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In the paper, topology of energy surfaces is described and bifurcation sets is constructed for the classical Chaplygin
problemn and its generatization. We also describe bifurcations of Liouville tori and calculate the Fomenko invariant
{for the classical case this result is obtained analytically and for the generalized case it is obtained with the help
of computer modelirg). Topological analysis shows that some topoloegical characteristics (such as the form of the
bifurcation set) change conrtinuously and some of them {such as topology of energy surfaces) change drastically as

g—=0.

1. Introduction

The classical Chaplygin problem describes a particular case of motion of-a rigid body in fluid.
The fluid is in irrotational motion, at rest at infinity, and unbounded in all directions. In [2] Chaplygin
described this motion by the following system of the Kirchhoff equations:

81 = —5283 — crary, T] = sar3 — 235373,
.52 = 5153 —Mry. f‘g = 2837‘1 — & ra, (l)
S3 = 2cr17a, T3 = §1T3 — Sary,

where ¢ is a certain constant, describing characteristics of the body.
The first integrals of these equations have the form

fHi=ri+rd+ri=f (geometric integral),
fo=siri+sretsara=g {area integral),

1 c X .
H= 5(3? + 53 4 2s3) + §(r% -713) {Hamiltonian).

In the case ¢ = 0 Chaplygin found the additional integral of system (1):

K = (s? — 5% +cr})? + 4sisl.

REMARK 1. Sysiem (1) also appears in the problem on motion of a rigid body about a fized poini.
Distribution of masses of the rigid body is subjected to the Kowalevskii conditions (A = B =2C), and
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the potential has the form g(rf —r2). This problem for the potential energy of the more general form
was considered by Goryachev {5]. The additional integral, which generalizes the Kowaleuskii case, is
also mentioned in [5].

Note that after certain linear changes of coordinates and time parameter we can make the
constant f of the geometric integral and the constant ¢ to be equal to 1. These changes of variables
do not influence topological analysis of the problem. In what follows, we assume f =1, c= L.

System (1) can be considered as a Hamiltonian system on an orbit of the co-adjoint representation
of the group of motions of threc-dimensional Euclidean space in its co-algebra ¢(3)*. The variables
Sy, 82, 83, T1, T2, T3 are the standard coordinates in e(3)* endowed with the Poisson structure

{8i,8;} = €ijusk, {rinri} =0, {si,7j} = {ri,5;} = eiare,

and the orbit M? is represented by the equations {fy = 1, fo = 0}. The additional integral KX is
almost everywhere independent of H; therefore, the system is completely integrable in the sense of

Liouville.
In [2] separation of variables is found. We set

_si+s3+K

st+si—-K
r3 ’

Ag =
] 7'%

Ay

Then the dynamical system can be written in the new variables A, Az as

j‘l = V-Pl(’\}r . (2)

’.\2 = P?(’\]s

where i .
P(A) =202 - 1)(A—a), P(2)=2(1-2%)(8-2),

a=2H+ VK, p=2H-VK.

Note that this transition is degenerated for K = 0.
The generalization of the Chaplygin problem was obtained by Borisov and Mamaev in [1]. They

consider the Lie algebra endowed with the following Poisson structure:
{s1,32} =53+ ri%’ {s1,83} = =382, {52,853} = s1.
{rir;} =0, {sir;} ={ri,s;} = €ijure.
This Poisson structure is nondegencrate on the orbit M = {f| = I, f» = g}, where

o
h=r}+ri+73

f2 = r3(s1r1 + saro + s373),

and the Hamiltonian 1 c
H= 5(3? + sg + 23%) + §(r¥ - rg)

defines the Hamiltonian system

. 932 R .
5| = —8383 — CTaTy + ot T = 8§23 — 28379,
3

. 31 . .
§2 = §)83 —Ccriry — g'—2, Ty = 2331‘"1 — 8173, (3)

T

3

83 = 2cryry, T3 = 8172 — 8271,
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on this orbit. This system is integrable in the sense of Liouville by means of the same additional
integral

K = (s? = s3 + cr3)? + dss3.
From the physical point of view this generalization describes the motion of an axially symmetric rigid
body (4 = B = 2C) about a fixed point in superposition of two uniform force fields. The centers of
these fields lie in the equatorial plane of the inertia ellipsoid at equal distances from the fixed point.
This analogue of the Kowalevskii case was considered by Yehia [9], who however described it in terms
of other variables. As before we set ¢ = 1. For g = 0 we get the classical Chaplygin problem.

