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ABSTRACT

Many factors can cause color distortions between stereoscopic
views during 3D-video shooting. Numerous viewers experience
discomfort and headaches when watching stereoscopic videos that
contain such distortions. In addition, 3D videos with color differ-
ences are hard to process because many algorithms assume bright-
ness constancy.

We propose an automatic method for correcting color distor-
tions between stereoscopic views and compare it with analogs.
The comparison shows that our proposed method combines high
color-correction accuracy with relatively low computational com-
plexity.

Index Terms — Stereoscopic video, color distortions, quality
assessment, color correction

1. INTRODUCTION

Despite extensive development of technologies for showing 3D
video, public interest in stereoscopic content is decreasing [1].
Experts in the field believe visual discomfort, which some view-
ers experience while watching low-quality stereoscopic content, is
the main reason for this decline in consumer demand for 3D video.
Stereoscopic video can contain artifacts that directly cause viewer
discomfort, such as geometry, sharpness, and color distortion, as
well as channel and temporal mismatch. Theoretically, computer
processing can correct most of these artifacts during the produc-
tion stage. Analyses of modern stereoscopic movies [2], however,
show that even high-budget movies contain a considerable number
of stereoscopic artifacts. Nevertheless, there is an obvious depen-
dence between the budget of a stereoscopic movie and the number
of artifacts it contains. This fact suggests that modern instruments
for assessing the quality of stereoscopic content are poorly de-
veloped: correcting artifacts requires a considerable amount of
human and financial resources, and most of this work is insuffi-
ciently automated. Thus, the 3D-video industry needs effective
tools that reduce the number of artifacts in stereoscopic content.

In addition to visual discomfort, stereoscopic video sequences
containing color distortions between views may present extra diffi-
culties when attempting to eliminate other artifacts or when apply-
ing visual effects. For example, most stereo-matching algorithms
assume the sequence has no color distortions between views. Real
video data, however, often contains such distortions, causing these
algorithms to deliver unsatisfactory results. Thus, not only do
methods for correcting color differences between views reduce
visual discomfort, but they also narrow the class of input data, al-
lowing use of more-efficient algorithms for subsequent 3D-video
processing.

2. RELATED WORK

Methods for correcting color distortions between stereoscopic views
are divisible into two categories: local and global. Local methods
produce color-distortion models that take into account the spatial
position of pixels in the frame, whereas global methods apply to
the views a transformation function that does not depend on the
spatial position of pixels.

2.1. Global methods

Global color-distortion models contain few parameters, and these
parameters are easy to calculate. For this reason, global methods
have high computational performance and are generally more ro-
bust than local methods, meaning they are less likely to produce
visible artifacts in the color-correction results. But they are often
unable to provide high-quality correction of color distortion, so
they usually serve in real-time applications and in the preprocess-
ing phase of local methods.

Histogram-matching-based methods [3, 4] constitute one global
approach to color correction. Their parameters are computed to
minimize the difference between the color distributions of two im-
ages. Although histogram matching has low computational com-
plexity and relatively high accuracy for a global method, it turns
out to be impractical because it generates unacceptable artifacts
for certain video sequences — especially those containing many
occlusions.

In addition, the color-transfer methods [5, 6] are easily adapt-
able for stereoscopic color correction. Xiao et al. [5] generalize
the basic color-transfer idea [6], performing linear color transfor-
mations for all image color channels at once rather than for each
channel separately. This method has low computational cost and
avoids producing visible artifacts because its model has only 12
parameters. But it has lower color-correction accuracy than the
histogram-matching algorithm.

2.2. Local methods

Because local models of color distortion usually contain many pa-
rameters, pixel correspondence between the two views becomes
necessary to correctly evaluate those models. Therefore, they can
be classified according to the stereo-matching methods and color-
distortion models they employ (as well as methods for estimating
their parameters).

Methods [7, 8] use SIFT for stereo matching, as it is invariant
to small color distortions. The disadvantage of SIFT is that the re-
sulting correspondence vector field is highly sparse — especially
over untextured image areas, where it is seldom possible to detect
any feature points. Many methods for estimating optical-flow or
disparity maps are easily adapted to color-distorted images by re-
placing the block-matching cost function. Hirschmuller et al. [9]
compared 15 simple cost functions for three different matching
algorithms. Their modified normalized cross-correlation function
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(a) Source frame Is (b) Reference frame Ir (c) Warped frame Iw (d) Difference between source
and warped frames Dif

(e) Absolute value of difference
‖Dif‖

(f) Initial error map E0 (g) Refined error map E (h) Obtained confidence map
Conf

Figure 1: Confidence-map calculation example. The frame is from Dolphin Tale.

(NCC) showed good results in this comparison. The disadvan-
tage of all cost functions based on NCC, however, is that they
show a zero error between a uniform block and any other block.
Therefore, they best serve only in matching methods that allow
specification of smoothness constraints for the matching function
(for example, on the basis of graph cuts). But such methods have
a high computational complexity.

