topology

of Liouville foliation in the neighborhood of the point of zero rank. The zero-rank

multiplicity of the point (k; h) is a number of points of zero rank in the preimage

��1(k; h). In the paper [6] all saddle-saddle singularities of zero-rank multiplicity

two are classi�ed with the help of the l-type introduced in [3]. The results are

represented in the form of the list of loop molecules. One of this molecule that contains atoms C2

and P4 is illustrated in Fig. 2. We will meet this molecule in what follows.
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3. Topology of Q3

h

We describe the topology of Q3

h according to the values of the parameters (�; ) in the case, when the

parameter � is zero. Figure 3 demonstrates the domains of the same topological type of Q3

h: a) if

� =  = 0, then it is equal to ? for h < �
1
2
, to 2S3 for �1

2
< h < 0, S1

� S2 for 0 < h < 1
2
,

to RP 3 for 1
2
< h; b) if � = 0 or  = 0, then it is equal to S3, 2S3, S1

� S2, RP 3 (in the case

 = 0 the separating curves are marked o� by bold lines in Fig. 5); c) if (�; ) 2 A, then it is equal

to S3, RP 3 ; d) if (�; ) 2 B [ C, then it is equal to S3, 2S3, RP 3 ; e) if (�; ) 2 D, then it is equal

to S3, 2S3, S1
� S2, RP 3 . Note that the surface Q3

h is never di�eomorphic to the connected sum

(S1
� S2)#(S1

� S2), which is typical for the Kovalevskaya case. Probably, the reason is that our

problem is integrable only at zero area integral. However, the gyrostatic momentum � gives rise to

the manifold N3 = (S1� S2)#(S1� S2)#(S1� S2), as is shown in the following theorem.

Fig. 3

�heorem 1. If � 6= 0 and � =  = 0, then the energy

surface Q3

h has the following topological type : 2S3, S1 � S
2,

N3 = (S1�S2)#(S1�S2)#(S1�S2), and RP 3 . The topological

types of Q3

h and the separating curves (marked o� by bold lines)

are illustrated in Fig. 6.

Proof.

Topological type of the energy surface Q3

h = fH = hg can

be studied with the help of the projection � onto the Poisson

sphere S2 = fr2
1
+ r2

2
+ r2

3
= 1g (see [27, 19, 25]). In our

case, this projection takes the surface Q3

h onto a domain on

the Poisson sphere given by the condition

'�(r) 6 h ; (3.1)

where

'�(r) =
1
2
(r2

1
� r2

2
) +

�2r2
3

2� r2
3

:

Here the surface Q3

h is strati�ed over this domain with the circle �ber contracted to a point over the

boundary.

The function '�(r) is the Morse function on the sphere. The critical points and the values of the

function at these points are the following:

1. r2 = r3 = 0 , r2
1
= 1 , '�(r) =

1
2
,

2. r1 = r3 = 0 , r2
2
= 1 , '�(r) = �

1
2
,

3. r2 = r1 = 0 , r2
3
= 1 , '�(r) = �2 ,

4. r2 = 0 , r2
1
= 1� r2

3
, 1� 4�2

(2� r2
3
)2

= 0 , '�(r) =
1
2
� (1� �)2 ; � 2

h
1
2
; 1
i
,

'�(r) =
1
2
� (1 + �)2 ; � 2

h
�1;�1

2

i
.

The lines h = �
1
2
and the parabolas h = �2, h = 1

2
� (1 � �)2; � 2

h
1
2
; 1
i
, h = 1

2
� (1 + �)2; � 2

2

h
�1;�1

2

i
, form the bifurcation diagram in the plane R2 (�; h) (see Fig. 6). It is symmetric with

respect to the line � = 0. The points A and C have the following coordinates: A
�
1
2
; 1
4

�
, C

�
1; 1

2

�
.
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On the line h = �
1
2
the critical points have index 0. On the line h = 1

2
they have index 2 between

the points of contact of the line and the parabolas h = 1
2
� (1� �)2, and index 1 otherwise. On the

parabola h = �2 the index is equal to 1 between the points of contact of the parabola and the parabolas

h = 1
2
� (1��)2, it is equal to 2 otherwise. Consider the segment AC of the parabola h = 1

