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ABSTRACT 

This paper proposes and studies a mathematical model of the motion of a viscous fluid caused by the oscillation of 

a plane porous surface. The motion of liquid inside and outside of a porous medium is considered in a fixed coordinate 

system. The porous medium performs harmonic translational-oscillatory motion parallel to an impenetrable flat surface, 

which limits the porous medium from below and moves with its velocity. Exact analytical solutions of the nonstationary 

Brinkman equation describing the motion of a liquid in a porous medium and the Navier-Stokes equation describing the 

motion of a liquid outside of a porous medium are found. A numerical analysis of the proposed mathematical model is 

carried out. The profiles of filtration rates in a porous medium and free liquid are constructed for different values of the 

model parameters. It is shown that, in special cases, the previously obtained solutions of problems of the motion of a 

viscous fluid caused by the vibration of a solid impermeable flat surface follow from the results obtained. 

 
Keywords: translational-oscillatory motion, viscous fluid, porous medium, Brinkman equation, Navier-Stokes equation. 

 

1. INTRODUCTION 
The study of the fluid motion through porous 

media has great theoretical and practical significance in 

connection with various applications in the modeling of 

certain technological processes, as well as in the study of 

natural phenomena. Of great practical and scientific interest 

is the construction and investigation of mathematical 

models of the flow of a viscous fluid inside and outside of 

the porous surfaces of planar, spherical and cylindrical 

configurations since for them special analytic solutions to 

the corresponding boundary value problems can be found 

under special assumptions. 

The work [5] proposes solutions to problems of the 

motion of solid bodies in a viscous fluid. In [9] a 

mathematical model of the motion of a pulsating solid body 

in a viscous oscillating fluid is constructed. Analysis of fluid 

flows between a porous medium and a liquid layer was 

carried out in [1]. The problems of flow past an 

impenetrable sphere and a cylinder in a porous medium, 

using the Brinkman model, are solved in [6]. In this paper, 

attention is drawn to the fact that in the Brinkman filtration 

model, as a boundary condition on the contact surface of a 

porous medium and an impenetrable solid body, in general, 

instead of the fluid adherence condition, it is necessary to 

take the condition for its slippage. The flow of a viscous 

incompressible fluid in a long cylindrical pore, the inner 

surface of which is covered by a permeable porous layer, 

was considered in [4]. In the paper [10], the fluid motion 

caused by the rotational-vibrational motion of the porous 

sphere is determined using the non-stationary Brinkman 

equation. In [11], a mathematical model of the viscous fluid 

motion caused by the translational-vibrational motion of a 

plane layer of a porous medium in a moving coordinate 

system in which the surface element is at rest is constructed 

and investigated. 

This paper is devoted to the study of the viscous 

fluid motion caused by the oscillation of a plane porous 

surface immersed in this liquid in a fixed coordinate system. 

Theoretical research results can expand the scope of the 

hydrodynamic methods of solving applied problems in 

various fields of science and technology, and also used to 

calculate parameters for technical devices that use viscous 

liquids in contact with a porous medium. 

 

2. RESEARCH METHODS 
To construct and study the considered 

mathematical model, the methods of mathematical 

physics, vector analysis, as well as numerical methods, are 

applied. To describe the motion of a liquid in a porous 

medium, the non-stationary Brinkman equation is used, 

and for the description of the motion of a free liquid 

outside a porous medium - the Navier-Stokes equation. 

When determining the boundary conditions, the possible 

sliding of the liquid with respect to an impermeable 

surface, which limits the porous medium, is taken into 

account. On the interface between the porous medium and 

the free fluid, the condition for the continuity of the fluid 

velocity is taken, and the jump in the tangential stresses in 

the liquid is assumed to be proportional to the relative 

velocity of the liquid at the interface (in a particular case 

these stresses can be continuous). 

 

3. MATHEMATICAL MODEL CONSTRUCTION 
A plane porous surface performs a harmonic 

translational-oscillatory motion with a frequency ω in a 
direction parallel to the impermeable plane, which limits 

the porous surface from below and moves with the speed 

of this surface. 