As for color-distortion models, methods [7, 8] model color
distortions as a function of the difference between the original and
corrected images; they estimate its parameters using color differ-
ences in the areas of feature points. These parameters are then
interpolated for whole image. To exclude information from incor-
rectly matched pixels, the authors use confidence maps. In method
[7], this step is based on the NCC function; in method [8] it is
based on the distance between SIFT descriptors.

3. PROPOSED METHOD

To correct the color distortions between stereoscopic views, we
transform one stereoscopic view, Ir , to match the colors of another
view, Is, using the following approach. First, our method per-
forms stereo matching between Is and Ir using the block-matching
algorithm with a special cost function, thereby obtaining the cor-
respondence map M between views. We then warp Ir to Is:
Iw = M(Ir). Next, we use Iw to calculate the color-distortion
model, but we first construct a confidence map to exclude infor-
mation from badly matched pixels.

3.1. Stereo matching

3.1.1. Proposed cost functions
We examined two cost functions, NCC and ZSAD [9], that are
useful for stereo matching between views with color differences.
For example, if blocks bs, br are linearly dependent:

br = αbase + (1 + αcontrast)bs,

where αbase, αcontrast are the distortion parameters for the base
level of brightness and contrast, respectively, then NCC(bs, br)
will be equal to 0, and if αcontrast = 0, then ZSAD(bs, br) will
be equal to 0. Thus, stereo matching can yield not only a corre-
spondence map but also the color-distortion parameters Abase,
Acontrast. Unfortunately, these cost functions fail to provide good

stereo matching because for a uniform block br (br(i, j) = const;
i, j ∈ 1, blocksize),

• NCC(bs, br) = 0 for any block bs;

• ZSAD(bs, br) = 0 for any other uniform block bs.

To address this issue, we take into account the color-distortion
strength, which for the ZSAD cost function is defined by the pa-
rameter α̂base and for the NCC cost function is defined by the
pair (α̂base, α̂contrast). Here, α̂base is the mean block difference
and α̂contrast is the block-difference standard deviation. The final
cost functions are the following:

MZSAD(bs, br, β, db, dd) = ZSADdb(bs, br)+β DS
dd
ZSAD,

MNCC(bs, br, β, db, dd, γ) = NCCdb(bs, br)+β DS
dd
NCC(γ),

DSZSAD = |α̂base|,

DSNCC(γ) = (1− γ)|α̂base|+ γ|α̂contrast|.

3.1.2. Selecting cost function
To find optimal parameters for proposed cost functionsMZSAD
and MNCC, we prepared a data set consisting of 5,000 Full
HD frames from modern stereoscopic movies. Since obtaining
ground-truth correspondence maps for such a data set is difficult,
we use an LRC-based metric [9] to evaluate cost-function perfor-
mance:

loss =
∑
p

LRC2(p),

LRC(p) = ‖Ms→r (Mr→s(p))− p‖ ,

where Ms→r and Mr→s are correspondence maps obtained using
stereo matching from Is to Ir and from Ir to Is, respectively. We
selected the optimal parameters using a brute-force search of the
uniform grid. In addition to determining the cost-function param-
eters, we selected an optimal scale factor from the set {1, 1

2
, 1
3
, 1
4
}

and used it to reduce the frame size before stereo matching. As a
result, the smallest loss-metric value came from the following cost
function when using a scaling factor of 1

4
:

BlockMetric(bs, br) = ZSAD2(bs, br) +
1

128
DSZSAD



3.2. Correction method for local distortions

3.2.1. Confidence-map construction
We compute the confidence map in two stages:

1. Evaluation of the initial correspondence-error map on the
basis of the LRC (ELRC ) [9] and the magnitude of the
structural differences between views (ES):

E0 = ES(1 + 0.25 ELRC),

ELRC = min(1,
10

w
LRC),

ES(p) =
1

‖ωES‖
∑

p∈ωES
(p)

∥∥Dif(p)− Dif(p)
∥∥2,

Dif(p) = 1

‖ωES‖
∑

p∈ωES(p)

Dif(p),

Dif = Iw − Is,
where w is the frame width and ωES (p) is the square win-
dow centered on pixel p with a radius of nine pixels.

2. Error map refinement. Initial error map E0 fails to accu-
rately mark incorrectly mapped blocks. For example, it
will mark the whole block as incorrect even though the
block has only a partially incorrect mapping. The refine-
ment algorithm redistributes the error E0 of each pixel p
among its neighbors ωConf (p). During redistribution, a
neighbor k ∈ ωConf (p) receives from pixel p part of its
error ERE(p, k); that part is proportional to the magnitude
of the absolute difference Dif(k):

ERE(p, k) =


0 , k 6∈ ωConf (p)

E0(p)
‖Dif(k)‖∑

k∈ωConf (p) ‖Dif(k)‖
, k ∈ ωConf (p)

,

where ωConf (p) is the square window centered on pixel p
with radius of five pixels. The final error value for pixel p
is the sum of the errors ERE(k, p) redistributed from each
neighbor k ∈ ωConf (p):

E(p) =
∑

k∈ωConf (p)

ERE(k, p).

We use scaled and inverted error-map values as our confi-
dence-map values.

3.2.2. Estimation of local distortions
To correct local color distortions, we use the following model,
which describes the dependence between the corrected image Ic
and the source image Is:

Ic(p) = a(p) Is(p) + b(p).