2
� (1��)2,

� 2
�
1
2
; 1
�
. Each point (�0; h0) of the parabola corresponds to four critical points of index 1 with the

coordinates (r0
1
; r0

2
; r0

3
), where r0

2
= 0, (r0

1
)2 = 1 � (r0

3
)2, (r0

3
)2 = 2 � 2�0. We consider, for example,

the point with r0
3
2 (0; 1). We take the pair (r2; r3) as local coordinates in the neighborhood of this

point. We put r2 = x; r3 = y � r0
3
, where (r0

3
)2 = 2 � 2�0. The expansion of the function '�0 in the

neighborhood of this point has the form

'�0(x; y) =
1
2
�
1
4
(r0

3
)4 � 1

2
x2 +

�
2(r0

3
)2

2� (r0
3
)2

�
y2 + o(x2 + y2) :

Therefore, we come to the conclusion required. With the help of indices of the critical points we obtain

the topological type of domains (3.1) on the Poisson sphere: they are ?, two disks D2, the annulus

S
1
� R

1 (the disk D2 with one hole), the disk D2 with three holes, the sphere S2. The corresponding

surfaces Q3

h are homeomorphic to 2S3, S1 � S
2, N3 = (S1 � S

2)#(S1 � S
2)#(S1 � S

2), and RP 3 .

Theorem is proved.

4. Bifurcation set and bifurcations of Liouville tori

The bifurcation set � plays the fundamental role in the study of global behavior of integrable Hamil-

tonian systems. Here we give a review of the results concerned with the bifurcation set in the case,

when the parameter of the gyrostatic moment � is equal to zero (the relevant proofs will be published

in a separate paper).

�heorem 2. The bifurcation set �(0) is

a) the union of the curves 1, 2, 3, where

1 : k = 0 ; h > �
1
2
; 2 : k = (2h + 1)2 ; h > �

1
2
; 3 : k = (2h� 1)2 ; h > 0 ;

if � =  = 0. A topological analysis of this case is carried out in [24].

b) the union of the curves �1, �2, �3, �4, �5, where

�1 : k = 0 ; h > �
1
2
;

�2 : k = 42 ;

�3 : k = (2h + 1)2 + 42 ; h > �
1
2
;

�4 : k = (2h � 1)2 ;

�5 : k = 2(�2 + 2� 4h) ;

if � = 0.

c) the union of the curves �1, �2, �3, �4, �5, where

�1 : k = 0 ; h > �
1
2
;

�2 : k = 4�2 ;

�3 : k = (2h� 1)2 + 4�2 ;

�4 : k = (2h+ 1)2 ;

�5 : k = �2(��2 + 2 + 4h) ;
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if  = 0. Qualitatively di�erent bifurcation diagrams are illustrated in Fig. 7, 8, 9.

d) the union of the curves �1, �2, �3, where

�1 : k = 0 ; h > 1
2

2 � �2

2 + �2
;

�2 : k = 4(�2 + 2) ; h > minf1
2
cos 2t+  cos t+ � sin tg ;

�3 :

(
h(t) = � cos 2t

sin 2t
+ 1

2
cos 2t+ 1

2
(�2 � 2) ;

k(t) = �2
1
+ 4�2

2
;

where

�1 = �2� cos
2 2t

sin 2t
+ (2 � �2) cos 2t+ 2 cos 2t( cos t+ � sin t)� 2 cos t+ 2� sin t ;

�2 = �� cos 2t+ 1
2
(2 � �2) sin 2t+ sin 2t( cos t+ � sin t)�  sin t� � cos t ;

if �2 + 2 6= 0. The examples of the bifurcation diagrams are demonstrated in Fig. 10, 11.

�heorem 3. In all cases the bifurcation sets �(0) are parts of surfaces of multiple roots of some

polynomials.

We describe the Liouville foliation of the energy surface Q3

h in the case  = 0. The separating

curves cut the plane R2(�; h) into domains, in which the additional integral F has the Morse{Bott

type [4]. These curves are illustrated in Fig. 5. At this �gure, for each domain in the plane R2(�; h)

we indicate the pair (Q3

h;W ), where Q3

h is an energy surface and W is a molecule; these pairs are

denoted by (Q3

h; ik); k = 1; 13. There is a natural correspondence between the domains in Fig. 5 and

the intervals on the energy axis in Fig. 7{9. The domain of number ik corresponds to the energy level

h = ak. The complete list of (Q
3

h;W ) is represented in Table 1.

