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Abstract

Background: The development of new anticoagulants is an important goal for the improvement of thromboses treatments.

Objectives: The design, synthesis and experimental testing of new safe and effective small molecule direct thrombin
inhibitors for intravenous administration.

Methods: Computer-aided molecular design of new thrombin inhibitors was performed using our original docking program
SOL, which is based on the genetic algorithm of global energy minimization in the framework of a Merck Molecular Force
Field. This program takes into account the effects of solvent. The designed molecules with the best scoring functions
(calculated binding energies) were synthesized and their thrombin inhibitory activity evaluated experimentally in vitro using
a chromogenic substrate in a buffer system and using a thrombin generation test in isolated plasma and in vivo using the
newly developed model of hemodilution-induced hypercoagulation in rats. The acute toxicities of the most promising new
thrombin inhibitors were evaluated in mice, and their stabilities in aqueous solutions were measured.

Results: New compounds that are both effective direct thrombin inhibitors (the best KI was ,1 nM) and strong
anticoagulants in plasma (an IC50 in the thrombin generation assay of approximately 100 nM) were discovered. These
compounds contain one of the following new residues as the basic fragment: isothiuronium, 4-aminopyridinium, or 2-
aminothiazolinium. LD50 values for the best new inhibitors ranged from 166.7 to .1111.1 mg/kg. A plasma-substituting
solution supplemented with one of the new inhibitors prevented hypercoagulation in the rat model of hemodilution-
induced hypercoagulation. Activities of the best new inhibitors in physiological saline (1 mM solutions) were stable after
sterilization by autoclaving, and the inhibitors remained stable at long-term storage over more than 1.5 years at room
temperature and at 4uC.

Conclusions: The high efficacy, stability and low acute toxicity reveal that the inhibitors that were developed may be
promising for potential medical applications.
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Introduction

Hemostasis is one of the most important processes in organisms,

and disorders in this system cause deaths under a variety of

pathologies. The activation of blood coagulation can be caused by

trauma, sepsis, inflammation, obstetric practice and in the course

of surgical operations, especially operations using extracorporal

blood circulation. Hypercoagulation has also been observed

during infusion therapy with large volumes of crystalloid plasma

substitutes [1,2]. Oral contraception and artificial vessels or

cardiac valves may be sources of minor but permanent activation

of coagulation, eventually exhausting the pool of coagulation

inhibitors and giving rise to thrombotic events.

Thrombotic pathologies are a result of an imbalance in the

activity of thrombin, a key enzyme of the coagulation cascade, and

its natural inhibitors. Overproduction of thrombin may be
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countered by the administration of drugs that specifically inhibit

this enzyme.

This simplified conception allows for the design of new drugs

through the development of organic compounds that are inhibitors

for the given target-protein. An ideal inhibitor should be highly

effective and safe, and it should have stable pharmacokinetics that

are only weakly dependent on the patient’s age, sex, concomitant

diseases, drugs and diet. The binding of a compound with plasma

proteins may also interfere with its inhibitory activity. From all

these points of view, synthetic inhibitors with a low molecular

weight are very promising [3]. Thus, a lot of studies have been

directed towards the discovery of effective and safe small molecule

anticoagulants that act via direct thrombin inhibition. However,

despite considerable attention in this area, only one synthetic

direct thrombin inhibitor (DTI), argatroban [4], is currently in use

for intravenous administration in medicine. Dabigatran etexilat

was approved recently as the first small molecule thrombin

inhibitor for peroral introduction [5]. Thus, the development of

effective new direct thrombin inhibitors is a very important

objective for the improvement of anticoagulant therapy.

This study presents the results of our search for new small

molecule thrombin inhibitors for intravenous administration.

New inhibitor design is one of the key phases of the long and

expensive process of developing new drugs. The structures of

thrombin and many of its complexes with a diverse set of

experimental inhibitors have been resolved by X-ray structure

analysis, and many of these 3D structures have been submitted to

the Protein Data Bank (PDB) [6]. This information, together with

modern methods of structure-based drug design, can be used to

shorten the discovery and design phases of new drug development

concerning by completing a search for new inhibitor structures.

The thrombin active site has three pockets (Fig. 1). The negatively

charged residue of aspartic acid (Asp 189) is situated on the bottom

of the deep and narrow pocket S1. The two others pockets, S2 and

S3, have hydrophobic surfaces. The S2 pocket contains proline and

glycine residues, while Leu99, Ile174, and Trp215 residues are

situated in the S3 pocket. The S3 pocket binds predominantly to

aromatic residues of substrates (or inhibitors) and is thus referred to

as the aryl-binding site. Usually, the inhibitor’s moieties, located in

each of the enzyme active site pockets, are denoted P1, P2 and P3,

according to the pocket number. A scheme showing the disposition

of inhibitor residues in the thrombin active site is depicted in Fig. 2,

using the example of the well-known orcinol-based thrombin

inhibitor, which is very similar to new inhibitors developed in this

study. This scheme is based on data from the X-ray structure

analysis (PDB, code 1T4U) [7].

Virtual screening by means of ligand docking is widely

recognized as a helpful approach in modern drug design. We

performed computer-aided molecular design employing our own

docking program and used the strategy of stepwise experimental

screening for the estimation of antithrombin and anticoagulant

activities of the compounds with the best scoring functions.

Important characteristics, such as acute toxicity and the stability of

new inhibitors during long-term storage, were also determined.