In the present paper, topology of energy surfaces is described and bifurcation sets is constructed
for the rlassical Chaplygin problem and its generalization. We also describe bifurcations of Liouville
tori and calculate the Fomenko invariant (for the classical case this result is obtained analytically and
for the generalized case it is obtained with the help of computer modeling). Topological analysis shows
that some topological characteristics (such as the form of the bifurcation set} change continuously and
some of them (such as topology of energy surfaces) change drastically as g — 0.

The authors express their deep gratitude to Profs. Alexey Bolsinov and Alexey Borisov for useful
advices and discussions.

2. Necessary definitions

Let (M*,w) be a symplectic manifold and let v = sgrad H be a Hamiltonian system on it.
Suppose that the system is completely integrable by means of an additional Morse-Bott integral K.
By the Liouville theorem, each nonsingular compact level surface of the first integrals H and K is a
disconnected union of two-dimensional tori {Liouville tori) with quasiperiodic motion on them,

The mement map & : M1 - R? assigns to a point z on the manifold the pair of values H(x)
and K(z): z — (H(z),K(z}). Clearly, a Liouville torus is mapped to a single point in the plane
(h, k). The set of singularities F of the moment map is the set of points of M* at which the functions H
and K are dependent: F = {r € M* : rankd®(z) < 2}. The image & = ®(F) of this set is called a
bifurcation set. The surface Q} = {z € M3 H(z) = h} is called an energy surface. In what follows,
we asswine that this surface is nonsingular and compact.

Consider two systems v and +' on-manifolds M and M’, respectively. We restrict them on energy
surfaces Q and . Decomposition of these manifold by connected components of level surfaces of
the additional integrals is called their Liouwville foliations. We also consider a manifold Q" that is
constructed from Q, using several operations of the following type: the manifold @ is cut along a
Liouville torus, and then the boundaries are glued again by a diffeomorphism of boundary tori. This
operation is called twisting along a Liouwville torus.

Definition 1. Two systems v and ¢’ on energy surfaces Q@ and Q' are called roughly Liouville
equivalent, if there exists a manifold Q" obtained from @ with the aid of twistings along tori such that
Q' and (" are fiberwise iomeomorphic. This means that there exists a homeomorphism (preserving
oricntation) that takes @' onto Q" and preserves the Liouville foliations of these manifolds.

In [3] Fomenko constructed the topological invariant for the systems with two degrees of freedom.
This invariant classifies integrable Hamiltonian systems on energy surfaces up to rough Liouville
cquivalence. According to this theory, the Fomenko invariant, or the molecule, W (Qi,v) is assigned
to each nondegenerate integrable Hamiltonian system v restricted to the energy surface @Qj. This
invariant is a graph, describing the Liouville foliation of the energy surface Q3. The edges of the
graph correspond to one-parameter families of nonsingular Liouville tori, and its vertices {(=atoms)
describe bifurcations of these tori on singular levels of the integral XK. One of the main results of the
theory is the following: two nondegenerate integrable systems are roughly Liouville equivalent if and
only if their molecules coincide.

84 RECULAR AND CHAOTIC DYNAMICS, V.3, N 1, 1908



BIFYRCATION SETS @

The simplest bifurcations (atoms) are denoted by A and B: the bifurcation A characterizes
degeneration of a torus to a circle, and B denotes bifurcation of one tori to two ones (or, conversely,
gluing of two tori to one torus). Besides, in problems, possessing some symmetry, the atom C; often
appears; it describes symmetrical bifurcation of two tori to other two ones.