It is assumed that the porous medium is 

homogeneous, isotropic, non-deformable, has a high 

permeability and a sufficiently high porosity. Such 

properties can, for example, belong to fibrous, as well as 

strongly foamed materials, in which the permeability 

coefficient K reaches values of 10-4 cm2. In a porous 

medium, fluid vibrations may occur at which the velocity of 

the porous medium and the velocity of the fluid will differ. 

To construct a mathematical model for the 

motion of a viscous fluid caused by the oscillation of a 
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plane surface of a porous medium, a fixed Cartesian 

coordinate system is chosen so that the interface between 

the porous medium and the free liquid coincides with the 

plane; the porous medium is determined by the inequality: 

0*

1
 xH  (region 1), and the free liquid is 

determined by the inequality: 
2

*0 Hx   (region 2). The 

plane 
2

*
Hx  coincides with the free surface of the liquid. 

From below, a flat porous medium is bounded by an 

impenetrable, flat surface
1

*
Hx  , which moves along 

with the porous medium. The axis 
*

y  is parallel to the 

direction of oscillation of the porous surface and the plane

1

*
Hx  . Here the symbol "*" denotes dimensional 

variables, and the dimensionless variables are further 

denoted by the same symbols, but without this sign. The 

subscripts 1 and 2 denote the quantities corresponding to a 

porous medium and a free liquid, respectively. Figure-1 

shows the scheme of the problem. 

 

 
 

Figure-1. Scheme of the task. 

 

The speed of the translational-oscillatory motion 

of a plane porous medium and the plane surface bounding 

it along the axis 
*

Oy is a function of time 
*

t :

)exp( *

0

*
tiUu  , where, RU 0 , 

**
yuu  . 

It should be noted that in the final results of 

calculations only the real parts of the corresponding 

complex expressions have a physical meaning. 

The flow of a viscous fluid in a porous medium 

in the framework of the Brinkman model is described by a 

system of equations [2, 3, 7, 8, 11, 12]: 

 

 

**

1

**

1

*

*

*

1 1
grad

11
Fu

u











p

t
, 0div *

1
* u  (1) 

 

Here Γ is the porosity (Γ = const); ρ is the density 
of a viscous liquid; 

*

1
p - average pressure on the pore 

volume; 
*

1
u - the filtration rate (

*

1

*

1
νu  ,

*

1
ν is the 

average velocity of the fluid in the pore volume); 

 /  , where  is the effective viscosity of the 

liquid in a porous medium;  / , where  is the 

viscosity of the free liquid outside of the porous medium; 

))(/( **

1

* uuF   is the density of the resistance 

force of the porous medium. 

In the case when the permeability coefficient of a 

porous medium 0 , it follows from the system of 

equations (1) that 
**

1
uu  . This means that the viscous 

fluid will move along with the porous medium. If the 

velocity 
*

u is zero, then *F  will be of a known kind of 

Darcy force. 

The motion of a liquid outside of a porous medium is 

described by the equations [5]: 

 

 

*
2

**
2

*
22*

*
2 grad

1
)( uuu

u








p
t

, 0div *
2

* u . (2) 

 

Because of the symmetry, all the variables are 

independent of the z * coordinate and will be functions 

only of time 
*

t  and the vertical coordinate 
*

x . From the 

continuity equations (1) and (2) it follows that *

1x
u

const, *

2x
u const. These constants are assumed to be 

equal to zero, since on surfaces 
1

*
Hx   and 

2

*
Hx   

0*

1


x
u and 0*

2


x
u . From this, we can conclude that, 

0*

1


x
u , 0*

2


x
u  everywhere, and also 0)( *  jj uu  (j 

= 1, 2). Thus, the nonlinear terms fall out of the equations 

of motion (1) and (2) and velocities 
*

1
u , 

*

2
u  are directed 

everywhere parallel to the axis 
*

y . 

