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Numerical simulation of the Black Sea

hydrothermodynamics taking into account
tide-forming forces

V. I. AGOSHKOV∗, M. V. ASSOVSKII∗, and S. A. LEBEDEV†‡

Abstract—Amathematical model of the Black Sea dynamics taking into account tide-forming forces
is considered. Based on the variational assimilation of satellite altimetry data, an algorithm solving
the inverse problem of the reconstruction of ‘self-attraction’ forces and potential forces influencing
the formation of the mean level is proposed. A method of approximate solution of this problem is
presented. The influence of the tide-forming forces on the dynamics of the Black Sea is investigated
numerically.

Nowadays, with the development of modern numerical algorithms and computing
complexes, the description of tidal motions in seas and oceans still remains a chal-
lenge. There are many reasons for that. Here are some of them: the physical pro-
cesses lying at the base of the theory of tides are complicated and not completely
studied yet; there are difficulties in the description of tide-forming forces (specifica-
tion of phases at each point of the ocean surface, consideration of elastic properties
of the Earth, earth tides, and self-attraction effects); mathematical models of tidal
motion are, generally speaking, integro-differential, which essentially complicates
the numerical solution of the equations of the dynamic theory of tides and motivates
the use of simplified models in practical calculations. A way to solve the prob-
lems indicated above was proposed in [23] and consists in the following. In order
to construct an adequate theory of tidal oscillations in the ocean, it is proposed to
use the general equations of its dynamics and add the gradient of the tide-forming
forces into the right-hand sides of the motion equations. One of the first papers in
this direction was [8]. The mathematical model of the general World Ocean circu-
lation with tide-forming forces defined as the gradient of the total potential of tidal
forces was considered in that paper. In addition, based on observation data concern-
ing the ocean level, the inverse problem of the determination of the potential of
forces influencing the mean ocean level was formulated and approximately solved
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in that paper. Concerning the Black Sea, as far as the authors of this paper know, the
modern scientific community has no mathematical model of the general circulation
of the Black Sea constructed on the base of ‘basic’ (‘primitive’) systems of equa-
tions with total consideration of tide-forming forces and effects of various potential
forces deforming the geoid surface and the mean sea level. This paper deals with
the construction of such a mathematical model.

Below we consider the mathematical model of the Black Sea dynamics taking
into account the tide-forming forces. We discuss the forms of specification of tide-
forming forces and the influence of these forces on the form of the geoid surface
or the mean level as the reference surfaces for the sea level deviations. Based on
variational assimilation of satellite altimetry data, an algorithm solving the inverse
problem of the reconstruction of ‘self-attraction’ forces and potential forces influ-
encing the formation of the mean level is proposed. A method of approximate solu-
tion of this problem is presented. The numerical study of the influence of the forces
introduced into the model on the dynamics of the Black Sea is performed, this pri-
marily relates to the ‘level surface’ in this basin. The numerical implementation of
the general sea circulation model used in this paper is based on the numerical model
of the Black Sea dynamics developed at the Institute of Numerical Mathematics of
the Russian Academy of Sciences (see [30]) and also the methods presented in [8].

1. Mathematical model of the Black Sea dynamics

In this section we formulate the mathematical model of the Black Sea dynamics
and describe the numerical mathematics methods used for the approximation of
this model. Reviewing these methods, we generally follow [2,3,6,10,11,16,19,20,
22, 28].

Introduce the basic definitions and equations used below.

1.1. Consider the geographic (geodesic) system of coordinates (λ ,θ ,z), where λ
is the geographic longitude increasing from the west to the east, θ is the geographic
latitude increasing from the south to the north, z is the distance of a point from
the surface of the terrestrial ellipsoid of revolution (TE), the geographic system
of coordinates is related to this ellipsoid. We also assume the so-called ‘spherical
approximation’ widely used in higher geodesy (see [24]). In this connection, the
sphere SR of the radius R is introduced, where R is the ‘mean Earth radius’ and the
center of the sphere coincides with the center of mass of the Earth or with the center
of the terrestrial ellipsoid. The longitude λ varies from 0 to 2π , the latitude θ varies
from −π/2 (South Pole) to π/2 (North Pole). Instead of z, one may introduce the
coordinate r = R− z on the axis Or directed along the outer normal to the surface
of the sphere SR of the radius R. The unit vectors in the λ -, θ -, and z-directions are
denoted by eλ , eθ , and ez, respectively. The velocity vector in the ocean is written in
the form U = ueλ + veθ +wez ≡ (u,w), or in the coordinate form as U= (u,v,w) ≡
(u, w), where u = (u,v) is the ‘horizontal velocity vector’ in the coordinate form
and w is the ‘vertical velocity’.

By Ω we denote the part of the surface of the sphere SR identified with the
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corresponding part of the geoid, or the ‘mean level’ surface considered as the ref-
erence surfaces for the ocean level deviations. The set Ω is also called the ’ref-
erence surface’. The ocean surface is given by the equation z = ζ (λ ,θ , t), or
f0(λ ,θ ,z, t) ≡ ζ (λ ,θ , t) − z = 0, where (λ ,θ ,R3) ∈ Ω, and t is the time vari-
able, t ∈ [0, t̄](t̄ < ∞). The bottom relief function is defined as z = H(λ ,θ), or
FH(λ ,θ ,z, t) ≡−H(λ ,θ)+ z = 0 for (λ ,θ ,R3) ∈Ω, where H(λ ,θ) > 0.

Below we use the following notations:

λ ≡ x, θ ≡ y, x≡ (x,y,z)

U≡ (u,v,w) ≡ (u,w), u≡ (u1,u2) ≡ (u,v), u3 ≡ w.

Let a volume element in the domain D(t) = {(x,y,z) : (x,y,R) ∈ Ω,ζ (x,y, t) <
z < H(x,y)}, t ∈ [0, t̄], be given as dD = (R− z)2 cosydxdydz and an element of Ω
be given as dΩ = R2 cosydxdy.