We now turn to constructing the bifurcation set for nonzero values of the parameter �. First we

consider the case, when � =  = 0. To �nd the bifurcation set we need some simple propositions based

on the analysis of right-hand sides of the system (1.2) (see also [24]).

Assertion 1. Any �xed point of the ow sgradH lies on the hyperplane r1 = 0 or r2 = 0. Any closed

trajectory of the ow sgradH intersects the hyperplane r1 = 0 or r2 = 0.

Proof.

We have _si = 0, _ri = 0, i = 1; 2; 3, at any �xed point of the ow. In particular, the third equation

of the system (1.2) gives us _s3 = 2r1r2 = 0, whence r1 = 0 or r2 = 0. We now consider an arbitrary

closed trajectory. Since the coordinate s3 depends on time periodically on this trajectory, there exists

an instant of time t0 such that _s3(t0) = 0. Therefore, by virtue of the third equation of the system we

have r1(t0) = 0 or r2(t0) = 0.

Assertion 2. Any Liouville torus intersects the hyperplane r1 = 0 or r2 = 0.

Proof.

We take an arbitrary point on the Liouville torus and issue the trajectory from it. This trajectory

is either closed or everywhere dense on the torus. The coordinate s3 depends on time periodically

or almost periodically on this trajectory. Then there exists t0 such that _s3(t0) = 0. Therefore, the

trajectory (and, consequently, the Liouville torus) intersects the hyperplane r1 = 0 or r2 = 0.

Corollary 1. Singular �bers of the Liouville foliation intersect the hyperplane r1 = 0 or r2 = 0.

Proof.

A singular �ber of the Liouville foliation has a �xed point or a closed trajectory. Therefore, it

intersects the hyperplane r1 = 0 or r2 = 0.
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Q3

h
W (Q3

h
)

S3 A A

S3
A

A

`
`

�
�

B A

S3
A

A
!
!

a
a C2

�
�� A
h
h
h
hhA

h

a3

a1

a2

a4 2S3
A

A

`
`̀

�

�
C2
�
�
� A

A
A
A

a5 S1� S2
A

A

H
H

�
�

C2
�
�

A
�

�

C2
(
((

P
P

A
A

a6 S1� S2
A

A

a
a

"
"

C2
�
�

X
X

B

B

��

A

A

a7 RP 3

A

A

A*

A*

!
! A

`
`A

A
A

H

H

!

! P4

a8 RP 3 A

A
A*

A*

C2

 
  

h
hh

A

A

a9 S3
A

A

X
XX

�

� B B �
��

h
hh

A
A

a10 S3
A

A

H
H

!
! C2

�
� A

B !
!

XX A
A

a11
A

A

HH

��
C2

  

hh

B
B

  A
A

`̀ AA

a12 RP 3
A

A
A*

A*

`
`

�
� P4

(
(
(
(

h
h
h
h

A
A

A

A

a13 RP 3
A

A
A*

A*

X
X

�
� C2

�

��

X
X

A
A

S1� S2

h
hh

�
��

Table 1.

A
(
(
(
((A

A

�heorem 4. For � =  = 0 the bifurcation set �(�) is the union of curves i, i = 1; 5, where

1 :

(
k = 0 ;

h > �
1
2
;

2 : k = �8�2(2h + 1) ; h > �
1
2
;

3 : k = �8�2(2h � 1) ; h > 1
2
� �2 ; if 0 < � 6 1

2
;

h > ��2 � 1
2
+ 2� ; if

1
2
6 � 6 1 ; h > 1

2
; if � > 1 ;

4 : k = (2h+ 1� 2�2)2 ; h > �
1
2
+ �2 ;

5 : k = (2h� 1� 2�2)2 ; h > �2 :
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Proof.

We study the singularities of the system of the �rst integrals f1, f2, H, and F . To obtain the

critical points of the momentum mapping we use the condition

rankJ < 4 ; (4.1)

where J is the Jacobi matrix of the mapping H � F � f1 � f2.

The condition (4.1) is valid if and only if all �ijkl are equal to zero. Here �ijkl are determinants

of the matrices consisting of columns of the Jacobi matrix J of numbers 1 6 i < j < k < l 6 6.