This combined approach allowed us to shorten the first phase of

the search for new thrombin inhibitors and to develop for a period

less than 1 year new effective and safe promising drug candidates

for medical applications.

Materials and Methods

1. Materials
Donor blood was collected at the Blood Transfusion Station

of the National Research Center for Hematology and was used

without identifiers. Blood was collected into 3.8% sodium

citrate (pH 5.5) at a blood/anticoagulant ratio of 9/1. Platelet

poor plasma (PPP) for endogenous thrombin potential mea-

surements was prepared by centrifuging blood for 15 min at

1500 g.

Human thrombin (8.3 mg/ml) was obtained from Hematologic

Technologies Inc. (Essex Junction, VT, USA). The thrombin-

specific chromogenic substrate Tosyl-Gly-Pro-Arg-p-nitroanilide

(identical to Chromozym-TH) was purchased from Sigma (St.

Louis, MO, USA). Thrombin-specific fast (BOC-Ala-Pro-Arg-

AMC) and slow (BOC-Ile-Gly-Arg-AMC) fluorogenic substrates

[8], where BOC is the tert-butoxycarbonyl residue and AMC is the

7-amino-4-methylcoumarine residue, were synthesized in the

Institute for Medical and Biological Chemistry (Moscow, Russia).

Cremophore EL (macrogol-36-glycerol-ricinoleat) was purchased

from Caelo (Caesar & Loretz GmbH, Hilden, Germany), and

standard normal saline was purchased from Juno, a medical

holding company (Medsynthesis Ltd., Novouralsk, Russia). All

other domestic chemicals of reagent and analytical grade were

used without further purification.

2. Methods
2.1. A computer-based search for new thrombin

inhibitors. The docking studies were performed using our

docking package SOL software implemented in the program

complex KeenBASE [9]. The main features of this package are as

follows: a rigid target-protein structure, with the active site

represented by a set of grids for different type of potentials to

describe protein-ligand interactions (electrostatic and Van der

Waals (VdW) forces) in the frame of the Merck Molecular Force

Field (MMFF94) [10]; a rigorous description of solvation and

desolvation effects upon ligand binding, based on the generalized

Born approximation [11,12], which is included in the set of

potential grids; a genetic algorithm for global optimization of

Figure 1. The thrombin active site surface and the pockets of
the active site (Sn). The blue color corresponds to nitrogen atoms,
red to oxygen atoms, yellow to sulfur atoms, dark grey to carbon atoms
and light grey to hydrogen atoms.
doi:10.1371/journal.pone.0019969.g001
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protein-ligand interaction energy and calculation of ligand internal

strain energy in terms of MMFF94.

To perform docking with the SOL program for ligands of any

protein, the preprocessing of protein and respective ligands has to

be carried out. Usually there are incomplete side chains and

missing amino acid residues in structure of the protein in the

vicinity of the binding site. In our study missing protein hydrogen

atoms were added with the Reduce program [13]. All water

molecules, inhibitors and small residues, like sulfates and

phosphates, were removed from the complexes. Next, all protein

atoms were typified in accordance with the Merck Molecular

Force Field (MMFF94) [10] using our own procedure [14]. The

docking area was represented by a cube with a 22 Å edge covering

the protein active site. The cube center was chosen as the

geometrical centre of the native ligand of the respective PDB

protein-ligand complex, and the protein structures were saved to

mrk files that were suitable for subsequent 10161016101 grid

generation.

The grid of potentials representing thrombin-ligand interactions

was calculated separately using the SOL_GRID program [9],

before the initiation of the docking procedure. Throughout the

docking studies, all ligands were considered fully flexible – i.e., all

topologically available torsional degrees of freedom were unfrozen

and allowed to rotate freely, directed only by ligand internal

energy preferences in the frame of MMFF94. Bond lengths and

valence angles were frozen in the course of the docking procedure.

The careful validation of the SOL docking program was carried

out using two different validation protocols to test the correctness

of the physical and mathematical principals implemented in this

docking program [9,15]. The first protocol concerns the

identification of active ligands among a mixed set of active and

inactive ones. The second protocol [16] concerns the determina-

tion of accuracy for positioning ligands in proteins active sites. This

protocol was used to compare the two docking programs, SOL

and the standard AutoDock 3.05. The first protocol showed a

good to excellent quality in the SOL program for the selection of

active inhibitors for four different target-enzymes from a large set

of active and inactive (‘‘rubbish’’) ligands [9]. The accuracy of

ligand positioning in the active sites of enzymes was defined by the

root mean square deviation (RMSD) between ligand docked poses

and experimental ligand poses taken from the Protein Data Bank

[17]. The results of the docking quality comparison for both

programs demonstrated that the docking quality of SOL is better

than that of AutoDock 3.05, if we consider docking quality with

the criterion RMSD,1.5 Å. Almost twice as many native ligands

docked by SOL had a RMSD#1 Å when compared to the

respective number of ligands docked by AutoDock 3.05 [9].

The thrombin 3D structure was taken from the Protein Data

Bank (PDB, code 1O2G). All possible ligand poses within 22 cubic

angstroms around the center of the thrombin active site were

considered in docking. Electrostatic, VdW and solvation-desolva-

tion potentials were calculated on a 10161016101 grid inside this

cube. Parameters of the genetic algorithm (population size 30000,

mating pool size 70, number of generation 300, number of runs

50, and parameters for definition of elitism, mutation, crossover,

niching) [9] were chosen to get the best docking results for the

native ligand of the 1O2G PDB complex and for the thrombin-

argatroban complex (1DWC PDB complex) with an accuracy of

1.5 Å.

