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Abstract—In this work, plane problems of numerical simulation of wave motion are studied. Potential flows
of a perfect incompressible fluid are considered. A numerical algorithm for calculating the shape of a free
boundary is proposed. The algorithm is based on the boundary element method with the use of quadrature
formulas with no saturation. The algorithm is used for studying the breaking of capillary gravity waves and
calculating thin cumulative jets. The stability of the scheme and high accuracy in calculations of sharp cumu-
lative jets are achieved due to special control for the distribution of grid points and a decrease in the grid step
in the neighborhood of the forward end of the cumulative jet with an ultimately rapid growth of the curvature.
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INTRODUCTION

This work is devoted to numerical simulation of a
fluid free surface by use of an algorithm based on the
boundary element method. The algorithm involves a
nonuniform grid on the boundary contour and
approximations with no saturation, which makes it
possible to increase considerably the calculation accu-
racy and to decrease the number of grid points in the
calculations. We consider problems related to the evo-
lution of instability and breaking of capillary-gravity
waves, as well as an analog of Pokrovskii’s experiment
demonstrating the efficiency of the numerical algo-
rithm in calculations of thin cumulative fluid jets.

MATHEMATICAL FORMULATION
OF THE PROBLEM

The problem under consideration is to calculate the
evolution of the wave shape with time at a given veloc-
ity field at the initial time instant. Let us introduce a
Cartesian coordinate system Oxy where the y axis is
directed vertically upward. Let .S denote the fluid por-
tion between two vertical straight lines x = 0 and x =
2m, bottom y = —h, and the curvilinear fragment of
the free boundary L.

The stream function W of the potential flow of a
perfect incompressible fluid is periodic in the coordi-

4 Moscow State University, Moscow, 119599 Russia

b Ishlinsky Institute for Problems in Mechanics,
Russian Academy of Sciences, Moscow, 119526 Russia

*e-mail: baikov_nd@rambler.ru

nate x and satisfies the Laplace equation in the
domain S:

ik A
x> 9y’
On the bottom y = —4, the impermeability condition
W|,__, = 0 is satisfied.

This implies the following integral identity [1]:
(M, 1) = [A (—aib) + B‘P}(M, n, 92 _ _9¥ (5
0s os on
where A and B are integral operators that are expressed
in terms of the Green function G:

Y(x,y,1) =¥(x + 21, y,1), 0. (D

[AF|(M) := — I G(M, M)F(M)ds', 3)
L

[BF](M) := %(M,M)(F(M) - F(M))ds, (4)

L

G M) = Lin {2(cosh(y' —y) - cos(x' —2x))} )
2 1-2Ecos(x'—x)+ E

E=e7 M, Me L (6)

Equation (2) allows one to calculate the values of ¥
at the free boundary L by known values of the poten-
tial @.

As the boundary is displaced, we require fulfill-
ment of the kinematic condition: the projection of the
boundary velocity to the normal must coincide with
the normal velocity of the fluid at the boundary. The
tangential velocity of the boundary has no effect on
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the shape; therefore, it can differ from that of the fluid
at the boundary. We choose it from the condition
according to which the proportions of distances
between neighboring points of the grid must be pre-
served. The fulfillment of this condition provides sta-
bility of the numerical scheme.

From the condition of zero pressure on the wave
surface we find the change in the potential on the free
surface:

oD (vv)
=— k =0, 7
atxy 2 Tey-o @

where the liquid density p is assumed to be the unit, g
characterizes the force of gravity, ¢ is the surface ten-
sion coefficient, and k is the curvature.

Equations (2—7) form a system sufficient for con-
structing the numerical algorithm of calculating the
wave motion in a fluid.

NUMERICAL ALGORITHM

The algorithm was constructed using our work [2]
in which the evolution of cylindrical cavities in a
plane-parallel potential flow of a perfect incompress-
ible fluid was calculated. Integration and differentia-
tion involve approximations [4, 5] the order of which
unboundedly increases with an increase in the number
of grid points. In this case, approximations are said to
be with no saturation [3]. As in the case of the algo-
rithm for calculating the shape of cylindrical cavities,
a smooth parameterization of the boundary by use of
an auxiliary parameter { € [0,1] is introduced and a
uniform grid {; =i/N, where i =1,2,..., N, is speci-
fied. Approximation of the operator A has the form

[A(—%%’)}(C,»,r%%i Bli - ) +G )a‘é’«;ﬂr),

B(0) = o(0),
B(m) = —1In smTXTn + oum),
N,
mo 2
ofm) = —| In2+ D4 2nkm |
N “~=k N
G; = G(C,.,Cj) i1# ],

= lim(G(G;. ) ~ Infsin(m(C, - )
Approximation of the operator B is defined by the
formula

N
[BYIC, 1) = — ZG(‘I’(C,J) (&),
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As in [2], the free boundary L was parameterized
using the distribution function of grid points f({) by
the formula

ds = I fQdl, 0<{<1

j SQdg =1,

where /() is the length of one period of the wave L at
the time instant 7.

The normal velocity of the boundary, changes in
the spatial coordinates x and y of the wave surface, and
the values of the potential ®@ at the boundary are cal-
culated similarly to the algorithm from [2].