Introduce the following differential operations of the gradient, divergence, and
total derivative in a spherical coordinate system for r ≡ r(z) ≡ R− z∼= R, n ≡ 1/r,
m≡ 1/(rcos y) (keep the well-known notations from vector analysis for these oper-
ations):

Gradϕ ≡

(
gradϕ ,

∂ϕ

∂ z

)
, gradϕ ≡

(
m
∂ϕ

∂x
,n
∂ϕ

∂y

)

DivU≡ divu+
1

r2
∂ r2w

∂ z
, divu≡ m

∂u

∂x
+m

∂

∂y

[ n
m
v
]

dϕ

dt
=

∂ϕ

∂ t
+(U,∇ϕ), (U,∇) ≡ (u,grad)+w

∂

∂ z

(u,grad) = um
∂

∂x
+ vn

∂

∂y
.

We also use the following second-order differential operators:

Aϕϕ ≡−Div(âϕGradϕ)

where âϕ = diag((aϕ )ii), (aϕ )11 = (aϕ )22 ≡ µϕ ,(aϕ )33 ≡ νϕ , and the index ϕ can

take the values u,v,T,S (i.e., it can denote the components of the horizontal velocity
vector, temperature T , and salinity S). We also assume µu = µv ≡ µ , νu = νv ≡ ν
and suppose that µ , ν , µT , µS, νT , νS are given positive and bounded functions.

We also consider the fourth-order differential operator (Ak)
2, where the second-

order operator Ak is introduced above for Aϕ = Ak and is determined by the matrix

k̂ = diag{kii}with nonnegative diagonal elements kii. Further, by l = l(y) we denote
the Coriolis parameter: l = 2ω siny, where ω is the angular Earth rotation velocity
and f (u) = l+musiny≡ l+ f1(u).

Note one general simplification used in the description of large-scale ocean dy-
namics [20]. The level function ζ = ζ (x,y, t) is also one of the unknown functions
to be determined. Thus, D(t) is a domain with an unknown boundary (or a domain
with a moving boundary). Therefore, after writing down the equations of ocean
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hydrothermodynamics in the domain D(t) with the corresponding boundary con-
ditions, one passes to some approximate system of equations now considered in
the fixed domain D = {(x,y,z) : (x,y,R) ∈ Ω, 0 < z < H(x,y)}. We represent the
boundary of the domain Γ≡ ∂D as the union of four nonintersecting parts ΓS, Γw,op,
Γw,c, ΓH , where ΓS ≡ Ω is the ‘unperturbed surface’, Γw,op is the liquid (open) part
of the vertical lateral boundary, Γw,c is the rigid part of the vertical lateral boundary,
ΓH is the ocean bottom. The characteristic functions of the ΓS, Γw,op, Γw,c, ΓH-parts
of the boundary Γ are denoted by mS, mw,op, mw,c, mH , respectively.

We also assume that Ω is a connected set on SR and the boundaries ∂Ω, Γ are
piecewise-smooth of the class C(2) and locally satisfying the Lipschitz condition.
The unit vector of the outer normal to Γ is denoted by N ≡ (N1,N2,N3). Note that
N = (0,0,−1) on ΓS and N = (N1,N2,0) on Γw = Γw,op ∪ Γw,c, in this case the
vector n≡ (N1,N2) ≡ (n1,n2) is the unit vector of the outer normal to ∂Ω. We also
assume that |N3| > 0 always on ΓH . The expression for the components N1,N2,N3

is determined by the used parametric representation of some part of the boundary.

Considering the velocity vector U = (u,v,w) on the boundary Γ, we denote its

normal component byUn :Un = ~U ·N= uN1+vN2+wN3. Let furtherU
(+)
n ≡ (|Un|+

Un)/2, U
(−)
n ≡ (|Un|−Un)/2. Note thatUn =U

(+)
n −U

(−)
n on Γ.

1.2. Write down the system of hydrothermodynamics equations for the func-
tions u,v,ζ ,T,S in the domain D in the variables (x,y,z) in the ‘Boussinesq and
hydrostatic approximation’ [20], but taking the Lame coefficients corresponding to
the spherical system of coordinates [2, 3, 6]:

du

dt
+

[
0 − f

f 0

]
u−ggradζ +Auu+(Ak)

2u

= f− 1
ρ0
gradPa−−

g

ρ0
grad

∫ z

0
ρ1(T,S)dz′

∂ζ

∂ t
−m

∂

∂x

(∫ H

0
Θ(z)udz

)
−m

∂

∂y

(∫ H

0
Θ(z)

n

m
vdz

)
= f3

dT

dt
+ATT = fT ,

dS

dt
+ASS = fS

(1.1)

where ρ1(T,S) = ρ0βT (T −T (0))+ρ0βS(S−S(0))+γρ0βTS(T,S)+ fP, f= ( f1, f2),

fT , fS, fP are given functions of ‘internal’ sources, g = const > 0, ρ0, T
(0), S(0)

are ‘unperturbed’ values of water density, temperature, and salinity, βT , βS are co-
efficients (assumed to be constant), βTS(T,S), Pa, f3 ≡ f3(x,y,ζ , t) ≡ f3(x,y, t) are
given functions, and γ is a numerical parameter. Here and further we use the follow-
ing weight function:

Θ(z) ≡
r(z)

R
.

Below we consider the case f ≡ g gradG with some scalar function G = G(x,y, t),
for example, G≡ ζ+ is the static tide, which will be described in detail further.
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Note that the coordinates (x,y,z) are geodesic in their physical sense, but due to
the approximate notation of the Lame coefficients, system (2.1) takes its form in a
system of spherical coordinates.

Considering (1.1) in D× (0, t̄), one can pose the following boundary and initial
conditions [2, 3, 6].