Three-dimensional structures of ligands (thrombin inhibitor

candidates) for initial virtual screening experiments with com-

pounds received from the National Cancer Institute (NCI) were

taken directly from the NCI Diversity set of compounds [18]. The

next steps of the virtual screening were performed with our

specially designed virtual ligand libraries. 3D structures of ligands

constructed during the hit optimization process were generated by

means of the CORINA 3D structure generation service [19].

Virtual screening was performed using a massive-parallel super-

computer using X-Com grid technology, developed at the

Research Computer Center of Moscow State University [20,21].

Visual inspection of ligand poses within the thrombin active site,

depicted as Solvent Excluded Surfaces (SES), was performed with

the help of the TAGSS program for triangulated SES construction

and visualization [22].

2.2. Measurement of thrombin induced hydrolysis of

specific substrates. The kinetics of thrombin inhibition was

determined from the hydrolysis reaction of a specific substrate by

thrombin in the presence of the tested substances. The

chromogenic substrate (Tosyl-Gly-Pro-Arg-p-nitroanilide) or fast

fluorogenic substrate (BOC-Ala-Pro-Arg-AMC) was used.

Plate wells were filled with 20 mM HEPES (pH 8.0) containing

140 mM NaCl and 0.1% polyethylene glycol (molecular weight

6000 Da). Thereafter, substrate was sequentially added to each

well (final concentration, 100 mM), followed by the substance

being tested (to a final concentration that was varied) and

thrombin (final concentration, 0.2 nM). The hydrolysis rate was

monitored spectrophotometrically at 405 nm (absorption maxi-

mum of the reaction product – p-nitroaniline), or fluorometrically

(lex = 380 nm; lem = 440 nm for fluorescent reaction product 7-

amino-4-methylcoumarine).

The initial rate was determined as the slope of the linear portion

of the kinetic curve over the first 10 to 20 min of measurement.

The inhibitory effect was expressed as the percentage reduction of

the initial hydrolysis rate. The reaction rate in the absence of

Figure 2. Scheme of disposition of ligand moieties (Pn) in the thrombin active site. One of the known orcinol-based thrombin inhibitors [7]
is presented. The active site pockets (Sn) are indicated.
doi:10.1371/journal.pone.0019969.g002
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inhibitor was taken as 100%. Each result is the mean of two

parallel determinations.

The inhibitor concentration was determined decreasing hydro-

lysis rate to 50% (IC50). Values of the inhibition constants were

calculated on the assumption about competitive mechanism of

inhibition using equation (1)

KI~IC50= 1zS=KMð Þ, ð1Þ

where: KI - the constant of inhibition,

S - the concentration of a substrate (100 mM),

KM - the Michaelis constant of a specific substrate for

thrombin (9.44 mM, average from ref. [23,24] and our

measurements for chromogenic and 13 mM for the

fluorogenic substrate [8], respectively).

2.3. Thrombin generation test. The kinetics of thrombin

generation in plasma was monitored using a modification of the

standard method [25] using a slow fluorogenic substrate BOC-Ile-

Gly-Arg-AMC [8]. Normal donor plasma (PPP) was placed in the

wells (90 ml/well) of a 96-well flat-bottom microtiter plate, after

which 10 ml of the substance solution to be tested was added in

different concentrations, along with 10 ml of the slow fluorogenic

substrate (initial concentration 5 mM). In the control wells (without

inhibitor), 10 ml of the solvent used was added (20 mM HEPES,

pH 7.5 and 140 mM NaCl; or pure ethanol, or dimethylsulfoxide

(DMSO) for different substances). The samples were incubated at

37uC for 3–5 min before being activated with thromboplastin,

which was a 1:250 dilution of a standard prothrombin time reagent

(Renam, Moscow, Russia) in the same buffer supplemented with

90 mM CaCl2. The final concentration of tissue factor during

activation was about 4 pM. Thromboplastin (25 ml) was added to all

wells simultaneously using a multichannel micropipette. The

moment of thromboplastin addition was taken as time zero. The

kinetics of accumulation of the fluorescent reaction product 7-

amino-4-methylcoumarine (AMC) was recorded for 65 min with a

fluorometric Fluoroscan II reader (LabSystem, Finland)

(lex. = 380 nm; lem. = 440 nm). The results were averaged over

two parallel samples. The error of parallel measurements was within

2–5%. At every moment, the rate of product accumulation is

proportional to the instant thrombin concentration present in

plasma. Therefore, the curve for the temporal evolution of thrombin

in the system may be obtained using differentiation of the curve for

AMC accumulation. For each sample, arbitrary fluorescence units

were converted to absolute AMC concentrations using the

calibration signal obtained by adding a known AMC

concentration into each particular plasma sample in the presence

of the fluorogenic substrate and the tested substance. The

corrections were done taking into account the substrate

consumption and the nonlinearity of the AMC calibration curve.

The area under the thrombin time curve over a period of 60 min

(endogenous thrombin potential, ETP) was determined.

The standard method for the measurement of thrombin

generation assumes plasma sample dilution. We have shown

before [26] that the ETP value depends on the level of dilution.

Because it is especially important for the study of hemodilution, we

have developed a modification of the thrombin generation test that

excludes additional dilution of the samples during measurement.