In our problem the manifold M* is given by the equations {f; = 1, fo = g} in the space RS,
and the symplectic structure is defined through the Poisson structure. The Hamiltonian system (3) is
Liouville integrable, and we will prove that the energy surface Q3 is compact for any h. We will denote
the bifurcation set for f2 = g by Z(g). Thus, £(0) is the bifurcation set for the classical Chaplygin

problem.

3. Topology of energy surfaces

Theorem 1. In the classical case the surface Q3 has the following topological type:
1. @ for h < —1/2,
2. 28° for -1/2 < h <0,
2 S'x 8% for0 < h<1/2,

4. RP? for1/2 < h.

Proof.
Topological type of the energy surface @} = {H = h} can be studied with the help of the
projection 7 to the Poisson sphere §2 = {r? +r3 + 13 = 1} (see {8, 6]). In our problem the projection
maps the surface @} onto the domain determined by the condition

@(r) <h, (4)
where 1
olr) = 501 1.

The function () is the Morse function on the sphere. Having studied its singularities, we obtain
that for various values i the domain has the following form: the domain (4} is empty for A < =1/2,
it has the form of two discs for —1/2 < h < 0 and an annulus for 0 < h < 1/2, it coincides with the
sphere for & > 1/2. This means that for h < —1/2 the surface Qﬁ is empty, for —1/2 < h < 0 it
consists of two §3, For 0 < h < 1/2 the energy surface is homeomorphic to §! x §2, and for A > 1/2
it is homeomorphic to RP3. Theoremn is proved. =

Theorem 2. In the generalized case the surface Q?x has the following topological type:
1. @ for h < h(g),
2. 48° for h(g) < h < g%,
3. 283 for g° < h.

Here the sepamtfrzg curve hig) is given paramelrically:

_1-3 1t

h= """Z:Eg_a g= 2% 1 te [-1)0) U (07 1] (0)

Topological type of Q% and the separating curves h = g° and h = h{g) are represented in Figure 1.
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Proof.
We show that in the generalized case the projection = to the Poisson sphere $* = {ri+r3+r? =1}
maps the surface Q} onto the domain determined by the condition

wglr) < h (6)

where

92

(r)-.—.-l r2—f’2+————+g—r2~
¥g g 't 72 2-1r3 2}

The surface Q} is stratified over this domain with the circle fiber contracted to the point over the

boundary.
To prove this fact we introduce new variables w; by the

formulae:
5= -“lf‘g + w;.
. r3
Then in variables (r, w) the equations of the orbit M=
{fi =1, fy = g} take the form
r% + 7‘% + f‘%,

riwe + rows + rawg = 0,

and the Hamiltonian is written down as
1 2 1 2 2
H=§(w¥+w§+2(w3+%) )+§(%+f—§+rf-r§).

We fix a value h of the energy and a point r = (ry,72,73) On
the Poisson sphere and try to find the preimage 7 ~!(r) of this point on the surface Q3. Obviously,
the preimage of this point is the intersection of the ellipsoid

1 2 1 b4 2 )
-(w?+w§+2(w3+g))=h—§(—g-é-+%+rf-r§) (7)

Fig. 1.

2
with the center (0,0, —g¢/2) and the planc
Tty + rotws + 3wz = 0

in the space (w,ws,ws). For simplicity, we denote the right-hand side of equation (7) by pg(h,r). It
can be casily shown that for pg(h,7) < g°r5/(8 — 4r%) the plane does not intersect the ellipsoid, for
polh,r) = ¢*r3/(8 - 4r3) it touches the ellipsoid, and for py{h, ) > g°r3/(8 - 4r2) the plane intersects
the cllipsoid along the circle.

Replacing py(h,r) by its expression in terms of g, &, and r, we obtain that the preimage of the
point {ry,r2, 3} is not empty if and only if

i . 2 2
h2§(r}’—r§+é—g?§+g—§-). (8)

It is casy to see that for ¢ = 0 the function @g(r) gives the function ¢(r}. Since there is the
variable r3 in the denominator of (8) for g # 0, the domain (6) does not contain the circle r3 = 0 for
any k. Thus, the surface Qi always consists of at least two disconnected parts.