The boundary conditions on ΓS:

(∫ H

0
Θudz

)
n+β0mop

√
gH ζ = mop

√
gH ds on ∂Ω

U
(−)
n u−ν

∂u

∂ z
− k33

∂

∂ z
Aku = τ

(a)
x

/
ρ0, U

(−)
n v−ν

∂v

∂ z
− k33

∂

∂ z
Akv = τ

(a)
y

/
ρ0

Aku = 0, Akv = 0

U
(−)
n T −νT

∂T

∂ z
+ γT (T −Ta) = QT +U

(−)
n dT

U
(−)
n S−νS

∂S

∂ z
+ γS(S−Sa) = QS +U

(−)
n dS

(1.2)

where τ
(a)
x and τ

(a)
y are the components of the tangent wind stress vector along the

axes Ox and Oy, respectively, on the surface z = 0, γT , γS, Ta, Sa, QT , QS, dT , dS are
given functions. In (1.2) we also haveUn|z=0 =−w|z=0 and w =w(u,v) is introduced
according to the formula

w(x,y,z, t)=
1

r

(
m

∂

∂x

(∫ H

z
rudz′

)
+m

∂

∂y

(
n

m

∫ H

z
rvdz′

))
, (x,y, t)∈Ω×(0, t̄).

(1.3)
The boundary conditions on Γw,c (on the ‘rigid lateral wall’):

Un = 0, AkŨ = 0,
∂Ũ

∂Nu

· τw +(
∂

∂Nu

AkŨ) · τw = 0

∂T

∂NT

= 0,
∂S

∂NS

= 0

(1.4)

where τw = (−N2, N1, 0), Ũ ≡ (u,v,0) ≡ (u,0), ∂ϕ/∂Nϕ ≡ N · âϕ ·Gradϕ , ϕ =
u,T,S.

The boundary conditions on Γw,op (on the ‘liquid part of the lateral wall’):

U
(−)
n (Ũ ·N)+

∂Ũ

∂Nu

·N =U
(−)
n d, AkŨ = 0

U
(−)
n (Ũ · τw)+

∂Ũ

∂Nu

· τw +

(
∂

∂Nu

AkŨ

)
· τw = 0

U
(−)
n T +

∂T

∂NT

=U
(−)
n dT +QT , U

(−)
n S+

∂S

∂NS

=U
(−)
n dS +QS

(1.5)

where d, dT , dS, QT , QS are some functions, which we also assume to be known.
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The boundary conditions on ΓH (‘on the bottom’):

w = um
∂H

∂x
+ vn

∂H

∂y
, AkŨ = 0

∂Ũ

∂Nu

· τx +

(
∂

∂Nk

AkŨ

)
· τx = τ

(b)
x

/
ρ0,

∂Ũ

∂Nu

· τy +

(
∂

∂Nu

AkŨ

)
· τy = τ

(b)
y

/
ρ0

∂T

∂NT

= 0,
∂S

∂NS

= 0

(1.6)

where τx and τy is the system of unit orthogonal vectors on the surface z = 0; τ
(b)
x

and τ
(b)
y are the projections of the near-bottom friction vector onto the axes Ox, Oy,

respectively. Note that the first condition of (1.6) is equivalent to ‘Un= 0 on ΓH’.

The initial conditions for u, v, T, S, ζ :

u = u0, v = v0, T = T 0, S = S0, ζ = ζ 0, t = 0 (1.7)

where u0, v0, T 0, S0, ζ 0 are given functions.

The problem of large-scale sea dynamics is formulated in terms of the functions
u,v,ζ ,T,S as follows: determine u,v,ζ ,T,S satisfying (1.1)–(1.7).

If the functions u,v,ζ ,T,S are determined, then the function w is obtained from
formula (1.3) and the function P— from the formula from [2, 3, 6]:

P(x,y,z, t) = Pa(x,y, t)+ρ0g(z−ζ )+
∫ z

0
gρ1(T,S)dz′.

Note that the boundary conditions presented above can be modified depending on
the particular physical problem.

Note also that the ‘diffusive operators’ in the equations for u,v do not take into
account some differential operators of lower degrees, which are significant near the
poles. Therefore, generally speaking, system (2.1) should be considered in a do-
main with excluded polar points, and we should utilize some additional relations in
its numerical approximation. If the polar points are included into the domain D, it is
necessary to consider systems of equations of type (2.1) with the ‘vector Laplace op-
erator’ and use special functional spaces of solutions and the corresponding bound-
ary conditions (see [4, 5]). In this paper, taking into account the specificity of the
considered domain D, the authors restrict ourselves to the consideration of system
of equations (2.1).

Problem (2.1)–(2.7) (or a similar problem considered for other boundary condi-
tions) is approximated by the method of splitting using the finite difference method
for the approximation of the subproblems on all stages of the splitting scheme. Note
that in this case the ‘σ -system of coordinates’ can be used. All these computational
methods and the numerical analogues of problem (2.1)–(2.7) are described, e.g.,
in [6, 7, 10, 22], and we do not present them here.
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2. Methods of calculation of tide-forming forces
in the mathematical model of the Black Sea dynamics

In this section the main attention is paid to the description of tide-forming forces
in the mathematical model of the general dynamics of oceans and seas. Since the
model uses the level function ζ (see (2.1)–(2.7)), the notions of the ‘geoid’ and the
‘mean level’ naturally appear here as reference surfaces for the determination of the
ocean level (see [26]). The presentation of this section is based on the results of [8].

2.1. Geoid and mean sea level

Below we denote the height of the geoid surface over the terrestrial ellipsoid (TE) by
hg ≡ hg(x,y), where (x,y) ∈Ω(1) is the projection of the unperturbed ocean surface
onto the sphere of a unit radius whose center coincides with the center of the TE
and the center of the sphere SR. The height of the mean level (‘mean sea level’) is
denoted by hm.l.(x,y), and we define its deviation h′ as

h′ = h−h,hm.l.(x,y) ≡ h =
1

T

∫ T

0
h(x,y, t)dt (2.1)

where T is the time interval appearing in the definition of hm.l., h(x,y, t) is the height
of the free ocean surface over the TE. Depending on the choice of T , one can con-
sider different mean levels, i.e., daily, monthly, annual, long-term, etc. [12,26]. The
operations of averaging ‘h’ and calculation of the deviations will be also applied to
different functions.