In particular, 200 ml of PPP samples were placed in the wells of

a 96-well plate. Then, 2 ml of a solution of fluorogenic substrate

BOC-Ile-Gly-Arg-AMC in DMSO (initial concentration 41 mM)

was added, and coagulation was triggered by 3 ml of activator,

which was a 1:20 dilution of a standard prothrombin time reagent

(Renam, Moscow, Russia) in the buffer (20 mM HEPES, 140 mM

NaCl, pH 7.5) supplemented with 1.4 M CaCl2. Measurement of

fluorescence (120 min) and processing of the results obtained were

carried out by the methods described earlier.

2.4. Experimental study of the new thrombin inhibitor 4i in

vivo using model of hemodilution-induced hypercoagulation

in rats. The study was approved by the Ethics Committee of the

Center for Theoretical Problems of Physicochemical Pharmacology

(Permit Number: 21-04-2009). The housing and operating

conditions for animals strictly satisfied the requirements of the

Guide for Care and Use of the Laboratory Animals [27]. All efforts

were made to minimize suffering in animals.

The anticoagulation activity of one of the new thrombin

inhibitors (4i) was studied in vivo in a newly developed model of

hemodilution-induced hypercoagulation in rats. Experiments were

carried out on male outbred white rats weighing 250–450 g and

housed in a vivarium. A polyethylene cannula was implanted into

the right femoral artery of the rats, which were anesthetized with

thiopental (40 mg/kg of body weight, i.p.), to a depth of 4–5 cm.

Blood loss (23.064.5% of estimated blood volume) and hemodi-

lution with plasma-substituting solution (PSS) were simulated by

fast blood sampling (4.5 ml during approximately 1 min) and

bolus administration of an equal volume of either normal saline

(control group) or normal saline supplemented with 2 mM of the

thrombin inhibitor (experimental group). Coagulation was ana-

lyzed in samples of blood collected before hemodilution for all

animals. Blood samples for repeated analysis were taken from each

animal only once at 10, 30 or 60 min after the PSS infusion. The

coagulation system status before and after PSS infusion was

investigated by endogenous thrombin potential measurement. The

volume of blood loss was calculated on the assumption that the

total blood volume of the rat is equal to 6.5% of the body weight.

2.5. Measurement of the acute toxicity of new compounds

in mice. Preliminary safety examination for the best synthesized

inhibitors was carried out by measuring their acute toxicity in

C57Bl/6 mice (females, 26–28 g, intraperitoneal administration)

[28]. The total number of animals used in each experiment was

20–35. The dose of inhibitor that caused mortality in half of the

animals after 2 or less hours (LD50) was determined. The solution

of inhibitor (initial concentrations ranged from 50 to 7 mg/ml

depending on substance solubility) in normal saline supplemented

with 20% of cremophore EL to improve the inhibitor’s solubility

was administered to animals intraperitoneally. For administration

of different doses of an inhibitor, different volumes of the initial

stock inhibitor solution were supplemented with corresponding

volumes of vehicle (20% cremophore EL in normal saline) to

obtain a constant administered volume of 1.8 ml in each case. To

obtain the highest doses of inhibitors, the animals were injected

with 2.3 ml of stock inhibitor solutions instead. Preliminary results

showed that after the administration of 2.3 ml of normal saline

supplemented with 20% cremophore EL, animals did not have

any toxic manifestations.

2.6. Stability of inhibitors in solution. Activities of the best

new thrombin inhibitors were measured by the inhibition of

chromogenic substrate hydrolysis (see section 2.2) during long-

term storage in physiological saline (1 mM solutions) at room

temperature and at 4uC. All solutions were sterilized before

storage by autoclaving (120uC, 1 atm, 20 min).

Results

1. Design of new thrombin inhibitors
Nonpeptide thrombin inhibitors based on an orcinol scaffold

have been described in the literature. In spite of their structural

New Synthetic Direct Thrombin Inhibitors
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simplicity, these inhibitors are relatively effective (KI values are in

the order of several tens of nM) and have sufficient selectivity

towards thrombin [29–32]. In this study, we tried to improve the

potency of such inhibitors. We used traditional orcinol core and

benzenesulfonic acid residues as the P2 and P3 fragments of the

inhibitor molecules but varied the basic P1 moiety and the length

of the linker between the P1 moiety and the aromatic P2 fragment

of the compounds. In addition, we examined compounds with

different substituents in the benzenesulfonic acid fragment (R1 and

R2 in P3). The basic structure of the new compounds is presented

in Fig. 3A.

The first step of our search for new P1 moieties was a virtual

screening of the existing positively charged ligands from the NCI/

DTP Open Chemical Repository (National Cancer Institute, USA)

[18], including the whole of the NCI Diversity Set [33]. Compounds

from the NCI library were used in the very beginning of the study to

try out and debug a docking program and to adjust it to thrombin.

Given that those compounds had already been synthesized by that

time and were kindly gifted to us by the NCI, we had an opportunity

of not only calculating their scoring functions with our docking

program, but also measuring their real (not virtual) inhibitory

potencies experimentally. More than 2000 compounds were

virtually screened and as a result 114 virtual lead substances were

selected for subsequent experimental verification. These com-

pounds were obtained from NCI. The criteria for the hits selection

were sufficiently negative SOL scoring function (represented as

predicted protein-ligand binding energy ,25.5 kcal/mol) and

reasonable ligand poses in the thrombin active site, verified by visual

inspection. Among these 114 compounds, 15 proved to be real

thrombin inhibitors in our experimental tests with specific thrombin

substrates. Five compounds had sufficiently high activities to be

interesting for subsequent drug design. Four of these compounds

possessed an isothiuronium group in the P1 position of the molecule,

which has never been used as a P1 moiety in a thrombin inhibitor

molecule before (Fig. 4 and Table 1). The high activity and reduced

basicity of isothiouronium vs. traditional guanidinium derivatives

make the isothiouronium residue an interesting possibility for the

design of new thrombin inhibitors.