It follows from the x * -component of equations 

(1) and (2) that in the case of a horizontal arrangement of 

the porous layer, the pressures 
*

1
p and

*

2
p  also depend on 

the time 
*

t and coordinates 
*

x , that is, they do not affect 

the nature of the motion of the viscous liquid in the 

horizontal direction, therefore take *

1
p const, *

2
p const 

and do not take into account the influence of gravity on the 

motion of a viscous fluid. 

Introduce the notation
*

1

*

1
uu

y
 ,

*

2

*

2
uu

y
 . Then 

from (1) and (2), we obtain: 

 

 
)(

1 **

12*

*

1

2

*

*

1 uu
x

u

t

u














, 

2*

*

2

2

*

*

2

x

u

t

u








        (3) 

 

To formulate the boundary conditions on the 

surface of discontinuity of any quantities, a mobile 

coordinate system is used that is associated with the 

surface element under consideration. In this system, the 

surface element is at rest. In the case of nonstationary 

motion, the surface element is considered for a short time 

[5]. The transition to a fixed coordinate system is 

accomplished by adding the relative and transport 

velocities. Let us formulate the boundary conditions to 

equations (3) in a fixed system of coordinates, taking into 
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account the assumptions made [6, 8, 10, 11, 12]: condition 

on the boundary of an impermeable flat surface 

(
1

*
Hx  ): 

 

*

*

1*

0

*

1
)exp(

x

u
BtiUu



 ;                                      (4) 

 

conditions on the interface between a porous medium and 

a free liquid ( 0* x ): 

 
**

2

**

1
uuuu  ; 

)( **

1*

*

2

*

*

1 uu
x

u

x

u
















 , (
** u ); 

condition on the free surface of the liquid (
2

*
Hx  ): 

0
*

*

2 



x

u
. 

Here 
*

1
u ,

*

2
u ,

*
u  are the velocity with respect to 

the fixed coordinate system; B and Λ are constants with a 
length dimension, depending on the properties of the 

viscous fluid and the porous medium. The first condition 

(4) expresses the possible sliding of a viscous liquid with 

respect to an impermeable flat surface bordering a porous 

medium. If B = 0, then the first boundary condition (4) 

becomes the usual condition for liquid adherence on a 

solid surface
1

*
Hx  : )exp( *

0

*

1
tiUu  . The 

second condition (4) shows the continuity of the relative 

filtration rate and fluid velocity at the interface between 

the porous medium and the free liquid ( 0* x ). In the 

third condition (4) we take into account the connection 

between the shear stress jump at the interface of region 1 

and region 2 with the tangential velocity of the fluid. If Λ 
→ ∞, then this boundary condition becomes the condition 
of continuity of shearing stresses. If Λ = 0, then the third 

boundary condition (4) becomes the sticking condition on 

the surface of the porous medium. The fourth condition 

expresses the absence of tangential stresses on the surface 

of a free fluid. 

A mathematical model of the motion of a viscous 

fluid caused by the oscillation of a plane porous surface is 

a boundary value problem consisting of equations (3) and 

boundary conditions (4). 

 

4. SOLUTION OF THE BOUNDARY PROBLEM 

Measure the length in units 21
HHH  , time - 

1 / ω, speed - in units of U0. Let us introduce 

dimensionless variables 

Hxx /* , 
*

tt  , 
0

*

11
/Uuu  , 

0

*

22
/Uuu  , 

)exp(/
0

*
itUuu  . 

In dimensionless form, equations (3) have the 

form: 

 )(
1

2

2

1

2

1

2

uu
H

x

u

t

uH


















, 
2

2

2

2

2

x

u

t

uH











 (5) 

The dimensionless boundary conditions for 

equations (5) have the form: 

 

 
1

hx  : 
x

u
uu




 1

1
;                                             (6) 

0x : uuuu 
21

, )exp(
0

*

it
u

u
u  ; 

uu
x

u

x

u



















1

21

2

1
; 

2
hx  : 02 




x

u
. 

Here HHh /
11

 , HHh /
22

 , HB / , H/ , 

 /2
. 