For g # 0 the function g,4(r) is the Morse function and has four singular points of index 0 (two
points in each domain r3 > 0 and r3 < 0) on the level A = h(g) (where h(g) is determined by
formula (5)) and two singular points of index 1 (one point in each domain r3 > 0 and r3 < 0) on the
level h = g2, Thus, the domain (6} is empty for A < &(g}, it has the form of four dises {two discs in
the domain r3 > 0 and two ones in the domain r3 < 0) for A(g) < k < g% or two discs (one disc in
cach domain r3 > 0 and r3 < 0) for g® < h. Theorem is proved. [ ]

86 REGULAR AND GAQTIC DYNAMICS, V.3, % (, 1098



BIFURCATION SETS @

4. Bifurcation set

To determine the bifurcation set we neced some simple propositions based on the analysis of
right-hand sides of systems (1), (3).

Proposition 1. Any fized point of the flow sgrad H lies on the hyperplane ry = 0 or ro = 0, Any
closed trajectory of the flow sgrad H intersects the hyperplane ry =0 orry = 0.

Proof.
We have ; =0, /; = 0,¢ = 1, 2, 3, at any fixed point of the flow. In particular, the third equation

of systems (1) and (3) gives us $3 = 2r;re = 0, whence r) = 0 or r; = 0. We now consider an arbitrary
closed trajectory. Since the coordinate s3 depends on time periodically on this trajectory, there exists
an instant of time #p such that $5(fp} = 0. Therefore, by virtue of the third equation of the system we

have ry{#p) = 0 or rz2(¢p} = 0.
|

Propaosition 2. Any Liouville torus intersects the hyperplane ry =0 or v, = 0.

Proof.

We take an arbitrary point on the Liouviile torus and issue the trajectory from it. This trajectory
is either closed or everywhere dense on the torus. The coordinate s3 depends on time periodically
or almost periodically on this trajectory. Then there exists ty such that $3(ts) = 0. Therefore, the
trajectory (and, consequently, the Liouville torus) intersects the hyperplane r; = G or rp = Q. [ |

Corollary 1. Singular fibers of the Liouuille foliation intersect the hyperplane ry =0 or rg = 0.

Proof.
A singular fiber of the Liouville foliation has a fixed point or a closed trajectory. Therefore, it
intersects the hyperplane r; =0 or 1o = 1. |

Theorem 3. The bifurcation set £(0) is a union of the curves v1, 2, 3, where

n: k=0, h>-1,

y2: k=(2r+1)2 &

y3: k={2r-1)% h>0.
The bifurcation set is tllustrated in Figure 2.
Proof.

In order to calculate Z{0) we study singularities of the system of the first integrals f, f2, H,
and K. It is convenient to determine critical points of the moment map from the condition

rank J < 4,
where
5] 53 253 1, —-r¢ 0
g=| 57 +25182 —son+2s3sy 0 0 0 rap (9)
i re rs 8 & 33
0 0 0 m 13

is the Jacobi matrix of the map H x K x f; x fo. We introduce the notation np = s7 — s3 + r3 into
formula (9) .
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According to Corollary 1, it is sufficient to consider the cases r; = 0 or r; = (. First we suppose
1= 0.

In this case the condition rank J < 4 is valid if and only if all A;jx are equal to zero. Here
Ay are determinants of matrices consisting of columns of the Jacobi matrix (9) with the numbers

1<i<i<ck <<t
We solve the system of equations A;j = 0 for 1y = 0 in

the case

81=0.