Suppose

s1 = 0 : (4.2)

Then the system of the equations �ijkl = 0 can be reduced to one of the following conditions:

s2(s3 � �) + r2r3 = 0 ; (4.3)

or

r1 = 0 ; (4.4)

s2r3(1� s2
2
� 4�s3 � 2�s3 � s2

3
� �2) + 4�s3r2(s3 + �) = 0 : (4.5)

In case (4.3) the corresponding critical values are 1, 5. Note that for h < �
1
2
the integral

manifold Jh;k = fx 2M4;H = 2h; F = kg is empty. Suppose that the equalities (4.2), (4.4), (4.5) are

valid. Taking into account the area integral, we transform (4.5) to the form

(r2(s3 + �)� s2r3) �
�
s2
2
� r2

3
+ 4�s3

�
= 0 : (4.6)

Introduce new variables:

p1 = r2(s3 + �)� s2r3 ; q1 = s2
2
� r2

3
+ 4�s3 :

The values of the �rst integrals H, F and the equation (4.6) in terms of the variables (p1; q1) take the

form

2p2
1
� q1 = 2h+ 2�2 + 1 ; (4.7)

q2
1
= 16�2h+ 8�2 + k ; (4.8)

p1 � q1 = 0 : (4.9)

If p1 = 0, then we have the segment of the parabola 4; if q1 = 0, then we have the half-line 2, since

the Hamiltonian is bounded from below.

Suppose

s2 = 0 : (4.10)

The condition (4.1) is valid if and only if

s1(s3 � �)� r1r3 = 0 ; (4.11)

or

r2 = 0 ; (4.12)

(r1(s3 + �)� s1r3) �
�
s2
1
+ r2

3
+ 4�s3

�
= 0 : (4.13)

Under the conditions (4.10), (4.11) the critical values are 1 and 4.

Suppose that the equalities (4.10), (4.12), (4.13) are valid and introduce new variables

p2 = r1(s3 + �)� s1r3 ; q2 = s2
1
+ r2

3
+ 4�s3 :
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Then the values of the �rst integrals H, F and the equation (4.13) in terms of the variables (p2; q2)

take the form

2p2
2
� q2 = 2h+ 2�2 � 1 ; (4.14)

q2
2
= 16�2h� 8�2 + k ; (4.15)

p2 � q2 = 0 : (4.16)

If p2 = 0, then we have the segment of the parabola 5; and if q2 = 0, then we have the half-

line 3, since in this case the solutions are real only for h > 1
2
��2 if 0 < � 6 1

2
; for h > ��2� 1

2
+2�

if 1
2
6 � 6 1; and for h > 1

2
if � > 1.

Suppose
r1 = 0 ; s1 6= 0 : (4.17)

From the system �
(s3 + �)r2 � s2r3 = p1 ;

(s3 + �)r3 + s2r2 = 0 ; (area integral)

we obtain �
s2 = �r3p1 ;

s3 = ��+ r2p1 :
(4.18)

Note that the case r3 = 0 leads to the general situation, which was studied above for s2 = 0. Therefore,

under the condition (4.17) the system �ijkl = 0 is equivalent to the following system of equations:8>><
>>:

p1 = �
2�r2

r2
3

;

s2
1
=

4�2 � r4
3

r2
3

:

(4.19)

Substituting (4.17), (4.18), (4.19) into the Hamiltonian H and the additional integral F , we obtain

the critical values:

h = �
1
2
� �2 + 4�2

r4
3

; k = �16�2
�
4�2

r4
3

� �2 � 1

�
:

Eliminating the variable r3, we come to the familiar relationship between h and k with the same

restriction to the value of the energy h. The analysis of the condition r2 = 0; s2 6= 0 is carried out

analogously.

To complete the proof we use the fact that all singular �bers of the Liouville foliation intersect

the hyperplane r1 = 0 or r2 = 0. Theorem is proved.

Corollary 2. The bifurcation set �(�)n1 is a part of surfaces of multiple roots of the polynomials

R1;2(p), where

R1;2(p) =
�
2p2 � 2h� 1� 2�2

�
2

� 16�2h� 8�2 � k :

Proof.

We can obtain the polynomialsR1;2(p) after eliminating the variable q1 from the system (4.7), (4.8)

and the variable q2 from the system (4.14), (4.15). By virtue of (4.9), (4.16) the polynomials R1;2(p)

have multiple roots.