Find the solution of equations (5) with the 

boundary conditions (6) in the form: 

 

 )exp()(),(
11

itxFtxu  , )exp()(),(
22

itxFtxu    (7) 

 

From equations (5) obtain: 

 

 

2

1

2

1

2

12

1

2

2 










H

F
dx

Fd
, 0

2

2

22

2

2

 F
dx

Fd
,          (8) 

 

where 



































2

2

2

1

2

2

1

2 H
i

H
, 

2

2

2

2
2 











H

i , 





2

1
, 





2

2
. 

The solutions of equations (8) in general form: 

 

 CxBxAxF  )exp(exp)(
11111 ,                       (9) 

)exp(exp)(
22222
xBxAxF  , 

where 
















2

2

1

1 iH
, 

2

2
)1(



H

i , 

2

21
)/(1 




i
C , 

4

2

4

1

2

1

2

1111











. 

The arbitrary constants 
j

A , 
j

B  ( j 1, 2) in (9), 

defined with the help of boundary conditions (6), have the 

form: 

2

1

1
D

D
A  , 

1112

11

111

1
2exp)1(

)1(

exp)1( hD

D

h

C
B








 ,  

112212

4251

2
exp)2exp1)(1( hhD

DDDD
A




 ,  
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112212

4251

2
exp)]2exp(1)[1( hhD

DDDD
B




 , 

111

2

43

2

11
exp)1()( hDDCD  ,  

53

2

612
DDDD  , 

2223
th1 hD  ,  

,exp)1)(1(
1114

hCCD 
 

111115
ch2sh2 hhD  , 

111116
sh2ch2 hhD  .  

 

Solutions (7) and (9) describe transverse standing 

waves in which the velocities directed parallel to the Oy 

axis in a porous medium ),(
1

txu and in a free liquid 

),(
2

txu are perpendicular to the direction of propagation 

of the wave along the Ox axis. 

If we replace the porous medium with an 

impenetrable layer with a thickness 1
H  that oscillates 

with velocity )exp( *

0

*
tiUu  , that is, we pass to the 

limit Λ → 0 (λ → 0), K → 0 ( 0
1
 ), then the solutions 

(9) take the form: 


1

F , 

22

22

2
ch

)(ch
)(

h

xh
xF




 .  

The velocity field in region 2, in this case, will 

have the following form in the dimensional form: 

 

 )exp(
cos

)(cos
),( *

22

*

22

0

***

2
ti

Hk

xHk
Utxu 


 ,













2

2

1 i
k

 (10) 

 

This expression coincides with the result [5, §24]. 

If the porous medium is replaced by a free fluid, 

i.e., go to the limit Γ → 1, K → ∞ ( 
1 ), β → 0, then 

the velocity field will be determined by an expression 

similar to expression (10), in which 2
H  should be 

replaced by H. 

In the limit ω → 0 ( 
2 ) we have the velocity field of 

a viscous liquid inside and outside the porous medium for 

the case of uniform motion of a flat porous surface with 

velocity 
0

*
Uu  . 

If we write F (x) in the form 

)()()( xiFxFxF
ir

 , then 

txFtxFitxF
ir

sin)(cos)()]exp()(Re[  . 

 

5. MODEL ANALYSIS 
The results of the analysis of the mathematical 

model of the motion of a viscous fluid caused by the 

oscillation of a flat porous surface are presented in Figures 

2-5. We construct the graphs  /2
 [8, 12]. All 

the figures in the fixed coordinate system show the 

dependence of the real part ),Re(
21

uu on x, that is, 
1

Re u

on x ( 0
1

 xh ) and 2
Re u on x ( 2

0 hx  ). The 

regions 1 and 2 are respectively determined by inequalities 

0
1

 xh  and 2
0 hx  . The motion of a fluid is 

nonstationary (time-dependent). In this connection, the 

profiles of the filtration velocity and the velocity of the 

free liquid in regions 1 and 2 continuously vary with time. 

For definiteness, the profiles of the filtration velocity and 

the velocity of the free fluid are constructed at time t = 0. 

At some other time, they will differ slightly from the ones 

listed below, but their quality will be of the same kind. 