Taking into account the data in the literature and the results

obtained during computer-based and experimental screening of

ligands from NCI, we attempted to construct new chemical

structures that should be effective thrombin inhibitors. As

mentioned before, the known residues of orcinol and benzene-

sulfonic acid were selected as P2 and P3 inhibitor fragments,

respectively, but different basic P1 fragments were examined.

Computer-based screening of more than 6000 compounds gave

evidence of possible inhibitory compounds with 4-aminopyridi-

nium (4-AP), isothiuronium (IT) or 2-aminothiazolinium (2-AT)

fragments in the P1 position of the ligands (Fig. 3B). The SOL

scoring functions of many of these compounds were sufficiently

negative. The last type of moiety that was studied was the

‘‘reversed’’ and constrained analog of isothiouronium. The

examples of the scoring functions for some compounds with

different P1 fragments are presented in Table S1.

Theoretical calculation showed that an increase in the linker

length between the P1 and P2 fragments in molecules of IT and 4-

AP derivatives should give rise to a less negative scoring function.

This is clearly illustrated in Table 2 for a series of 4-AP

compounds with different linker lengths. Introduction of different

R1 and R2 substitutes in the aromatic ring of the P3 fragment

modified the scoring function, sometimes noticeably, but we could

not identify any regularity in these changes (Table S2).

2. The experimental examination of new compounds
Some of the aforementioned new compounds were synthesized

on a 0.25–2.5 g scale via a 2 to 4 step strategy. The schemes of the

compounds’ syntheses are depicted in Fig. 5. Details of these

syntheses are described in [34] and in the Text S1. All compounds

have been numbered according to the course of preparation.

Compounds 1a–b, 2a–j, and 3a–j served as intermediates in the

syntheses of the final inhibitors. These compounds are presented

only in the descriptions of the Text S1. As Table 3 contains only

the most promising new inhibitors, some other final compounds

(inhibitors 5, 6, and 7a–d) are described only in the Text S1 and

are presented in Table S2. The chemical structures of all new

inhibitors were confirmed by 1H-NMR data (see the Text S1).

Figure 3. The newly developed thrombin inhibitors. (A) – The common structural formula of new compounds. (B) – The most effective
fragments P1 obtained in this study.
doi:10.1371/journal.pone.0019969.g003
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For all new compounds, the antithrombin activity in buffer

systems in vitro and the anticoagulant activity in plasma in vitro were

determined using the thrombin generation test. One of these new

inhibitors (4i) was investigated in an in vivo rat model of

hemodilution-induced hypercoagulation.

3. Inhibitory activity of new substances towards
thrombin in buffer system

All new compounds inhibited the hydrolysis of the specific

substrate by thrombin in a dose-dependent manner, achieving

total inhibition at some concentrations (Fig. 6A). Similar patterns

of behavior are usually typical for competitive inhibitors. Table 3

presents the constants of thrombin inhibition for the best of the

newly developed inhibitors. These constants were calculated from

the measured IC50 values with the assumption of a competitive

type of inhibition. Data for argatroban are presented in Table 3

for comparison [35]. Similar data for other newly synthesized

compounds are presented in Table S2. As a result, several

compounds of IT, and especially of the 4-AP series, were shown to

be the most active orcinol-based thrombin inhibitors. Some of

these compounds were the most active from known low molecular

weight DTIs with KI in the sub-nanomolar range.

4. Anticoagulant activity of new inhibitors in plasma in
vitro

Anticoagulant activity of an inhibitor in plasma is dependent

not only on its constant of inhibition, but also on possible

interactions with other components of the coagulation system and

on binding with plasma proteins, especially with albumin.

Therefore, in the next step of experimental testing, we examined

Figure 4. Structures of the five best compounds received from NCI. NCI ID numbers are indicated.
doi:10.1371/journal.pone.0019969.g004

Table 1. The SOL scoring functions and the results of experimental measurements of thrombin inhibitory activity for the five best
compounds received from NCI (see Fig. 4).

NCI ID SOL scoring function, kcal/mol Inhibition of specific thrombin substrate hydrolysis in buffer system

IC50, mM (substrate used)1) KI, mM2)

NSC 305831 26.14 72 (SCHR) 6.2

NSC 4482 26.21 3.45 (SFLUO) 0.4

NSC 41339 26.25 240 (SFLUO) 27.6

NSC 328131 26.39 ,353) (SFLUO) 4.0

NSC 123477 26.41 75 (SFLUO) 8.6

1)The chromogenic (SCHR), or fast fluorogenic (SFLUO) specific thrombin substrate was used.
2)Values of KI were calculated assuming a competitive mechanism of inhibition.
3)This substance has slow inhibition kinetics. The KI value was calculated using the end point of the inhibition for each concentration of inhibitor.
doi:10.1371/journal.pone.0019969.t001
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in plasma in vitro the anticoagulant activity of the effective in buffer

system new compounds. It was shown by the thrombin generation

test that these compounds reduced ETP in plasma. The value of

reduction increased with an increasing concentration of the

inhibitor (Fig. 6B). Additional concentrations that decreased ETP

by 50% (IC50 for ETP reduction) are also presented in Tables 3

and S2.