The function h(x,y, t) can be represented in the following form:

h = hg(x,y)+ζg(x,y, t) (2.2)

or

h = hm.l.(x,y)+ζm.l.(x,y, t). (2.3)

In the first case, ζg(x,y, t) is the deviation of the free ocean surface from the geoid
surface (along the direction of Or), which is assumed here not to depend on t. In the
second case, ζm.l.(x,y, t) is the deviation of the free ocean surface from hm.l.. Due to
the definition of hm.l., the value ζm.l. always satisfies the equality

∫ T

0
ζm.l.(x,y, t)dt = 0 ∀(x,y) ∈Ω(1). (2.4)

The function ζg is also called the dynamic topography in geodesy and is often
denoted by hdyn:

ζg ≡ hdyn = h(x,y, t)−hg(x,y). (2.5)

Note that in oceanology the ‘dynamic topography’ is defined differently and it is
related to the ‘dynamical method’.
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Figure 1. The height of the geoid over the terrestrial ellipsoid in meters.

Figure 2. The long-term mean sea level over the geoid (in cm).
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Figure 3. The mean sea level on January 1, 2008, calculated by the model without tidal forces (in
cm).

Figure 4. The difference of the actual (Fig. 2) and model (Fig.3) sea levels (in cm).
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The functions introduced above (ζg, ζm.l. and others) are related to the actual
physical fields of seas and oceans. However, we also use them in the consideration
of the equations of the Black Sea dynamics model and, if this does not lead to
misunderstanding, we denote the level by ζ assuming either ζg or ζm.l..

Thus, the geoid is defined as the equipotential surface of the Earth gravity field
(level surface) approximately coinciding with the World Ocean level in its unper-
turbed state and symbolically extended under the continents [26]. By the definition
of an equipotential surface, the geoid surface is everywhere perpendicular to the
pluming line. The difference between the actual mean ocean level and the geoid
may reach 1 m. The surfaces of the geoid and the mean level in the Black Sea water
area are presented in Figs. 1 and 2. (For definiteness sake, in all figures of this paper
the axis 0z is directed ‘downward’ as is accepted in many papers in oceanology.)

Figure 2 presents the mean value hm.l.. In comparison with Fig.2, in Fig.3 we
present the mean long-term (10 years) level calculated by the Black Sea dynamics
model not taking into account the tidal forces (see [30]). The difference between the
height of the actual sea level over the geoid and the ‘model’ mean sea level (i.e.,
calculated with the use of the numerical model) is presented in Fig.4.

Comparing Figs. 2–4, one can make the following conclusion: if we take only
the mean long-term height of the Black Sea level as the criterion of the correctness of
the description, then the error in the model not taking into account the tide-forming
forces (see (2.1)–(2.7)) can reach considerable magnitudes (50−100%).

2.2. Tide-forming forces

2.2.1. The modern approach to the calculation of the tidal potential consists in the
use of ephemerides (celestial coordinates) (see [21, 32]). According to [21, 25], the
tidal potential caused by each of the tide-forming bodies separately is exactly the
following expression:

Ω(A) =
γM

R

(
R

d
−1−

R · r

R2

)
(2.6)

where A is the point of observation, R is the radius vector from the center of the
Earth to the tide-forming body, R = |R|, r is the radius vector from the center of the
Earth to the observation point, d is the distance from the observation point to the
tide-forming body, γ = −6.673 · 10−11 m3/kg·s2 is the gravitational constant, M is
the mass of the tide-forming body (Mm = 7.3477 ·1022kg is the mass of the Moon,
MS = 1.9891 · 1030 kg is the mass of the Sun). If we assume that r/R ≪ 1, then
Ω(A) can be expanded into a series over powers of r/R and thus we can reduce the
expression to the form

Ω(A) =∑
n

Ωn(A) ∼= Ω2(A)

Ωn(A) =
γM

R

( r
R

)n
Pn(cosν), n = 2,3, . . .

(2.7)
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where Pn(x) are Legendre polynomials. In these calculations it is sufficient to take
into account only Ω2(A), because even for the closest to the Earth celestial body,
i.e., the Moon, we have the relation r/R ≈ 0.017.

The expression for the tidal potential presented here contains the zenithal angle
ν . In order to remove this local value, it can be expressed through the equatorial
coordinates (see [21, 32]), the hour angle t, the declination β , and the geographical
coordinates (the latitude denoted here by ϕ , ϕ ∈ [−π/2,π/2], and the longitude λ ,
λ ∈ [0,2π]) using the relation cosν = sinϕ sinβ + cosϕ cosβ cos(t + λ ). Taking
into account this relation, we get the following form of the formula for Ω2(A):

Ω2(A) =
3

4

γMr2

R3

(
1

2
−

3

2
sin2ϕ

)(
2

3
−2sin2β

)

+
3

4

γMr2

R3

[
sin2ϕ sin2β cos(t+λ )+ cos2ϕ cos2β cos2(t+λ )

]
(2.8)

The total tidal potential at the given point A is the sum of the potentials induced
at this point by the Moon and the Sun: Ω2(A) = ΩM

2 (A)+ΩS
2(A). The hour angle

t for the Moon and the Sun is calculated depending on the right ascension (α) and
the Greenwich time (Universal Time, UT) by the corresponding algorithms used in
the theory of celestial coordinates.

2.2.2. In the harmonic representation of Ω∼= Ω2 each component is represented
as a sum of harmonics

∑
j

C j cos(σ jt+ sλ +q j). (2.9)

Each of these harmonics is characterized by its amplitude C j and the argument
σ jt + sλ + q j related by a linear dependence to the Greenwich Mean Time t and
the east longitude λ , s = 0,1,2. The frequencies of the the harmonics {σ j} are
determined by the well-known technique (see [12]) and are assumed to be given.

Note some difficulties related to the practical applicability of ‘harmonic expan-
sions’ of the tidal potential Ω2(A) determined by (2.9).

The first difficulty is traditional for the theory of series and is related to a slow
convergence of series (2.9). For some applications one can restrict oneself to the
total of 4–11 harmonics in (2.9). However, for calculations with a sufficient accuracy
it is recommended to use 60 and more harmonics (especially for ‘shallow water
areas’).