Numerical estimates of the quantities are given for an 

example of a machine oil with a density ρ = 0.9 g/cm3
 and 

a viscosity η = 1.2 g/cm · s (  / ≈ 1.3 cm2
/s). 

The presence of discontinuities in the graphs on 

the surface of a porous medium is explained by the fact 

that the motion of a viscous liquid is considered in a fixed 

coordinate system. In the case of motion in the moving 

coordinate system, as was shown in [11], there are no 

discontinuities. 

In Figure-2, the graphs of the dependence 

),Re(
21

uu  on x are plotted in the interval 

2,08,0  x , that is, for the case when the thickness of 

the region of the free liquid is less than the thickness of the 

porous medium. Numerical calculations were carried out 

for the following values of the parameters: Γ = 0.95, λ → 
∞, the value 5/

1
H  is fixed but 2

/ H  equals 2; 4; 6; 

8. The graphs in Figure 2 (a) are built for β = 0, and in 
Figure-2 (b) for β = 1. 

 

 
 

Figure-2. Dependence of ),Re( 21 uu  on х  (–0,8; 0,2): λ → ∞, Γ = 0,95, 5/ 1 H , 2/ H  = 2; 4; 6; 8 (1 – 4). 
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It can be seen from Figure. 2 that if β = 0, then 
for all graphs ),Re(

21
uu  with 

1
hx  . If β = 1, then 

for ),Re(
21

uu  if 
1

hx  . This phenomenon can be 

explained by the effect of liquid sliding on the surface 

1
hx  . It is observed for all β ≠ 0. 

For graphs 3 and 4 in Figure-2 (a, b) in region 2, 

there are two layers of fluid with opposite directions of 

velocities. According to Figures 3 and 4 in Figure-2 (a), 

the velocity of a viscous liquid in a porous medium rapidly 

decays as it moves away from the surface 8,0x . 

For all the graphs in Figure 2, the value of H ≈ 
7.3 ·  10

-2
 cm. Table-1 shows the values of the frequency 

ω, with which the plane porous surface performs the 
translational-oscillatory motion, for different values of the 

value 2
/ H  and the values of the other parameters listed 

above. 

Table-1. The values of the frequency ω for different 
values 2/ H  at Γ = 0.95, 5/ 1 H , K = 10

-2
 cm

2
, 

ν ≈ 1.3 cm2
/s. 

 

2
/ H  2 4 6 8 

ω, с–1
 2 ·  10

3
 8,7 ·  10

3
 17,3 ·  10

3
 32,5 ·  10

3
 

 

                     In Figure 3, the profiles of the filtration rate 

and free liquid     are given for a symmetric gap 

5,05,0  x  at Γ = 0.95, β = 0, λ → ∞. For the graphs 
in Figure 3 (a) 5/

1
H , and for the graphs in Figure 3 

(b) 10/ 1 H . Numbers 1 - 5 designate the curves 

constructed for the values 2
/ H = 1; 1.5; 2; 2.5; 3.5. 

 

 

 
 

Figure-3. Dependence ),Re( 21 uu  on х (–0,5; 0,5): β = 0, λ → ∞, Γ = 0,95, 2/ H  = 1; 1,5; 2; 2,5; 3,5 (1 – 5). 

 

It can be seen from Figure-3 that the motion of 

the liquid penetrates from the region of the free liquid the 

porous medium. With increasing 1
/H values of the 

velocities in the porous medium and the free liquid, they 

increase, and in the porous medium the filtration rate 

changes slightly with increasing of 1
/H . Figure-3 (b) 

shows that the velocity profile in a porous medium at 

given parameter values is constant and equal to the value 

of porosity. 

For graphs 1 - 5 in Figure-3 (a), the value of H ≈ 
7.3 ·  10

-2
 cm; for the graphs in Figure-3 (b) H ≈ 14.5 · 10-2

 

cm. Table-2 shows the values of the frequency ω for 
5/

1
H  and 10/ 1 H  for different values of 2

/ H  

and the values of the other parameters listed above. 