We study the structure of the bifurcation set �(�). Since �(�) = �(��), we restrict ourselves

to the case � > 0 (recall that the case � = 0 is studied in [24]). The coordinates of the points of

intersections of the bifurcation curves are as follows: 1 \ 2;3 : (k; h) = (0;�1
2
); 1 \ 4;5 : (k; h) =

= (0;�1
2
+ �2); 4 \ 5 : (k; h) = (1; �2). For 0 < � < 1

2
the half-line 3 touches the parabola 5 at
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the point Z4, having the coordinates (k; h) = (16�4; 1
2
� �2); and for 1

2
< � < 1 it intersects the

parabola 4 at the point Z7, having the coordinates (k; h) = (16�2(� � 1)2;��2 � 1
2
+ 2�). The

qualitatively di�erent types of the sets (bifurcation diagrams) �(�) are demonstrated in Fig. 12 a){c):

a) 0 < � < 1
2
; b) 1

2
< � < 1; c) � > 1. Gathering together all information obtained, we represent

the list of the stationary points of the system (1.2) and the corresponding values of the �rst integrals

(which are intersections of the bifurcation curves):

� r2 = r3 = 0 ; r2
1
= 1 ; s1 = s2 = s3 = 0 ; (k; h) = (0; 1

2
) ;

� r1 = r3 = 0 ; r2
2
= 1 ; s1 = s2 = s3 = 0 ; (k; h) = (0;�1

2
) ;

� r1 = r2 = 0 ; r2
3
= 1 ; s1 = s2 = 0 ; s3 = �� ; (k; h) = (1; �2) ;

� for � 2
�
1
2
; 1
�
: r2 = s2 = 0 ; r2

1
= 2�� 1 ; r2

3
= 2(1� �) ;

s1 = �
2�r1r3

1 + r2
1

; s3 = �
�(1� r2

1
)

1 + r2
1

, (k; h) = (16�2(�� 1)2;��2 � 1
2
+ 2�) .

To �nd number of Liouville tori in each connected component of the domain R3
n �(�) we use

methods of computer modelling and the fact that any Liouville torus intersects the hyperplane r1 = 0

or r2 = 0.

On the bifurcation diagram we draw all kinds of \regular" lines h = ai (and then �x an energy

surface Qh). Changing continuously the value of the additional integral F along these lines, we

calculate the Fomenko graphs. Here we use numerical methods to solve the system of di�erential

equations (1.2) and to construct phase trajectories with initial data that are determined for the given

triple (�; k; h) from the following system:8>>>>>>>><
>>>>>>>>:

s1;2 = r1;2 = 0 ;

R1;2(p1;2) = 0 ;

q1;2 = 2p2
1;2 � 2h� 1� 2�2 ;

(1� p2
1;2)r

2

2;1 � 4�p1;2r2;1 � 1� (p2
1;2 � q1;2 � 4�2) = 0 ;

r2
3
= 1� r2

2;1 ;

s2;1 = �p1;2r3; s3 = r2;1p1;2 � � ;

(4.20)

where
p1;2 = r2;1(s3 + �)� s2;1r3 ; q1;2 = s2

2;1 � r2
3
+ 4�s3 :

We actually use the fact that for the polynomials R1;2(p) the bifurcation curves are discriminant. The

number of roots of the polynomials (i. e. the number of connected components) may change only after

going through the discriminant curve1. Thus, choosing a point (�; k; h) in each connected component

of the domain R3
n �(�) and issuing the trajectory with the initial data (4.20), we can determine

number of tori in each connected component of the domain R3
n�(�). To do this it is su�cient to �nd

how many domains are �lled with phase curves everywhere dense. The number of tori is indicated

in Fig. 12.

We show that for 0 < � < 1 the segment Z2{Z5 corresponds to the atom A�. As it was proved in

Theorem 1, for h < 0 the manifold Q3

h is the union of two spheres S3. Consequently, in particular, on

the line k = 0 there are two separated bifurcations of a torus to a torus. For 0 < � < 1 the preimage

1This is supported by Appelrot [1] and Kharlamov [18] devoted to the Kovalevskaya gyroscope. In the �rst paper

domains of \real motions" (i. e. the projections of the integral manifold onto the equatorial plane) are studied in

dependence on number and location of real roots of the basic polynomial. In the second one number of preimages of each

interior point of domains of real motions is speci�ed. Then it is possible to �nd number of Liouville tori, corresponding

to any component of the complement to the discriminant of the basic polynomial.
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of the segment k = 0;�1
2
+ �2 < h < 1

2
is the critical set s1 = s2 = r3 = 0, which can be represented

in space (r1; r2; s3) as intersection of two surfaces

�1;2 :