In spite of the seeming simplicity of representations (2.9), they contain sets of
the angles {q j}, i.e., the ‘initial phases’. These values are calculated according to
special handbooks depending on the time interval, where it is necessary to perform
the calculation of Ω2(A); in this case {q j} must take into account a series of astro-
nomic factors. All these create difficulties and discomfort.

In addition, expansions (2.9) do not take into account the elasticity of the Earth
(i.e., of the oceanic bottom), whose influence is commonly accepted. In order to
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take this into account, each harmonic is supplied with its coefficient γ j:

γ j ≡ 1+ k j−h j, j = 0,1,2, . . . (2.10)

where {k j} and {h j} are Love numbers calculated separately and the error of their
calculation may be essential for ‘long-period harmonics’. As the result, instead of
(2.9), we should apply the expansion of the form

∑
j

γ jC j cos(σ jt+ sλ +q j) (2.11)

and instead of Ω2(A), take the potential Ω̃2(A) = γ0Ω2(A). However, for most of
the coefficients γ j we have

γ j ∼= 0.7 (2.12)

which helps us in this situation (below we introduce the notation γ0 = 0.7).
It should be noted that studies aimed to represent Ω2(A) in the form of other

faster convergent expansions over special functions differing from (2.9) are in
progress now.

Based on what has been said above, we can suppose that in some cases it is
expedient to apply mixed approximations of Ω2(A) using the representation of this
potential via ‘astronomical parameters’ and expressions of type (2.9).

Finally, note that even after the specification of Ω2(A) the problem of the de-
scription of ‘self-attraction’ and other effects remains valid. Concerning this prob-
lem, we refer the reader to [21], because we do not have the possibility to discuss it
here.

2.2.3. The height of the ‘static tide’ ζ+ is often more convenient in use than the
tidal potential. This value is defined as

ζ+ ≡
Ω2

g
+C(t) (2.13)

whereC(t) is a constant whose value is determined from the condition that the total
volume of tidal deformations in the World Ocean turns to zero,

∫
S ζ

+dS= 0, or from
balance relations for each considered basin.

Having some representation of the tide-forming potential (by formula (2.8),
or (3.9)), one can calculate the tidal forces used at the right-hand sides of the dy-
namics equations:

f≡ g▽ζ+ ≡ ▽Ω2. (2.14)

If we take into account the coefficients {γ j}, then f takes the form

f∼= g▽

(

∑
j

γ jζ
+
j

)
∼= ▽(γ0Ω2 + γ0gC(t)) (2.15)
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where {ζ+
j } are expansions of {ζ+} constructed on the base of (2.9). Below in

representation (2.15) we especially distinguish the ‘constant’ harmonic γ0ζ
+
0 cor-

responding to the solar S0 and lunar M0 harmonics not dependent on time t and
dependent on the latitude ϕ only.

If the method of harmonic representation of the tidal potential is used for ob-
taining the expression for Ω2, then the tidal forces are also represented as sums of
several harmonics (often 4–8, rarely 11–16). The form of tide-forming forces under
the use of 4 principal harmonics (subject to the factors γ j ∼= 0.7) was presented, e.g.,
in [8].

2.2.4. Apply the following transformations of the source function of the mathe-
matical model. Consider the function

F≡−
1

ρ0
∇P+ f (2.16)

called the ‘total source function’ in the motion equations of the mathematical model
considered here. Here we have

f≡ g∇G, G≡G(x,y, t) (2.17)

and P is the pressure function determined (for fP ≡ 0) from

∂P

∂ z
= gρ , P = Pa, z = −h (2.18)

where Pa is the atmospheric pressure, h is the height of the free ocean surface.

Introduce the function h̃0 defined as

h̃0 = hm.l. −hg. (2.19)

Performing the change z′ = z+hg and denoting z′ again by z, we shift the origin
of the axis OZ onto the surface of the geoid. For the sake of brevity, we do not
present this change here, but note that we actually get a new perturbed system of
ocean dynamics, which formally coincides with mathematical model (2.1). After
the change of coordinates z′ = z+hg we denote the height of the free ocean surface

again by h(x,y, t) (previously, h was measured from TE, and now it is measured from
the surface of the geoid). Represent h in the form

h = h̃0(x,y)−ζ (x,y, t) (2.20)

where h̃0 is the reference surface for the level function ζ . If we neglect the physi-

cally meaningful definition (2.19), then h̃0 can be interpreted both as some constant
perturbation of the geoid surface and as a reference surface, and ζ as the deviation

of the ocean surface from the surface z = h̃0. If, for example, we assume h̃0 ≡ 0
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in (2.20), then we get ζ ≡ ζg is the deviation of the free ocean surface from the

geoid surface. If we take h̃0 defined according to (2.19), then ζ ≡ ζm.l..
Based on the following approximate expression for P(z) :

P(z) = Pa+ρ0g(h̃0−ζ + z)+

∫ z

0
gρ1dz

′ (2.21)

we get

F = g∇ζ −
∇Pa
ρ0

−g∇h̃0−∇

∫ z

0

ρ1g

ρ0
dz′ + f (2.22)

which is the form of F actually presented in (2.1) (for h̃0 ≡ 0).

Now specify the form of the function G generating f. Assume

G = γ0
Ω2

g
+

Ω

g
(2.23)

where Ω2 is the potential of tide-forming forces (see (2.1)), ζ+ = Ω2/g+C(t) is
the static tide, and Ω = Ω(x,y) is a function not dependent on t (in this section we
consider this case only).

We assume that Ωp is the potential of forces perturbing the geoid surface (as

well as the potential γ0gζ
+
0 , entering γ0Ω2/g and corresponding to the harmonics

M0,S0 constant in t) and also the mean level surface. As the result of these pertur-
bations, the geoid surface turns to the surface hm.l., which is the mean level of the
sea (‘mean level’) calculated for the time period (0,T ) for sufficiently large T . Due
to the small difference between hm.l. and hg, one may suppose Ωp/g≪ hg ∼= hm.l..

