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On the Higgs feature of gravity
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Abstract. The gauge gravitation theory, based on the equivalence principle besides the
gauge principle, is formulated in the fibre bundle terms. The correlation between gauge
geometry on spinor bundles describing Dirac fermion fields and space-time geometry on a
tangent bundle is investigated. We show that field functions of fermion fields in presence of
different gravitational fields are always written with respect to different reference frames.
Therefore, the conventional quantization procedure is applicable to fermion fields only if
gravitational field is fixed. Quantum gravitational fields violate the above mentioned
correlation between two geometries,

Keywords. Gauge theory; gravity; Higgs field.

PACS No. 04:50

The physical nature of gravity as a Higgs-Goldstone field is now clarified by
means of gauge approach to gravitation theory (Sardanashvily 1980; Ivanenko and
Sardanashvily 1983, 1987). Gauge theory of gravity can be built directly by
reformulation of gravitation theory in the fibre bundle terms.

The fibre bundle formulation of gauge theory is based on the mathematical definition
of matter fields as global sections ¢ of some differential vector bundle A =(V, G, X, ¥;)
with a typical fibre V, a structure group G, and a base X which is a smooth
orientable paracompact 4-manifold. Hereinafter, t/A denotes a total space of 4,
and 7 is the canonical projection of t/4 on X. An atlas ¥, = {U;,¥,;} (where U, and
Y,; denote patches and trivialization morphisms of 1) defines some reference frame
such that a section ¢ of A is represented by a collection of V-valued functions
{0:(x) =, (x)o(x), xeU;} with respect to \¥;. Atlas transformations

¥, = {Uia l//zi} - = {Ub W= Qil/’zi}, g:€G(U)), (1)

(where G(U,) denotes a group of G-valued functions on U;) do not alter sections ¢,
but change their representations by field functions. Therefore, the invariance of a
matter field Lagrangian under these transformations can be naturally required. This
requirement necessitates introduction of gauge potentials, represented by coefficients
of a local connection 1-form A; on 4, and a G-invariant metric g in fibres of 4. Such
a metric, however, is not a dynamic variable because it can be always brought into
the canonical form by some gauge transformation. Transformations (1) compose the
gauge pseudo-group G,(X) which is the direct limit of groups G({U;}) =11 G(U;)
with respect to inclusions {U;} —{U}}.

Another type of gauge transformations is generated by equivariant mappings of the
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total space P =tIA of the principal bundle A associated with 4 (Daniel and Vialiet 1980):

p—ps(p)., peP, (2)

where s is a G-valued function on P such that

s(pg) =9 *s(p)g, geG.

Sections ¢ of 4 can be defined by V-valued functions f on P:

n(p))—[p]f (p), f(pg)=9"'f(p),

where [p] denotes restriction of the canonical mapping ys:P x V—tli to the sub-
space {p} x V (Kobayashi and Nomizu 1963). Therefore, mappings (2) induce
transformations

o(n(p)) = [p1/(p)— ¢'(n(p)) = [p1S(P)

= [p1f(ps(p)) = [p1s™ (P)f(p), | (3)
of section ¢. Let ¥ = {U,,;} be an atlas of A, and let

¥, = {Uia Wu=z{x)]" 1}, z{m(p)) = P‘pi—l(P), pep,

bé the associated atlas of 4. Transformation (3) of ¢ yields the transformation
i(x) = [2:(x)] L o(x) = f(2:(x)) > @}(x) =f (2:(x)s(2)) = 5™ (2)s(x)

of functions ¢; with respect to the atlas ;. This transformation looks like the
transformation between atlases ¥, and W)= {U,,s™'(z){,;}. Thus, for any trans-
formation (3) of matter fields ¢ — ¢ there exists the atlas change ¥, —'¥) such that
W, =W, Therefore, a matter field Lagrangian, invariant under the gauge
pseudo-group G,(X), is invariant under transformations (3) called the second type
gauge transformations. Their group G,(X) is isomorphic with the group of global
sections of the fibre bundle A’ with the typical fibre G provided by the adjoint
representation G- gGg ™! of the structure group G.

Let us consider Dirac fermion matter fields ¢. These are described by global sections
of a 4-dimensional spinor bundle A= (V,L,X) with the structure Lorentz group

L =SO(3, 1). Herewith, 4 is endowed with some Lorentz connection A4;, and the Dirac
operator

Ap=h'y*D, —m 4

must be defined on . Here, quantities h*y* show that any atlas ¥, of the spinor

bundle A must be associated with some atlas W of the tangent bundle TX over the
manifold X. This fact is the cornerstone of gravitation theory. The atlas Wy is
non-holortomic in general, and so is characterized by a tetrad field h which describes
a gravitational field and defines some geometry on the tangent bundle T X. Therefore,
gravitation theory can be formulated as gauge theory on the tangent bundle associated
with spinor bundles. Such a theory is based on the equivalence principle besides the
gauge (relativity) principle.