�
s2
3
+ r2

1
= a2 ;

s2
3
� r2

2
= a2 � 1 ;

where a =

r
h+ 1

2
. On the segment Z2{Z5 we have � < a < 1. Putting

s1 = s2 = r3 = 0 (4.21)

in (1.2), we �nd the parametric representation of the closed curves �1;2
�= S

1 in terms of the Jacobi

functions with the modulus a

�1;2 :

8<
:

r1 = �a sn' ;

r2 = �dn' ;

s3 = �a cn' ; where ' = 2(t� t0) :

(4.22)

We consider the solution (4.21) and �1. Through the point ' = 0 we draw the hyperplane r1 = 0,

which is orthogonal to this trajectory. Its intersection with the level Jh;0 = fx 2 T �S2 : H = 2h; F = 0g

is determined by the following equations:

r2
2
+ r2

3
= 1 ; s2r2 + (s3 + �)r3 = 0 ; s2

1
+ s2

2
+ 2s2

3
+ r2

3
= 2a2 ;

(s2
1
+ s2

2
)2 + 2r2

3
(s2

1
� s2

2
) + r4

3
+ 8�(s3 � �)(s2

1
+ s2

2
) + 8�r2r3s2 = 0 :

Taking the value r3 as a small parameter " in the neighborhood of the trajectory, we obtain the

parametric formulas for the surface Jh;0:

r1 = 0 ; r2 = 1� "2

2
; r3 = " ;

s1 = �

s
a� �

a+ �
(1 + �2 � a2) ; s2 = �"(�� a) ; s3 = �a+ "2

2(�+ a)
;

Clearly, this is the \cross". Since the bifurcation has the form T
2
! V ! T

2, this is possible only if

V = A�. For the other solution (4.21) and �2 the arguments are the same.

We note that the equations (4.21){(4.22), like in the Sretensky case [19], can form the basis for

study splitting of separatrices [21, 22].

Fig. 4

It can be shown that for 0 < � < 1 the point Z5, having the coordinates

(k; h) = (0; 1
2
), is a \saddle-saddle" point of zero-rank multiplicity 2 (its preimage

contains two nondegenerate points of zero rank). In the neighborhood of this point

the bifurcation diagram is homeomorphic to two transversal intervals with a common

point. The loop molecule has the form illustrated in Fig. 4. All loop molecules that

correspond to the saddle-saddle points of multiplicity 2 are described in [6]. The

complete list contains 39 molecules. There are exactly 2 molecules (V1; V2) in the

list that �t our case: they are (P4; C2) and (L1;D2). In any case, as V3 we have the

bifurcation 2B.

In order to distinguish the atoms C2 and D2, we use one of the most important property of

atoms | the symmetry2. It is known that the atom D2 has no symmetries, interchanging singular

one-dimension orbits, whereas the symmetry group of the atom C2 is Z2�Z2 [4]. In our problem we

can represent this symmetry group in an explicit form.

2In general, the fact that in integrable problems of rigid body dynamics there are atoms di�erent from A and B is a

consequence of symmetries of these problems. Therefore, it would be natural to use these internal symmetries to classify

bifurcations.
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Type

of singular point
Loop molecule

Nondegenerate singular point

of \center-center" type
A A A A

0 0

Singular

point

Z1

Z2

Degenerate

singular orbit A A* A A A* A
0 0

1

2

1

2

Z3

Nondegenerate singular point

of \center-saddle" type

A``̀
�

�
�
C2
 
 
 

X
X
X

A1 1

1 A1A

a

a
a

@
@

A
A

0
0

1

11

C2

P4

1Z4

Degenerate

singular point

B

B

A*

A*

P4C2

0

0
0

0

0

0

0

0

1

2

1

2

Z5

Nondegenerate singular point

of \saddle-saddle" type

A

B

C2

1

0

1

1

A B
"

"
"

H

H
H

A

A

0

0

0

Z6

Degenerate singular orbit

of elliptic type

A

A

X
X
X

�
�
� P4

(
((

h
hh

X
X
X

A
A
A
A

1

1

1

1

1

1

Z7

Nondegenerate singular point

of \center-saddle" type

Z8

Nondegenerate singular point

of \center-center" type A A A A
0 0

Z9

Nondegenerate singular point

of \center-saddle" type

A

A

X
X
XX

�

�
�
C2
 
 
  

X
X
XX

A

A

1 1

1 1

Z10

Degenerate singular orbit

of elliptic type
A B

�
��

X
XX

A

A
A B

�
�
�

X
X
X

A

A

0
0

0
0

0

0

Table 2. Loop molecules of the singular points.