CALCULATION RESULTS

We begin the description of the obtained numerical
results with simulation of the wave breaking under the
action of the force of gravity. A survey of works on this
subject was presented in [6]. For comparison of the
results, we use [7], in which a numerical algorithm for
solving the problem under consideration was also con-
structed.

For the initial shape for numerical experiments
with breaking, a progressive wave for an infinitely deep
fluid (A = —eo, 6 = 0) was used. The wave shape was
found by the algorithm [8] from the extremum condi-

tion for the functional E, — E, — E;, where

c is the wave speed, and c® is the velocity field poten-
tial.

In [7], a progressive wave with amplitude a = 0.406
(approximately 90% of the limit amplitude) was con-
sidered. The dependence of pressure on time was
specified by the formula p, = p,sintsin(x —cf) at
0 <t < m, where p, = 0.146, and additional pressure
was absent for all # > =, i.e., p, = 0. Then, the process
of wave breaking was studied. The algorithm from [7]
turned out to be unstable: the free surface acquired a
saw-tooth shape. To suppress the instability, the
authors of [7] smoothed the boundary by the formula

Ty = 2+ 45 +107; 441 = f.2)/16.

This artificially decreased the boundary curvature
and resulted in the fact that only the initial stage of



432

BAIKOV, PETROV

9.0 0.0 110 X
\Q

Fig. 1. Breaking of a gravity wave (N = 192).
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Fig. 2. Deformation of a perturbed Crapper wave (N = 192).

breaking up to the time instant # = 4.928 could be cal-
culated.

The algorithm proposed in this paper was also
applied to solving the problem from [7]. The advan-
tages of the new algorithm are clearly demonstrated in
Fig. 1. The figure depicts four wave profiles at time

instants 7 = 4.8, 5.1, 5.4, and 5.7. The first two of them
were obtained with the same number of grid points
N =60 as in [7]. They correspond to a considerably
later stage of breaking. The points were condensed in
a neighborhood of the forming cumulative jet. The
wave shapes for next time instants were obtained by an

DOKLADY PHYSICS  Vol. 63

No. 10 2018



NUMERICAL SIMULATION OF UNSTEADY

10 -

&x

Fig. 3. Analog of Pokrovskii’s experiment (N = 128).

increase in the number of grid points to N =192. The
last wave profile at = 5.7 is presented with the use of
smoothing.

The numerical algorithm developed was used for
calculating the evolution of instability of a Crapper
perturbed capillary wave. The parametric equations of
the Crapper wave have the following form [9]:

x(oc)=—£(oc+ 4bsin o 2),
2n 1-2bcoso+b
2
y(oc)ng bcosa—b

T 1-2bcoso.+b°

where A is the wavelength and b is a parameter related
to the wave amplitude a and dimensionless speed c:

a=4bN/ (1 - b%)), ¢ =(1-b)/(1+b).

The propagation rate of the wave is determined in
terms of ¢ by the formula > = c221t(5/(p7L).

In [10], Lyapunov’s stability of the exact Crapper
solution with respect to perturbations with a period
equal to the wavelength was proved. For perturbations
the period of which exceeds the wavelength, stability is
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not preserved. The numerical experiments involved
perturbations of the form &y = €sin x at the Crapper
wave length A = 7. The calculations demonstrate that
the perturbations cause finite-amplitude oscillations
of the free surface at small values of the parameter €
and lead to wave breaking at sufficiently large values of
the parameter b. Figure 2 depicts the shape evolution
of one period of a perturbed wave at b = 0.3, 6 = 0.05,
and € = 0.03. The wave profiles are in correspondence
with time instants = 0, 30.0, and 40.5.

Let us consider an analog of Pokrovskii’s experi-
ment as a very simple demonstration of the cumulative
jetformation on a free surface of a fluid. In the original
experiment described in [11] (pp. 253—254), a test
tube filled with water falls from a height of 10 cm and,
after the impact on the horizontal plane, a thin water
jet with a height exceeding 1 m water is pushed out of
the test tube.

According to [11], at the instant of the impact, the
edge of the free surface of the fluid acquires a finite
velocity directed downwards; the central part, a veloc-
ity directed upwards. For the sake of simplicity of the
numerical simulation, we assume that the fluid at the
initial time instant fills a half-strip -t < x <, y < 0;
the normal velocity at the boundary y = 0 varies by the

law v, = cos x. This corresponds to the initial fluid

velocity potential @ = e’ cos x. The force of gravity
was assumed to be zero, which admitted unbounded
expansion of the jet. The free jet shapes calculated on
a grid at N = 128 for time instants 7 = 2.05, 4.1, and
6.15 are depicted in Fig. 3 and demonstrate that the
scheme is able to calculate superthin jets without loss
of stability. The curvature of the forward end of the jet
at the time instant 7= 6.15 reaches the value k =
1143.5.

The numerical algorithm with no saturation
demonstrates that the curvature of the forward end of
the jet can increase to very large values without loss of
smoothness of the free boundary. The latest investiga-
tions [12, 13] in which semianalytical solutions were
constructed for describing cumulative jet formation
lead to the same conclusion.
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