Although the IC50(ETP)/KI ratio for new compounds was high,

the best compounds had IC50 values for ETP reduction that were

below the corresponding value seen in argatroban (0.6–0.97 mM)

[36,37]. Thus, the best of the designed compounds could have

great potential for in vivo studies and subsequent medical

applications in the injection form.

5. Acute toxicity of new thrombin inhibitors
A preliminary study of the best newly synthesized inhibitors

acute toxicity was performed, and the safety of these compounds

was evaluated in vivo. The results obtained are presented in Table 3.

The acute toxicity (LD50) in mice for several of the new inhibitors

proved to be lower than that for clinically used argatroban [38]

(Table 3).

6. Stability of the inhibitors in aqueous solutions
All new inhibitors selected for long-term storage were stable

after sterilization by autoclaving. The activities of the most

effective new thrombin inhibitors remained stable after storage in

Table 2. Examples of scoring function values for compounds
with constant a P1 part, but a different length of the linker (n)
between the P1 and P2 fragments of a molecule1).

The length of the linker (n) 1 2 3 4 5

Scoring function, kcal/mol 27.50 26.57 26.48 26.27 25.45

1)The common formula for these compounds is depicted in Fig. 3A. R1 and R2
are H, R (in P1 position) is residue of 4-AP.

doi:10.1371/journal.pone.0019969.t002

Figure 5. Synthetic scheme of the new orcinol-based thrombin inhibitors. Reagents: (stage 1) BrCH2(CH2)nCl, K2CO3, (CH3)2CO or CH3CN,
reflux, 36–43 h; components of reaction mixture were used for subsequent reactions without purification of individual ingredients; (stage 2)
RPhSO2Cl, Et3N, THF, stirring, 20–25uC, 7 h or ArSO2Cl, PyH, 20–25uC, 3 days then 60uC, 2 h; (stage 3) NaI, (CH3)2CO or CH3CN, reflux, 48 h; (stage 4)
corresponding nucleophile dioxane, 80uC, 2 days or reflux, 20 h.
doi:10.1371/journal.pone.0019969.g005
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physiological saline (1 mM solution) over more than 1.5 years, both

at room temperature and at 4uC. As an example, activities of

compound 4i during long-term storage are presented in Fig. 6C.

7. Model of hemodilution-induced hypercoagulation in
rats

The rat hemodilution-induced hypercoagulation model was

developed for testing the effectiveness of new inhibitors in vivo.

Previously we have shown that plasma dilution with crystalloid

solutions in vitro intensified coagulation, whereas the addition of a

thrombin inhibitor to the solution partially neutralized that effect

[26,39]. In this work, we applied the same approach to

hemodilution in vivo. Animals with 23.064.5% blood loss were

infused with an equal volume of either standard saline (control

group) or of saline supplemented with 2 mM of the new inhibitor

4i (experimental group). The changes of the endogenous thrombin

potential (ETP) with respect to its initial level for the control and

experimental groups at different times after infusion are presented

in Fig. 5D. The results obtained showed that animals infused with

normal saline developed hypercoagulation that increased with

time, whereas the presence of the thrombin inhibitor in the PSS

canceled the hypercoagulation effect of hemodilution in the

experimental group.

Discussion

A fast decrease of preformed thrombin activity rises is vital in

acute situations. Thus, it is reasonable in such cases to

intravenously administer direct thrombin inhibitors to block

hypercoagulation as quickly as possible. Our aim was to design

new thrombin inhibitors for intravenous administration, whereby

inhibitors can get directly to blood plasma where thrombin works.

Thus, bioavailability was not an issue, and we were not restricted

to ligands with low basicity in their P1 fragments.

We have shown before that moderate plasma dilution in vitro (up

to 2–2.5 times) with different artificial PSS produced hypercoa-

gulation changes in the coagulation system (the ETP and spatial

clot growth rate were increased) [26,39]. This fact suggests that

plasma dilution, especially by crystalloid PSS, could also be a risk

factor for the induction of thrombotic states during moderate

hemodilution in vivo. The development of hypercoagulation has

been shown to correlate with the infusion of large volumes of

crystalloid solutions in patients [1,2]. At present, the mechanism of

this phenomenon is not clear; however, many investigators

propose that during moderate hemodilution, the coagulation

system is more sensitive to decreasing concentrations of coagula-

tion inhibitors than to dilution of procoagulant factor precursors

that are present in the blood in abundance.

To prevent the development of hemodilutional hypercoagula-

tion, we supplemented a crystalloid PSS with DTI [26,39]. It was

shown that the natural thrombin inhibitor antithrombin III could

be used for this purpose [39]. However, this inhibitor is isolated

from human plasma and is thus very expensive and not completely

safe with regard to the transmission of viral infections. Small

molecule synthetic thrombin inhibitors are more suitable for this

purpose. To be used in PSS, these inhibitors should be not only

highly effective and safe, but also stable in aqueous solutions. The

development of this kind of inhibitor was one of the objectives of

our study.

A majority of successful thrombin inhibitors have positively

charged or neutral but easy polarizable (e.g. containing halogen

atoms) P1 fragments (Fig. 2). During thrombin-inhibitor complex

formation, the P1 moiety of the inhibitor is located in the

thrombin active site within a narrow cavity, exposing the carboxyl

side chain of the Asp189 residue on its bottom (S1 pocket in Fig. 1

and Fig. 2).