Obviously, the system of the �rst integrals possesses the following symmetries:

� �1 : (s1; s2; s3; r1; r2; r3)! (s1; s2; s3;�r1;�r2;�r3),

� �2 : (s1; s2; s3; r1; r2; r3)! (�s1; s2; s3;�r1; r2; r3),

� �3 : (s1; s2; s3; r1; r2; r3)! (s1;�s2; s3; r1;�r2; r3),

� �4 : (s1; s2; s3; r1; r2; r3)! (�s1;�s2; s3; r1; r2;�r3).

Since all symmetries preserve the �rst integrals and the level surfaces, they give rise to symmetries

of atoms (to each other or to themselves). Since the preimage of each point from the segment (i)

(see Fig. 12) is connected, these are symmetries of the atom V2 to itself. We show that among these

symmetries there are symmetries, changing singular circles.
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h Q3

h W *(Q3

h
)

a1 2S3 A A A A

a2 2S3 A A* A A A* A

a3 S1� S2
A

A

A*

A*

X
X
X

!

!
!
C2

�

�
�

P

P
P

A

A

a4 S
1
� S

2

A A*

A A*

a

aa

�

��

P4

�

�

(
(
(
(
(( A

A

a5 RP 3

A

A

X
XX

"

""

C2
�
�

P
P

B

B

!
!A

a6 RP 3 C2

�
�
� A

A �
�
�

�

��

P

PP

A

A

C2
X

X
X

!

!
!

A

A

b N3

A A*

A A*

a

a

!

!
P4

�

�

��

(
(
(

h
h
h

P

P

PP

A
A

A

A

c S1� S2
A

A

X
XX

�

��
C2

 
 
 

`
`
`

A

A

d S
1
� S

2

A

A

a

a
a

�

�
�

C2

!
!

B

H
H

B

�
�

h
h

�
�

X
XX

A

A
A

A

`
`

P

P

P

P

PP

A

A

X
X

(
(
(
((

h
h
h
hh

A
A

A

0 0 0

0

0

0

1

1

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0 0

0

1

0 1

0

1

2

1

2

1

2

Table 3.

As it was proved, each torus and each closed trajectory in the neighborhood of the point Z5

intersect the hyperplane r1 = 0. Consider the intersection of singular trajectories in the preimage of an

arbitrary point of the segment (i) with this hyperplane. The intersection points have the coordinates

(s�
1
; s�

2
; s�

3
; r�

1
; r�

2
; r�

3
), where s�

1

2 =
4�2 � r�

3

4

r�
3

2
, s�

2
=

2�r�
2

r�
3

, s�
3
= �

�(2� r�
3

2)

r�
3

2
, r�

1
= 0, r�

2

2 = 1 � r�
3

2.

Here r�
3
is a root of one (any) of the equations h+ 1

2
+�2 = 4�4

r�
3

4
or k = �16�2

�
4�2

r�
3

4
��2�1

�
. Since r�

3

can be obtained from the equations up to the sign and there is arbitrariness in choosing of signs of

the coordinates s�
1
and r�

2
, we can conclude that two singular trajectories intersect the surface r1 = 0

at eight points, and each trajectory intersects this surface at four points. To separate points lying

on the same trajectory we use computer modelling. We take an arbitrary point (s�
1
; s�

2
; s�

3
; r�

1
; r�

2
; r�

3
),

issue a trajectory, and observe change of signs of the coordinates s1, r1, and r3, when the trajectory

meets the hyperplane r1 = 0. The results of computer analysis are as follows. The sequential points

of intersection of the trajectory with the surface r1 = 0 are

(s�
1
; s�

2
; s�

3
; 0; r�

2
; r�

3
)! (s�

1
;�s�

2
; s�

3
; 0;�r�

2
; r�

3
)! (�s�

1
;�s�

2
; s�

3
; 0; r�

2
;�r�

3
)! (�s�

1
; s�

2
; s�

3
; 0;�r�

2
;�r�

3
) :
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Therefore, we know which four points lie on the chosen trajectory. The remaining four points belong

to the second one:

(�s�
1
; s�

2
; s�

3
; 0; r�

2
; r�

3
)! (s�

1
; s�

2
; s�

3
; 0;�r�

2
;�r�

3
)! (�s�

1
;�s�

2
; s�

3
; 0; r�

2
;�r�

3
)! (�s�

1
;�s�

2
; s�

3
; 0;�r�

2
; r�

3
) :

It remains to chose symmetries �i that take the points of intersection of the �rst trajectory with the

hyperplane r1 = 0 to the points of intersection of the second one with the same hyperplane. Obviously,

the symmetries obtained interchange the singular trajectories. After examining each symmetry �i we

obtain that �1, �2 interchange the trajectories and �3, �4 do not. Besides, we see that �1 and �2 generate

the entire symmetry group of the atom C2. Analogously, we can prove that the atom realized at the

segment (j) (see Fig. 12) is P4.

Consequently, by the theorem on classi�cation of \saddle-saddle" points of zero-rank multiplic-

ity 2 [6] the loop molecule with the given atoms is unique; it is illustrated in Fig. 2. The information

about the remaining singular points Z1{Z10 and their loop molecules is indicated in Table 2.

If we know bifurcations of Liouville tori in neighborhoods of singular points, then we can calculate

the numerical marks ri of the molecule W
� on the corresponding energy surfaces Q3

h for any �xed �

and h. To �nd the marks ri we use the method of summing loop molecules [4]. For each domain in

the plane R2(�; h) Fig. 6 illustrates the pair (Q3

h;W
�), which consists of the energy surface Q3

h and the

marked molecule W �, but with the marks ri. In this �gure the pairs are denoted by (Q3

h; i); i = 1; 9.

There is natural correspondence between zones in Fig. 6 and energy intervals in Fig. 12 a){c). The

energy levels h = ai correspond to the zones of numbers i = 1; 2; 3; 4; 5; 6, and the energy levels

h = b; c; d correspond to the zones of numbers i = 7; 8; 9, respectively. The complete list (Q3

h;W
�) is

represented in Table 3.

In conclusion we formulate the theorem for almost general case. It can be proved using the same

scheme and will be published in a separate paper.

�heorem 5. The bifurcation set �(�) is

a) the union of curves �i(�), where

�1(�) :

(
k = 4�2;

h > �
1
2
� � ;

�2(�) : k = (2h� 1� 2�2)2 + 4�2 ;

�3(�) :

8><
>:

k = �16�2p2 + 16��p + 16�4 � 16�3�
p + 4�2�2

p2
;

h = �
1
2
� �2 + p2 + ��

p ;

�4(�) : k = 4(�2 � 4�2)h� �4 + 4�2�2 + 2�2 + 8�2 ;

if  = 0. The example of a bifurcation diagram is illustrated in Fig. 13.

b) the union of curves �i(�), where

�1(�) :

8<
:

k = 42 ;

h > �
1
2
�

2

4
;

�2(�) : k = (2h + 1� 2�2)2 + 42 ;

�3(�) :

8><
>:

k = �16�2p2 + 16�p+ 16�4 �
16�3
p +

4�22

p2
;

h = 1
2
� �2 + p2 +

�
p ;

�4(�) : k = �4(2 + 4�2)h� 4 � 4�22 + 22 � 8�2 ;

if � = 0. The example of a bifurcation diagram is illustrated in Fig. 14.
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It can be shown that the bifurcation sets, like in the previous cases, are parts of surfaces of

multiple roots of some polynomials. For each case we �nd the complete list of the Fomenko invariants.

Here the atom P4 bifurcates to more simple atoms 2B and C2; this e�ect shows that the atom P4 is

unstable under perturbations.
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Fig. 5 a) Fig. 5 b)

Fig. 6. Topological type of Q3

h in the case � 6= 0; � =  = 0

Fig. 7 a) Fig. 7 b)
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BIFURCATION SETS IN AN INTEGRABLE PROBLEM ON MOTION �

Fig. 8 a) Fig. 8 b)

Fig. 9 a) Fig. 9 b)

Fig. 10 a) Fig. 10 b)
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Fig. 11 Fig. 12 a) Bifurcation set �(�) for 0 < � < 1
2

Fig. 12 b) Bifurcation set �(�) for 1
2
< � < 1 Fig. 12 c) Bifurcation set �(�) for � > 1

Fig. 13 a) Fig. 13 b) Fig. 14
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