Suppose Ωp is the potential of all potential forces (even those we do not know

explicitly) perturbing the geoid surface. Excluding the influence of gγ0ζ
+
0 from

these forces (this potential is already included into Ω2), we assume

Ωp = g(h̃0− γ0ζ
+
0 ),G = g[γ0ζ

+ +h0] = g

[
γ0
Ω2

g
+h0

]
(2.24)

where we set h0 = h̃0− γ0ζ
+
0 . Then

F = g∇(ζ +(1−β )h0)−
1

ρ0
∇Pa+∇g

[
γ0
Ω2

g
−βγ0ζ

+
0

]
−g

∫ z

0

ρ1
ρ0

dz′. (2.25)

Finally, let

Cζ (t) ≡

∫

Ω
ζdΩ

mes(Ω)
, ζ = ζ ′ +Cζ (t),

∫

Ω
ζ ′dΩ = 0.
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Since ∇Cζ = 0, then redenoting ζ ′ by ζ , we get the following expression of

form (2.25) for F and the equation for ζ :

∂ζ

∂ t
+div

(∫ H

0
Θ(z)udz′

)
= f̃3 (2.26)

where

f̃3 ≡ f3−
∂Cζ

∂ t
,

∫

Ω
ζdΩ = 0

i.e., we have removed the incorrectness related to the non-uniqueness of the function
ζ satisfying the equations of the mathematical model.

Remark 2.1. If the problem is considered with the additional condition ‘ζ = ζobs

in Ω’, then, writing down ζobs ≡ ζ ′
obs +Cζ ,obs, where Cζ ,obs =

∫

Ω
ζobsdΩ/mes(Ω),

we get Cζ =Cζ ,obs and ζ = ζobs in (2.26).

Now we can consider two cases of the specification of F.
Case 1: β ≡ 0. Here ζ ≡ ζg, the potential Ω2 appears in its ‘complete form’,

and we assume h0 = h̃0 − γ0ζ
+
0 = (hcp − hg)− γ0ζ

+
0 (or the function h0 must be

determined taking into account some other perturbation forces).
Case 2: β ≡ 1. Here ζ ≡ ζcp and the harmonic ‘γ0ζ

+
0 ’ is excluded from the

potential Ω2.
Note that in Case 2 we have no need in introduction of some additional ‘poten-

tial force’ perturbing the geoid surface, and we can assume that its influence has
been already taken into account by the introduction of hm.l.. If we recall that satel-
lite altimetry only measures the functions ζm., obs ≡ (ζm.)obs, then, probably, Case 2,
where β ≡ 1 and ζ ≡ ζcp, is preferable in practical calculations. However, it is nec-
essary to be aware of the fact that the mathematical models used are inadequate to
some extent. Therefore, the inclusion of a function of type h0 into F is possible even
in the case β = 1. Declaring them to be auxiliary unknowns, solving the correspond-
ing inverse problem, and describing these functions with the use of observation data,
we can achieve a greater adequacy of the model and improve the description quality
concerning the physical processes. We consider one of such inverse problems in the
next section.

For definiteness sake, in this paper we consider only Case 1 (β = 0) with respect
to numerical experiments. i.e., the measurement of the level function is performed
from the geoid surface.

3. Improvement of the total source function and solution
of an inverse problem

In this section we show how one can improve functions of type F by solving some
inverse problems and using observation data.
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3.1. Formulation of the inverse problem

Consider the system of equations for u≡ (u,v),ζ from (2.1) written in the following
form:

du

dt
+

[
0 − f

f 0

]
u−g∇ζ +Auu+(Ak)

2u

= ∇g

[
γ0
Ω2

g
−βγ0ζ

+
0

]
+∇gΨ−

1

ρ0
∇Pa−g

∫ z

0

ρ1
ρ0

dz′ in D ∀t

∂ζ

∂ t
−div

(∫ H

0
Θudz′

)
= f̃3 onΩ ∀t

(3.1)

where the additional condition of the form
∫

Ω
ζ dΩ = 0 (3.2)

is posed on ζ and the motion equation includes the function Ψ ≡ Ψ0(x,y) +
Ψ1(x,y, t) such that

∫

Ω
Ψ′

kdΩ = 0, k = 0,1, Ψ1 =
1

T

∫ T

0
Ψ1dt = 0. (3.3)

We can consider the functionΨ in (3.1) both for β = 0 and for β = 1.We assume
that Ψ is an auxiliary unknown. In order to close the problem of determination of
u,ζ ,Ψ, introduce the auxiliary equation of the form

ζ = −ζ ′
obs inΩ ∀t (3.4)

where ζ ′
obs is obtained from the expansion of the given observation function ζobs for

the ocean level measured either from hg, or from hm.l.:

ζobs = ζ ′
obs +Cζ ,obs(t), Cζ ,obs(t) =

∫

Ω
ζobsdΩ/mes(Ω)

(recall that ζobs is a function of ‘real’ measurements and for ζ we have performed
the change ζ →−ζ after directing the axis 0z ‘downward’).

Formulate the following inverse problem: determine u,ζ , and Ψ so that condi-
tions (3.1)–(3.4) are valid with the corresponding boundary and initial conditions.

Solving this inverse problem and analyzing the values of the function Ψ, we can
make conclusions on the adequacy of mathematical model (3.1) where, for simplic-
ity sake, we assume that T , S, and ρ1 are given.