 

Table-2. The values of the frequency ω for different values 2/ H  at Γ = 0.95, K = 10-2
 cm

2, ν ≈ 1.3 cm2
/s. 

 

2
/ H  1 1,5 2 2,5 3,5 

ω, с–1 
( 5/

1
H )

 
0,49 ·  10

3
 1,1 ·  10

3
 2,0 ·  10

3
 3,1 ·  10

3
 6,5 ·  10

3
 

ω, с–1
 ( 10/ 1 H ) 0,12 ·  10

3
 0,28 ·  10

3
 0,49 ·  10

3
 0,72 ·  10

3
 1,5 ·  10

3
 

 

Figures 4-5 show graphs of profiles of filtration 

rates in a porous medium and free liquid outside the 

porous medium for the interval 8,02,0  x , i.e., for 

the case when the thickness of the layer of free liquid is 

greater than the thickness of the porous medium. 
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Figure-4. Dependence ),Re( 21 uu  on х  (–0,2; 0,8): β = 1, Γ = 0,95, 5/ 1 H , 2/ H  = 2; 4; 6; 8 (1 – 4). 

 

The graphs of the velocity profiles in Figure-4 are 

constructed for β = 1, Γ = 0.95, 5/ 1 H . Numbers 1-4 

indicate the curves constructed for the values 2
/ H = 2; 

4; 6; 8. For the graphs in Figure-4 (a) λ = 0.5; for the 
graphs in Figure-4 (b) λ → ∞. 

It can be seen from Figure-4 that the liquid 

penetrates from the layer of free liquid the porous 

medium. With increasing λ, the velocities in both regions 
increase. 

 

 
 

Figure 5. Dependence ),Re( 21 uu  on х  (–0,2; 0,8): β = 0, λ → ∞, 5/ 1 H , 2/ H  = 2; 4; 6; 8 (1 – 4). 

 

The graphs in Figure-5 are constructed for β = 0, 
λ → ∞, 5/ 1 H . The value 2

/ H takes the value 2; 4; 

6; 8. For the graphs in Figure-5 (a), the porosity value is Γ 
= 0.95; for the graphs in Figure-5 (b), Γ = 0.85. It can be 
seen from Figure-5 that the liquid velocities in regions 1 

and 2 strongly decay. As the porosity decreases, the values 

of the velocities in the porous medium decrease, and in the 

free liquid the values of the velocities increase. 

 

6. CONCLUSIONS 

The problem of viscous fluid flows caused by the 

oscillation of a flat porous surface is solved. The motion of 

the liquid inside and outside of the porous medium was 

considered in a fixed coordinate system. Precise analytical 

solutions to the Navier-Stokes equation describing the 

motion of a free fluid outside of a porous medium and the 

non-stationary Brinkman equation describing viscous fluid 

flows in a porous medium are obtained. In regions 1 and 2, 

non-stationary fields of fluid velocities are found. It is 

revealed that the velocity of a viscous liquid in a porous 

medium and in a region outside the porous medium is 

perpendicular to the direction of propagation of standing 

transverse waves. The profiles of the filtration speed and 

free liquid velocity for some specific values of the 

parameters are shown in the graphs. If β = 0, then for all 
graphs ),Re(

21
uu with 1

hx  . If β = 1, then 
),Re(

21
uu  for 1

hx  . With increasing values of 

1
/H  and λ, the velocities in the porous medium and in 

the free liquid increase; with decreasing porosity, the 

velocities in region 1 decrease, and in region 2 the values 

of the velocities increase. In a porous medium and in a 

free fluid, there are layers with opposite directions of 

velocities, in which the values ),Re(
21

uu differ from each 
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other by signs. The velocity of a liquid in a porous 

medium is not zero. The velocity of the liquid outside the 

porous medium (in the region of the free liquid) attenuates 

with distance from the surface of the porous medium. It is 

shown that, in particular cases, the previously obtained 

solutions to problems of the motion of a viscous fluid 

caused by the vibration of a solid impermeable plane 

surface are obtained from the results achieved. 
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