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Abstract—We investigate the phase topology of the integrable Hamiltonian system on e(3)
found by V.V. Sokolov (2001) and generalizing the Kowalevski case. This generalization
contains, along with a homogeneous potential force field, gyroscopic forces depending on the
configurational variables. The relative equilibria are classified, their type is calculated and the
character of stability is defined. The Smale diagrams of the case are found and the isoenergy
manifolds of the reduced systems with two degrees of freedom are classified. The set of critical
points of the momentum map is represented as a union of critical subsystems; each critical
subsystem is a one-parameter family of almost Hamiltonian systems with one degree of freedom.
For all critical points we explicitly calculate the characteristic values defining their type. We
obtain the equations of the diagram of the momentum map and give a classification of isoenergy
and isomomentum diagrams equipped with the description of regular integral manifolds and
their bifurcations. We construct the Smale – Fomenko diagrams which, when considered in the
enhanced space of the energy-momentum constants and the essential physical parameters,
separate 25 different types of topological invariants called the Fomenko graphs. We find all
marked loop molecules of rank 0 nondegenerate critical points and of rank 1 degenerate periodic
trajectories. Analyzing the cross-sections of the isointegral equipped diagrams, we get a complete
list of the Fomenko graphs. The marks on them producing the exact topological invariants
of Fomenko – Zieschang can be found from previous investigations of two partial cases with
some additions obtained from the loop molecules or by a straightforward calculation using the
separation of variables.
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1. PRELIMINARIES

The coalgebra g0 = e(3)∗ can be realized as R
6(M, α) with the Poisson bracket

{Mi, Mj} = εijkMk, {Mi, αj} = εijkαk, {αi, αj} = 0. (1.1)

For a given function H of M, α (called the Hamiltonian), the related Hamilton equations

ẋ = {H, x} (1.2)

written in the variables Mi, αj are called the Euler –Poisson equations. We note that the
nonstandard arguments order in the bracket appearing on the right-hand side of (1.2) must coincide
with the classical analogs.

*E-mail: mikeh@inbox.ru
**E-mail: peryabov@fa.ru

***E-mail: a savushkin@inbox.ru

24



TOPOLOGICAL ATLAS OF THE KOWALEVSKI – SOKOLOV TOP 25

The bracket (1.1) has two Casimir functions

L =
1
2
M · α, Γ = α2. (1.3)

The dot here stands for the scalar product in R
3, the coefficient in L is traditionally introduced for

the problems of rigid body dynamics dealing with Kowalevski type configurations.
On any common level

P4
a,� = {L = �, Γ = a2}

the induced Poisson bracket is nondegenerate and the restriction of system (1.2) becomes a
Hamiltonian system with two degrees of freedom. However, it is sometimes convenient to take
for the phase space of (1.2) the 5-dimensional manifold P5 = R

3(M)×S2(α) given by one equation

α2 = a2 (a > 0).

This relation in mechanics is called the geometric integral and the sphere defined by it is called the
Poisson sphere. Both the function L and the generated integral relation L = � are called the area
integral. In this approach, fixing a > 0, we consider a one-parameter family in P5 of the systems
on P4

a,� with the parameter � ∈ R. From now on we omit a in the notation of P4
a,� and denote this

manifold by P4
� . It is known that for all a > 0 it is diffeomorphic to the tangent bundle of the

2-sphere.
In [1], a simultaneous generalization was found of the integrable Kowalevski gyrostat [2] and the

integrable Sokolov system for the Kirchhoff equations [3]. Both of these problems are described by
systems of type (1.1), (1.2). The case discovered in [1] is naturally called the Kowalevski – Sokolov
gyrostat. In this article we consider the problem with the following Hamiltonian

H =
1
4
(M2

1 + M2
2 + 2M2

3 ) + ε1(α3M2 − α2M3) − ε0α1. (1.4)

In comparison with the general Hamiltonian of [1], the linear term of type c M3 is missing here.
This term is characteristic of the problems of gyrostat motion; the constant c is then known as
the gyrostatic momentum. So we call the system defined by the Hamiltonian (1.4) the integrable
Kowalevski – Sokolov top. The problem is defined by three parameters which can be considered as
physical ones. These are a, ε0, and ε1. Let us note that in the generic case aε0ε1 �= 0 this triple is
redundant. By introducing the appropriate measurement units we can make two out of three values
equal to 1. The exception is the pair ε0, ε1, in which the ratio ε1/ε0 is an essential parameter.
Nevertheless, we are going to keep all three parameters to have the possibility of obtaining the
known limiting cases as ε1 → 0 (the classical Kowalevski case), and as ε0 → 0 with an arbitrary
a > 0 (the Sokolov case for the Kirchhoff equations [3] and, after introducing one more parameter
into the Poisson bracket, the case of Borisov –Mamaev – Sokolov on so(4) [4]). Due to the existence
of such limits, the Hamiltonian (1.4) is sometimes called a deformation of the Kowalevski case
(see, e.g., [5], where different generalizations of the Kowalevski problem are discussed from the
bi-Hamiltonian point of view). By obvious combinations of reflections in R

6 and time reversal we
can obtain the inequalities

ε0 > 0, ε1 > 0.

Indeed, the rotation by π of the moving frame around the third axis changes both signs of ε0, ε1,
and the substitution (M1, α2, α3, t) → (−M1,−α2,−α3,−t) is equivalent to the change of the sign
of ε1.

The first integral additional to Γ, L, and H found in [1] proves the integrability of system (1.2),
i.e., the complete Liouville integrability of the family of Hamiltonian systems on P4

� . This integral
can be written in the form

K =
[
1
4
(M2

1 − M2
2 ) + ε1(α2M3 − α3M2) − ε2

1(α
2
1 + α2

2 + α2
3) + ε0α1

]2

+
[
1
2
M1M2 + ε1(α3M1 − α1M3) + ε0α2

]2

.
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