3.2. The study of the solvability of the approximate inverse problem

Consider the particular case of the inverse problem, the ‘approximate inverse prob-
lem’, by assuming

du

dt
≡

∂u

∂ t
, f ≡ l0 is the Coriolis parameter, f3 ≡

1

T

∫ T

0
f̃3dt = 0, ρ1 ≡ 0
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and all the coefficients µ ,ν are constant in the equations. We also assume that all
boundary conditions are homogeneous and their components corresponding to the
convection operator are absent. The boundary conditions with respect to t are taken
as

u|t=0 = u|t=T , ζ |t=0 = ζ |t=T (3.5)

where (0,T ) is a sufficiently large time interval.
Proceed to the consideration of Ω′

2,(ζ
+
0 )′,P′

a instead of Ω2,ζ
+
0 ,Pa in (3.1) and

apply averaging with respect to t to these equations. Then, taking into account (3.5),
we get [

0 − f

f 0

]
u−g∇ζ +Auu+(Ak)

2u

= ∇g

[
γ0
Ω′

2

g
−βγ0(ζ

+

0 )′ +Ψ0

]
−

1

ρ0
∇P′

a in D

div

(∫ H

0
Θudz′

)
= 0 onΩ

(3.6)

Move g∇ζ to the right-hand side of the equation. Then it is easy to see that

system (3.6) has the unique solution u,ζ , where

u≡ 0, ζ =
P′
a

ρ0g
−

[
γ0
Ω′

2

g
−βγ0(ζ

+

0 )′ +Ψ0

]
. (3.7)

Now from (3.4) we have

ζ = −ζ ′
obs. (3.8)

From (3.7), (3.8) we get one of the required functions Ψ0:

Ψ0(x,y) =
P′
a

ρ0g
+ζ ′

obs− γ0

[
Ω′

2

g
− (ζ

+

0 )′

]
. (3.9)

Calculating Ψ0(x,y) from (3.8), one can suppose that the inclusion of Ψ0 into
the motion equation may result in a more accurate description of level functions
mean with respect to t.

We assume that the function Ψ0 has been already determined. Now prove the
unique solvability of the problem relative to u,ζ ,Ψ1 considering it with same con-
ditions (3.5).

Suppose two solutions to the problem exist. Then we have the following system
of equations for the difference of these solutions:

∂u

∂ t
+

[
0 − f

f 0

]
u−g∇ζ +Auu+(Ak)

2u = ∇gΨ1 in D ∀t

∂ζ

∂ t
+div

(∫ H

0
Θudz′

)
= 0 onΩ ∀t

ζ = 0 inΩ ∀t

(3.10)
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where the latter condition is a corollary from (3.4). Taking into account (3.3), rela-
tion (3.10) immediately implies u≡ 0,Ψ1 ≡ 0. Thus, the problem of determination
of u,ζ ,Ψ1 considered here can have only a unique solution, i.e., it is uniquely solv-
able.

3.3. The iterative solution algorithm for the inverse problem

The following iterative method can be such solution algorithm: if Ψ
(k)
1 and Ψ(k) ≡

Ψ0 +Ψ
(k)
1 have been calculated, then the determination of Ψ

(k+1)
1 (and simultane-

ously u(k+1),ζ (k+1)) is performed by the successive solution of the following prob-
lems:

∂u(k)

∂ t
+

[
0 − f

f 0

]
u(k) −g∇ζ (k) +Auu

(k) +(Ak)
2u(k)

= ∇g

[
γ0
Ω2

g
−βγ0ζ

+
0

]
+∇gΨ(k) −

1

ρ0
∇Pa−g

∫ z

0

ρ1
ρ0

dz′ in D ∀t

∂ζ (k)

∂ t
−div

(∫ H

0
Θu(k)dz′

)
= f̃3 onΩ ∀t

(3.11)

−
∂q(k)

∂ t
+

[
0 f

− f 0

]
q(k) +g∇q

(k)
3 +Auu

(k) +(Ak)
2u(k) = 0

−
∂q

(k)
3

∂ t
+div

(∫ H

0
Θq(k)dz′

)
= ζ +ζ ′

obs

(3.12)

Ψ(k+1) = Ψ(k) − τk(αΨ
(k) +gdivq(k)). (3.13)

The numerical solution of problems (3.11) – (3.13) can be performed, e.g., by
difference methods.

Algorithm (3.11) – (3.13) can be naturally written for system (4.1) as well.

4. Numerical experiments estimating the effect of tide-forming forces in
the mathematical model

In order to study the influence of tidal forces on the dynamics of the Black Sea
(first of all, we are interested in their influence on the sea level!) we have performed
a series of numerical experiments where the right-hand sides have been modified
by tide-forming forces in the form taken from (4.1), (4.2) for Ψ ∼= Ψ0. We also

considered the problem of the reference level h̃0 (see transformation (2.20)) and
have performed the corresponding experiments where some value constant in t was

taken as h̃0.

The calculation domain was Ω : λ ∈ [27.475◦,41.775◦],ϕ ∈ [40.93◦,47.29◦],
the grid was 0.05◦×0.04◦ with 40 levels for the vertical variable (see [30]).
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Figure 5. Vector function of the flow velocity at 00 o’clock, January 2, 2008 calculated by the model
without tidal forces (in cm/s).

Figure 6. Sea level at 00 o’clock, January 2, 2008 calculated by the model without tidal forces, h̃0 = 0
(in cm).
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All calculations were performed for one day, from January 1 to 2, 2008 with
the time step of 5 minutes. The model works in CGS units. Therefore, all variables
presented further in figures are measured in centimeters, seconds, and cm/s.

As was shown in [8], one should use the expression for the total tidal potential
and the auxiliary potential Ψ0 in these experiments, which improves the results of
calculations compared with observation data.

Before we consider the results of the experiments, note that the observation data
of the mean sea level for January 1, 2008 are presented in Fig. 3, the ocean level at
00 o’clock, January 2, 2008 is shown in Fig. 6, and the value Cobs equals 14.69 cm
for the mean level of the Black Sea.

4.1. Experiment 1, no tidal forces

In the model of the general sea circulation from [30], the level z = 0 is called the
unperturbed ocean surface (we also assume this fact) and hence the output data of
the model represent the deviation from the equilibrium state. A deviation from the
equilibrium state in the nature is the deviation from the geoid level. The results of the

calculations by the model without the tidal forces for h̃0 = 0 (i.e., the measurements
are performed from the geoid level) are shown in Figs. 3–6. The calculation period
covers January 1–2, 2008.

The results of the experiments presented here allow us to conclude that the cal-

culations by the model without tide-forming forces for h̃0 = 0 qualitatively describe
the observed sea level, however, the error may be quite significant.