In this case the relation

(=83 + r2)(rasa — ros3)(rars + sp83) = 0

is valid at the critical points. From this relation and the system
of the first integrals we find the bifurcation curves v, and 7.
Now suppose

Fig. 2. ry = 0.
We consider the system of equations Ay = 0 for r2 = 0 in the case
s0 =0,
With these assumptions we obtain the following relation for the critical points
(s2 +r3)(rss1 — rys3)(ryrs — s183) = O,

The corresponding critical values determine the curve «3.
Analysis of other conditions r; = 0,31 # 0 and ry = 0, 52 7 0 shows that there are no bifurcation

curves other then «;. Theorem is proved. [ ]

REMARK 2. [t can be easily shown that in the classical Chaplygin case the bifurcation curves v; are
parts of surfaces of multiple roots of the polynomials P;(A), 1 = 1, 2, which appear in separation of
variables. This fact is not accidental. If in a problem the separating variables are found, then we often
seek the bifurcation set in the form of a surface of multiple roots of the corresponding polynomials
(see, for example, {4]}. However, in some probdlems separating variables have not known yet. Analysis
of rank of the Jacobi matriz for the map H x K x fy x fo allows us to obtain the equation of the
bifurcation set and even to find polynomials, whose multiple roots give these equations, in all cases
withou! scparating variables (see [7]). Polynomials of this type are found in the generalized Chaplygin
case as shown in the theorem below. Probably, these polynomials {or similar polynomials) take part in
separation of variables.

Theorem 4. For nonzero arca constant the bifurcalion set £(g) is a union of the curves 5. ¥s. Y-
Here the curve vy is a half-line
g% + 2gs(1 - 57)
(1-—s2)°
and the curves 7y;, vs are paris of surfaces of multiple roots of the polynomials
Ri{A\) = ag )\ + a30* + aph? + ay A + ay,
Ra{)\) = byAt + 5323 + by A2 + by A + by,

s€(-1,1),

k=0, h(s)=%+

a8 REGULAR AND CHAQTIC DYNAMICS, V.3, N 1, 1998



BIFURCATION SETS @

where
a3 = (1 +0)?,

a3 = —2(fa + o + B + 3a — 8¢% + 2),

ay =t +4Ba+a? +6(8+a+1)+4g%(a— 25~ 9),
ay = ~-2(8% + Pa+38+a+2¢%(a-38-6)+2),

ap = (14 8)? +4g%(8* - 8- 1),

by = (1~ 8)%,

by = —2(8% + P — 38 — a + 8g% + 2),

by =2 +48a+a® ~6(B+a—1) +4¢*(f - 2a +9),
b = =2(Ba +® ~ 8 — 3a+2¢%(B — 3a +6) + 2),

bo = (1 —a)? +4¢%*(g* - a+ 1).

Here, as before, a = 2H + VK, B=2H - VK.
The bifurcation set is illustrated in Figure 3.

Proof.
Similarly to the previous theorem, it is convenient to determine the critical points of the moment

map from the condition

rank J < 4,
where

81 52 253 1 -T2 0

sim+2ss2 ~sm+2sls, 0 0 O r3n
J= g + 5373

T ry T3 S5 $2 5
Ta -

0 0 0 1 m r3

is the Jacobi matrix of the map H x K x f{ x fa, fI = (fi ~ ¢)/r3. We introduce the notation
7= s? — 33 + 73 into formula (9).

According to Corollary 1, it is sufficient to consider the
cases r; = 0 and ry = 0. Suppose

r =0

We solve the system of equations A, = 0 for vy = 0 in
the case

f 8 = Q.
,. Then the relation

(—s3 + r3){r3(s2s3 + ror3)v + gs2sym2} = 0

takes place at the critical points. Here we put

Fig. 3. v = 837 — $13. (10}

From the systcimn of the first integrals we obtain the curve v; as well as the curve

]

p=i( L +v? 4+ (rov+ 92 13 ),
2\1-r3 2

2
ara 2
k:(l—f‘%}g{lh(ﬁ%—v)} '

(11)
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where the variable v (with regard to relation (10)) satisfies the equation
ra(1 — )% 4+ g1 = 3% — {1 = 722 + $Pr3 v - % =0

forrp € (—1,1).
If we eliminate the variable v, then system (11) can be represented in the form Ri(re) =