The severe spatial restrictions dictate the small size and

hydrophobic nature of the P2 inhibitor position. In contrast, the

restrictions on the P3 site are not as stringent because the

corresponding binding site in the thrombin molecule is broad and

exposed to the solvent. This feature gives also us the opportunity to

modify the part of the P3 moiety, which is projected into the

Table 3. Parameters of thrombin inhibition and acute toxicity for the best new thrombin inhibitors and argatroban1).

N2) R R1 R2
KI for thrombin inhibition in
buffer system3,4), nM

IC50 for reduction of
thrombin generation in
plasma, mM

LD50 (mouse),
intraperitoneal
administration, mg/kg

4e 4-AP -F -H 0.3 0.1 523.1692.3

4f 4-AP -Cl -H 0.21 0.26 679.06152.7

4g 4-AP -SO2CH3 -H 0.75 0.16 166.7620.0

4h 4-AP -H -Cl 0.78 0.15 372.7684.6

4i 4-AP -H -H 0.78 0.25 418.9633.0

8b IT -SO2CH3 -H 1.5 0.80 .458.05)

8c IT -Cl -H 0.33 0.16 793.56118.5

8d IT -H -H 0.95 0.90 .1111.1

8f IT -F -H 2.03 1.24 .653.15)

8h H3C-NH-IT6) -Cl -H 5.7 0.53 .287.05)

Argatroban7) 39 0.65 475

1)The common formula for all inhibitors is depicted in Fig. 3A.
2)Synthesis details are in the Supporting Information.
3)Measured by chromogenic substrate Tosyl-Gly-Pro-Arg-p-nitroanilide.
4)The KI values were calculated with the assumption of a competitive type of inhibition. The KM value of the substrate for thrombin is 9.44 mM.
5)Substance is nontoxic in thousand-fold ETP reduction IC50 dose (per whole mouse).
6)IT contains methyl group as a substituent in one of the amino groups.
7)All constants for argatroban (except for the LD50) were measured and were in good agreement with data in the literature [35–38].
doi:10.1371/journal.pone.0019969.t003
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solvent, to increase the hydrophilic nature of the inhibitor and

modify, for example, its solubility and lipophilicity characteristics.

The selection of effective ligands for the inhibition of a target

enzyme is usually a very laborious, long and expensive process.

Computer-aided screening using well adjusted docking program

allowed us to shorten this stage of the study. Adjustment of our

program, SOL, for the thrombin inhibitor search was executed

during a screening of the NCI database, because we compared

actual inhibitory activities of these compounds to their scoring

functions in our theoretical calculations. As a result, five new

inhibitor molecules were discovered. Besides, while screening

compounds from NCI, we discovered that some compounds with

an isothiuronium group in the P1 position of the ligand were

sufficiently effective thrombin inhibitors. Currently, this moiety

has not been used as a fragment in the P1 position of thrombin

inhibitors.

In the next stage of the study, we generated large virtual

libraries of ligands as possible thrombin inhibitors, taking into

account all discovered patterns. We focused on variations of basic

fragments in the P1 position and on a search for the optimal linker

length connecting this fragment with the residue in the P2 position

of inhibitor. As was mentioned before, the orcinol and

benzenesulfonic acid residues were selected as P2 and P3

fragments of our new inhibitors, respectively. Existing inhibitors

containing these fragments are pictured in Fig. 7 [29–32]. These

inhibitors were selected for modification because they are

relatively simple, sufficiently effective (KI in the nM range) and

highly selective. The overall number of compounds studied in

virtual screening experiments was near 6000. These calculations

have shown that the introduction of a 4-aminopyridinium (4-AP),

isothiuronium (IT), or 2-aminothiasolinium (2-AT) group in the P1

position of the compound (Fig. 3B) should give rise to a high

inhibitory activity. According to these calculations, the inhibitory

effectiveness should improve when the length of the linker between

the P1 and P2 fragments of the inhibitor molecule decreases from

5 to 1 CH2 groups (Table 2).

Several series of new compounds were synthesized to experi-

mentally confirm the accuracy of these theoretical conclusions.

Their inhibitory activity was first checked in different experimental

procedures in vitro.

The direct antithrombin activity of new compounds was

confirmed by the measurement of the inhibitory effect on the

hydrolysis rate of specific chromogenic substrate in the presence

of a constant concentration of thrombin in a buffer system. All

of the synthesized compounds decreased substrate hydrolysis

rate in a dose-dependent manner. The results of one of such

experiment are presented in Fig. 6A. However, antithrombin

activity is insufficient to make these new compounds actual

anticoagulants in plasma. The anticoagulation activity of an

inhibitor in plasma is dependent not only on its inhibition

Figure 6. Examples of some typical results obtained during experimental testing of new inhibitors. (A) – Inhibition of thrombin-induced
chromogenic substrate hydrolysis in buffer systems by different concentrations of 8c. (B) – Reduction of endogenous thrombin potential in plasma
by increasing concentrations of 8d. (C) – Stability of thrombin inhibitory activity of 4i (1 mM) during long-term storage in physiological solution at 4uC
or at room temperature. (D) – Influence of physiological solution (control group) or of this PSS supplemented with 2 mM of 4i (experimental group)
on the development of hypercoagulation in models of hemodilution-induced hypercoagulation in rats. The changes of the ETP values are presented
relatively to basic level in different times after PSS infusions. * - The differences were considered as statistically significant (P,0.05, Student’s t-test,
n = 6–10).
doi:10.1371/journal.pone.0019969.g006
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constant but also on possible interactions with other components