4.2. Experiment 2, the total potential

In this experiment we performed the calculation with the use of total potential rep-

resentation (2.8), January 1–2, 2008. The value h̃0 equals zero and the constant part
of the potential is included. In this experiment the function ζ is the magnitude of the
sea level deviation from the equilibrium state, i.e., from the geoid. The tide-forming
forces are calculated with the use of (2.15), the coefficient is γ0 = 0.7.

The results of the experiments are shown in Figs. 7–10.

Comparing the calculation results shown in Figs. 7 and 8 with those presented

in Figs. 2–4, we conclude that for Ψ0 = 0 the value ζ differs from the observation

data and ‖ζ −ζ ′
obs‖/‖ζobs‖ ≃ 1.06. Thus, the inclusion of all tide-forming forces

does not compensate the errors of the mathematical model, because their influence
is not great, see Figs. 8 and 9, which is confirmed by the known facts (see [14,15]).
(We also note that the effect of inclusion of tide-forming forces is more significant
in the case of the consideration of the whole World Ocean, see [8].) Therefore, one
can suppose that in order to obtain more adequate calculations of the level function,
it is necessary to take into account the curvature of the geoid surface as the reference
surface in some form in the mathematical model. The same is true for the influence
of various forces perturbing this surface (see the next section).
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Figure 7. Mean sea level calculated by the model with the total potential (in cm).

Figure 8. Deviation of the mean sea level calculated by the model with the total potential from the
mean level obtained in Experiment 1 (without tide-forming forces, Fig. 7), (in cm).
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Figure 9. Sea level at 00 o’clock, January 2, 2008 calculated by the model with the total potential (in
cm).

Figure 10. Deviation of the sea level at 00 o’clock, January 2, 2008 calculated by the model with the
total potential from the level obtained in Experiment 1 (without tide-forming forces, Fig 6), (in cm).
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Figure 11. The value ζ for Ψ0 = ζτ +ζ ′
obs, (in cm) (cf. Fig. 2).

Figure 12. The difference ζ ′
obs−ζ , Figs. 11 and 2 (in cm). (cf. Fig.4).
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4.3. Numerical experiments for the estimation of the influence of auxiliary
potential

Additional experiments were performed relative to the water area of the Black Sea
to estimate the effect of ‘self-attracting forces’ and different forces (including even
unknown ones!) influencing the deformation of the geoid surface (and hence the
mean level surface).

In these experiments the model included the tide-forming forces and auxiliary
forces from the potential Ψ0, whose calculation was based on observation data (see
the previous section). Some of the results of these experiments are presented in
Figs. 11 and 12.

If we use the expression Ψ0 = ζτ + ζ ′
obs, the calculation results are noticeably

closer to the observation data. The error (‖ζ −ζ ′
obs‖)/‖ζobs‖ in the common water

area of the Black Sea and the Sea of Azov is of order 0.27. If we calculate this
error only for the open parts of the Black Sea, it gets the value ≈0.04–0.06 (which
is comparable with the results from [8] obtained in the consideration of the whole
World Ocean). The principal errors appearing here relate to the shelf zone of the
Black Sea and especially to the basin of the Sea of Azov. Probably, this is primarily
related to the inaccuracy of the direct ‘mathematical’ model (see [30]) used in this
paper in numerical experiments.

5. Conclusion

The experiments performed here show that the use of total tidal potential (2.8) in the
mathematical model of the dynamics of the Black Sea and the Sea of Azov is quite
realizable, but requires additional data (positions of celestial bodies). However, this
allows us to perform calculations for any dates and to take all components of tidal
forces, including long-period ones. Note also that tidal waves are clearly expressed
in the calculations, which opens new possibilities for applying harmonic analysis
to tidal currents and waves. This may also play an important role in the study of
resonance phenomena of tidal waves and free oscillations in the Black Sea and the
Sea of Azov, where the wave amplitudes may essentially grow (see [14, 15]).

The experiments performed here confirm the necessity to take into account the
‘self-attraction’ forces and the forces causing the distortion of the geoid and the
mean level surfaces. The improvement of the accuracy of the calculations of the
ocean level function is observed even for an approximate calculation of those forces
and solution of the corresponding inverse problem. If we compare the results of
calculations of the Black Sea dynamics with the actually observed physical fields,
it is necessary to take into account the form of the mean sea level more precisely
in mathematical models, because this is the main component of the level function
in this basin. It its turn, this requires a correct inclusion of the geoid surface or the
mean level surface representations in the mathematical model.

Based on numerical investigation of the Black Sea dynamics taking into ac-
count tide-forming forces presented above, one can make a series of conclusions
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concerning the adequacy of the used mathematical models: (1) If the closeness of
the ocean level functions is taken as the criterion, the mathematical model with-
out tide-forming forces should be assumed inadequate for the description of the
physical process. (2) If we use the mathematical model taking into account the tide-
forming forces and the curvature of the geoid surface (or the mean level surface) and
consider the level functions in the open part of the sea, the model can be assumed
approximately adequate. If we consider the level functions in the neighbourhood of
the shore lines and shelf zones, on ‘shallow water’ areas, the model is inadequate
and its correction is required. (3) As was shown by numerical experiments, the in-
fluence of the inclusion of tide-forming forces on the temperature and salinity fields
is insignificant (at least in the calculations for small periods, which is in accordance
with the conclusions from [8]). (4) Probably, in order to get more complete effects
of the inclusion of tide-forming forces, one should use numerical models of a higher
grid resolution and also take into account the river runoff, describe shallow water
parts of basins, etc. Moreover, it is expedient to apply assimilation procedures for
the observation data obtained at the stations positioned in the Black Sea and the Sea
of Azov, because altimetry data may have considerable errors in the shelf zones and
in the basin of the Sea of Azov.

It is worth noting that the consideration of the curvature of the geoid (or mean
level) surface as the reference surface in the mathematical model also influences
the accuracy of calculations of the vertical flow velocity component. However, the
discussion of this issue requires separate analysis and lies beyond the scope of this
paper.
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