R{(r2) = 0. Thus, we obtain the curve ;.
Consider the case ry = 0, s2 = 0. Similarly, we find the system of equations, which determines

the other bifurcation curve:

r 1 gz 2
h=z +u+ (riu+g)?+r?),
2 l_?l

2
J k:(l—r¥)2{1+( 92‘1¥_u)2} ,

ri(1 —r$)%® + g(1 — r¥)?-
L -7'1{(1 =) - g*rilu-g’ri =0

for r) € (—1,1) and u = rys3 — r3s;.
Eliminating the variable u, we represent this system in the form Ry(r|) = 0, Ry{r|) =

Therefore, we obtain the curve 4.
It can be shown that the cases s; # 0 and s> # 0 do not give new curves. Theorem is proved.
[ |

In conclusion, we formulate the results, concerning the number of Liouville ton in the preimage
of the moment map and analysis of their bifurcations.

Theorem 5. In the Chaplygin problem the preimage of any nonsingular value of the moment map
consists of two tori. All saddle bifurcotions have the type Cy. The Fomenko invariant is given in

Table 1 for various energy levels.

Proof.
To prove this theorem we analyze dynamical system (2) in terms of separating variables (X;, A3)
and the formulae of transition from the initial variables (s,r) to the separating variables. n

In the generalized case, we find the number of tori in the preimage of the moment map and
describe their bifurcations with the help of computer modeling. Number of tori in various domains
of the image of the moment map are shown in Figure 3. The Fomenko invariant for the generalized
case is given in Table 2. Note that the bifurcation set for the generalized case continuously transforms
to the bifurcation set for the classical case as ¢ — 0. However, the number of tori in some domains
is doubled. This can be explained by the fact that tori, intersecting the circle ry = 0 for g = 0 in
the projection to the Poisson sphere, are “cut” by this circle into two tori for g # 0. Besides, we
can observe decomposition of the singularity Cy (in the classical case) into mnore simple bifurcations
of type B (in the generalized case). This fact very often takes place in perturbations of integrable
systenis, when systerns lose their symetry.

Topological analysis of the generalized Chaplygin problem shows that this problem is a substan-
tially different generalization of the Kowalevskii case (in formulation [9]): comparison of topological
invariants shows that the Kowalevskii case and the case [9] are not Liouville equivalent, and, moreover,
are not orbitally equivalent.
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h a wi(Q})
A—4A A—A4
A 4] Wi b 48°
A— 4 A —
L1 b A—/@8 4 A— 4 A
> B 4
A P A L 25% A
ap gl x 8% >C,\ .4\_\ 5 4
A 4 1 —
A ~— /:l A ~
a3 rM Cy B—B— A
.4/ T~ ) a A 4
by 283 .4\
fig B— A
Y
Table 1. Table 2.
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BUOYPKAIIHOHHBLIE MHOKECTBA B OJJHOH 3AZTAUE O IBHAEHHHN TBEP-
BOT0 TEJA B #UJKOCTH H EE OBOBIIIEHHH

Hocmynusa o pedawyuw 9 woxr 1998 ..

B craTtbe omticaita TONOIOTHA IHEPTeTHYECKHX NOBEPXUOCTEA H NOCTPOeHE] GHdY PRAUMOHNLIC MIOKECTRA 2IA Kaac-
ciyeckoft 2aJaui Yanabirunaa i ee 06o6mennit. Mbl TaK#C onnesipaes Gidy praui TopoR THY BHAIA 1 BLINUCIRCM
nuBapianTs! Posenro (114 RIZCCHYECKOro CIVYAA STH PE3YILTATH! AOIYHCHb ANATUTHYECHN, 8 DAR obobiuleHlioro
MpPH NOMOUIN KOMILIOTEPHOTO MogeupoBanita). Tomonormyeckitfl anains nokalbiBaeT, YTO HEKOTOPLle TONO.IOI-
wecKile XapekTepUCTHRH (Takue Kak Qopva 6iidyPHAUNOIHOTO MHOKECTEA) HIMEHAIOTCA HOMPephIBHO, 8 OPYTHe
(kax TonoJOrMA 3HepreTHYECKMX NOBepXHOCTel) TepuaT padpes npu g — 0.
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