of the coagulation system and on binding with plasma proteins,

especially albumin. We used a thrombin generation test for the

characterization of coagulation in plasma. Endogenous throm-

bin potential (ETP) is one of the parameters of this test. ETP is

the total quantity of active thrombin arising in plasma after

standard coagulation activation. It is equal to the area under the

thrombin kinetic curve. The presence of additional thrombin

inhibitors in the plasma sample should change the thrombin

formation and inhibition kinetics. As a result, ETP should

decrease. All new inhibitors significantly decreased ETP. The

effect value also increased with an increasing concentration of

the inhibitor, and at some concentrations, thrombin generation

was completely inhibited (Fig. 6B).

Thus, the results obtained show that these new compounds are

effective thrombin inhibitors and have high anticoagulant activity

in plasma in vitro. Moreover, these inhibitors excellently retain

activity after long-term storage in aqueous solutions (Fig. 6C). For

the best new compounds, the effectiveness (KI,1 nM; minimal

IC50 for ETP reduction, 0.1 mM) and stability in aqueous solutions

was better than for argatroban (Tables 3 and S2).

Experimental screening showed that our inhibitors with new P1

fragments were highly effective. Inhibitory efficacy was much

greater for compounds with a linker length of n = 2 as compared to

n = 3. The SOL scoring function correctly estimated that 4-AP

and IT derivatives with a 2 carbon chain linker between the basic

P1 group and the orcinol core (n = 2 in Tables 3 and S2) should be

more potent than the derivatives with a 3 carbon chain linker

(n = 3), although the magnitude of this difference is underestimated

by the SOL score (Table S2). Because of the small number of 2-

AT derivatives synthesized, we do not present a similar

dependence for these compounds.

Theoretical calculations predicted sufficient differences in

scoring functions for compounds with different R1 and R2

substituents in the P3 fragment of inhibitor molecule. In spite of

this, the results obtained showed that, with the exception of the p-

CH3 substituent, introduction of different substituents in the ring

of benzenesulfonic acid had a relatively weak influence on KI and

IC50 values for ETP reduction (Table S2).

Hence, according to a comparison of the experimental testing

results with the theoretical prediction of the power of new inhibitors,

we conclude that our docking program is excellent in searching for

ligands with an effective basic fragment P1, and it correctly presents

the tendency of inhibitor efficacy to change according to linker

length. However, it is not suitable for the fine analysis of the

effectiveness of structures with different substituents in the

benzenesulfonic acid group in the P3 position of a molecule.

The examination of acute toxicity shows that the LD50 values of

the new inhibitors are comparable, and sometimes even higher,

than those seen for the clinically used argatroban (Table 3). In

addition, toxic effects appear in doses 2000–5000 times higher than

the appropriate therapeutic dose. Also, the new compounds appear

to be very stable during long-term storage in aqueous solutions.

After examining the new inhibitors’ effectiveness, stability and

safety in acute experiments, the anticoagulant efficacy one of the new

compounds (4i) was also studied in vivo in a model of hemodilutional

hypercoagulation in rats. It was demonstrated experimentally that

the hypercoagulant state has developed in vivo after the infusion of a

sufficiently large volume of crystalloid PSS. Similar to in vitro

experiments [26], the introduction of direct thrombin inhibitor in

PSS canceled this effect completely (Fig. 6D). The inhibitor selected

for these experiments (4i) has an IC50 value for reduction of ETP in

vitro equal to 0.25 mM. We supposed that after in vivo administration,

this inhibitor could be accumulated in different organs and tissues.

The inhibitor can be also partially consumed after the initiation of

coagulation. Therefore, a 2-mM concentration of the inhibitor was

selected for supplementation of PSS in experiments. It is necessary to

note that the selected inhibitor concentration turned out to be too

high. It should be decreased, if the aim was to return the ETP to the

normal initial value. Therefore, this inhibitor was very effective after

intravenous administration in vivo.

The DTIs that were developed are very suitable for intravenous

administration. However, it is obvious that the development of new

anticoagulants for peroral introduction is also a very important

objective for the amelioration of antithrombotic therapy, especially

prophylactic therapy. The main problem of these treatments is low

bioavailability of the DTIs using this type of administration. One

possible solution of this problem is the development of prodrugs. In

these compounds, the active parts of inhibitor molecules are

protected by special groups that are removed, leading to formation

of the active inhibitor directly in the body after passing through the

mucous membrane of the gastrointestinal tract [40]. We suppose

that our new inhibitors could be a good basis for the development of

such proinhibitors, and their application will not be restricted to

only intravenous administration.

Figure 7. The known orcinol-based thrombin inhibitors
described in the literature [29–32].
doi:10.1371/journal.pone.0019969.g007
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The obtained results show that our docking approach,

augmented by experimental screening, is a powerful strategy to

find new inhibitor motifs and to improve the potency of inhibitors.

We developed new effective, stable, and safe thrombin inhibitors.

Furthermore, these inhibitors not only slow down coagulation in

different tests in vitro, but they also prevent the appearance of a

hypercoagulant state in models of hemodilutional hypercoagula-

tion in rats in vivo. These compounds are very promising, but

further detailed studies are necessary to confirm the possibility of

medical applications for these new inhibitors.
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