We compute the parameters a(p) and b(p) independently for each
pixel p, using the information from its neighbors k ∈ ωC(p) in
the images Is and Iw, taking into account each pixel confidence
Conf(k) pixel. For each pixel, we calculate the radius of its neigh-
borhood:

rC(p) = min

r : ∑
k∈ω(p,r)

Conf(k) ≥ ‖ω(p, 9)‖

,
where ω(p, r) is the square window centered on pixel p with ra-
dius of r pixels. By doing so, we guarantee the minimum total
confidence measure for the pixels we use to estimate a(p) and
b(p).

To estimate these parameters, two methods are possible: re-
gression and statistical. The regression method selects the parame-
ters for pixel p that minimize the difference between the corrected
and warped images in the neighborhood ωC(p). To do so, it solves
the following linear-regression problem:

α, β = argmin
α,β

∑
k∈ωC (p)

(
((1 + α)Is(k) + β − Ic(k))2 + εα

2
)

Conf(k),

a(p) = 1 + α, b(p) = β,

where ε is the regularization parameter. The solution to this prob-
lem is the following:

α =
cov (Ic − Is, Is, ωC(p))

std2 (Is, ωC(p)) + ε
,

β = mean (Ic − (1 + α)Is, ωC(p)) ,

where, for window ω, mean(I, ω) is the expected value of image
I , std(I, ω) is the standard deviation of image I , and cov(I, J, ω)
is the covariance between images I and J , taking into account
confidence Conf. The statistical method assumes that within the
vicinity of ωC(p), image pixels for each color channel are nor-
mally distributed; it also assumes that to eliminate the color differ-
ences, it is sufficient to equalize the expected values and standard
deviations of image Is image in accordance with Iw:

a(p) = std2 (Ic, ωC(p)) + ε

std2 (Is, ωC(p)) + ε
.

Next, b(p) is calculated in the same way as the regression method.
The regression method of parameter estimation provides more ac-
curate correction of color distortions, but it is more inclined to
generate artifacts than the statistical method.

4. EXPERIMENTAL EVALUATION

To evaluate the correction accuracy of our proposed method, we
prepared a data set consisting of 1,000 Full HD frames taken from
modern stereoscopic movies produced using only 3D rendering,
so they had no initial color distortions. We artificially distorted
one view in each frame to add color differences. Our accuracy
evaluation used the SSIM metric. To check whether our algorithm
preserves the structure of the original images after correction, we
prepared a data set consisting of 5,000 Full HD frames, with color
distortions, taken from modern stereoscopic movies shot using
stereo cameras. To measure the structural similarity of the images,
we used the∇Y PSNR metric:

∇Y PSNR(Is, Ic) = −10 log10

∑
p∇Y

2(p)

wh
,

∇Y = dilate
(∥∥∥∇IYs −∇IYc ∥∥∥) ,

where dilate(I) is a dilation operation with a square structural el-
ement of size 9×9, ∇IY is the Y-channel gradient of image I (in
YUV color space), and w and h are the frame width and height,
respectively. Additionally, we evaluated the subjective quality of
our proposed method using Subjectify.us platform. We created
a test set consisting of 18 scenes with color corrected left views
and showed them alongside with right views in a chessboard man-
ner. Viewers were asked to choose the best color correction re-
sults with least noticeable color differences between left and right
views and other visual artifacts. 116 respondents participated in
the described subjective evaluation.



Commercial Commercial Commercial Proposed
method A method B method C method

Correction accuracy (SSIM) 0.9981 0.9980 0.9951 0.9992
Structure preservation (∇Y PSNR) 31.786 39.772 33.289 45.707
Subjective quality (Crowd Bradley-Terry rank) 0.797393 — 1.040402 1.264027
Computation time (frames per second) 0.09 0.11 0.25 1.37

Table 1: Comparison of color-correction methods.

(a) Source frame (b) Reference frame

(c) Reference frame
(compensated difference)

(d) Proposed method (e) Proposed method
(compensated difference)

(f) Commercial method A (g) Commercial method A
(compensated difference)

(h) Commercial method B (i) Commercial method B
(compensated difference)

(j) Commercial method C (k) Commercial method C
(compensated difference)

Figure 2: Example results for color-correction methods applied
to data with natural distortions. The frame is from a trailer for
Pirates of the Caribbean: On Stranger Tides.

We compared our proposed method with analogs from com-
mercial software [10, 11]. In addition, we measured the computa-
tion time of each method. The final results appear in Table 1. On
the basis of this data, we conclude that all of the methods deliver
approximately the same accuracy for correcting color distortions,
but our method better preserves the image structure, has better
subjective quality, and is less computationally expensive than the
others. Figure 2 shows a color-correction example.

5. CONCLUSION

In this paper, we presented a novel method for correcting color
differences between views in stereoscopic videos. We developed
a cost function that enables stereo matching of images with color
distortions. We also proposed a new color-distortion model that
employs stereo-matching confidence maps for better parameter
evaluation. We compared our proposed method with commercial
analogs and showed it accurately preserves the image structure
and has a low computational cost.
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