The structure group of TX is GL*(4,R). An atlas Wy = {U;,¥;} of TX defines a
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space-time reference frame, namely, a vierbein {t;(x)} = 7' (x){¢} (where {t} is a fixed
~ basis of the typical fibre R* of TX) can be erected at every point of X. Functions

t,(x) play the role of local sections z;(x) of the associated principle bundle A = LX of
linear frames, which are defined by the associated atlas ¥ of A. Conversely, any
collection of such functions {t;(x)} defines associated atlases ¥ of A and ¥ of TX.
In consequence, reference frame changes compose the pseudo-group GL*(4, R);(X)
of space-time gauge transformations. Take notice of the special case of holonomic
atlases W = {U;, ¥y; = dy;} which correlate with coordinate atlases Wy = {U;, x;} of
the manifold X such that the vierbeins t,(x) =0, are oriented along coordinate lines.
The pseudo-group GL* (4, R),(X) contains the pseudo-sub-group of holonomic gauge
transformations :

v

%
V) =00 9= 50) = (057

accompanied by coordinate transformations yjx; ':x* — x'.

Thus, the relativity principle in the fibre bundle terms is identical to the gauge
principle, and gravitation theory can be built directly as gauge theory. The relativity
principle necessitates introduction of a connection I'; on TX and a metric g in fibres
of TX. But in contrast to metrics on matter bundles, g is a dynamic variable because
it can be brought into the canonical form g; =y ;g =7 only with respect to a
non-holonomic atlas ¥ in general. The equivalence principle confines I'; to a Lorentz
connection and g to a pseudo-Riemannian metric parallel with respect to I';.

The equivalence principle we modify postulates the existence of a reference
frame where Lorentz invariants could be defined everywhere on X, and these
would be conserved under parallel transport. This principle possesses the adequate
mathematical formulation in the fibre bundle terms. It requirs that both the holonomy
group of the connection I'; on TX and the structure group of TX must be contracted
to the Lorentz group. '

A connection I'" on the principal bundle A, associated with TX, defines a holonomy
bundle A(p) for any point peP = tlA, and A{p) = A(p’) if p and p’ belong to the same
parallel curve (Kobayashi and Nomizu 1963). A holonomy bundle is reduced
subbundle of A whose structure group is the holonomy group K(p) = GL*(4, R) of
the connection I" at p eP. All holonomy bundles are isomorphic with each other,
and K(pg) = g~ 'K(p)g, ge GL* (4, R). In accordance with the equivalence principle, let
some holonomy group K(p) be a subgroup of the Lorentz group L. Let us consider
the subset Q = {qg; getIA(p),geL} of P. Then, the following is true (Kobayashi and
Nomizu 1963).

(i) The subset Q is the total space of a reduced subbundle A with the structure
group L. In consequence, the structure group of TX is contracted to the Lorentz
group, in accordance with the equivalence principle.

(i) Since tIA(p) = Q for any peQ, the connection I" on A is 1educed to a connection
I on A such that the connection form ' of I takes on values in the Lie algebra
of the Lorentz group, and ' = w|, where w is the connection form of T'.

(iii) There is one-to-one correspondence between reduced Lorentz group sub-
bundles of A and global sections h of the associated bundle Ay in quotient spaces
% = GL*(4, R)/L. Therefore, the reduced subbundle Ar defines uniquely a global
section h of Ay such that #'(Q) = h(n(Q)) where 7’ is the canonical projection of P on
P/L. Herewith, the section h is parallel with respect to the connection I'. Hereinafter,
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Ar; or A, will denote the reduced Lorentz group subbundle associated with A.
(iv) There exists an atlas ¥" of A such that its transition functions are elements of

* gauge Lorentz groups L(U;nU,). This atlas is defined by local sections {z!} of A

which take on values in t/Ap,. With respect to the atlas W*, the local connection
l-form T'; = (zl*w = (z!)*w’ takes on values in the Lie algebra of the Lorentz group,
and functions Y4 h of the field h takes on values in the centre of .

Note that with respect to some atlas ¥ of A, a field h can be represented by a
collection of tetrad functions h; = y,(z"), but up to right multiplying them by elements
of gauge Lorentz groups L(U,) because of nonunique choice of sections z!. Functions

hi(x) = (2} (x)) = [2:()] 7 [} (x)],

are identical with gauge transformations between atlases Wh = (U, ¥hi(x) =
[2i(x)]™ '} and Wr = {U;, Ypy(x) = [2:(0)] 7" = h(x)Y5:(x)} of TX.

The fibre bundle A; is isomorphic to the fibre bundle of pseudo-Euclidean bilinear
forms in tangent spaces T, over X. Its global section g, isomorphic to h, is a
pseudo-Riemannian metric on X such that metric functions g; are reduced to the
Minkowski metric g; = Y/}, g = 5 with respect to the atlases ¥, and ¢ is parallell with
respect to the connection I';, ie. the well-known metricity condition (d —T')g; =0
holds. These quantities I'; and g satisfy both the relativity principle and the equivalence

-principle, and so can be used as field variables of gauge gravitation theory. But they

are not independent from each other. If y is given the connection I is fixed with
accuracy to torsion. If I' is given, the set of reduced subbundles A and consequently
the set of the corresponding fields & (or g) are subsets of the quotient space X.

Then, in gauge theory of gravity, a gravitational field appears due to the equivalence
principle which singles out the Lorentz group as the exact symmetry subgroup of
space-time symmetries. The physical ground of the equivalence principle is the fact
of existence of Dirac fermion fields and the correlation between gauge geometry on
spinor bundles 4 and space-time geometry on TX.

We shall say that a spinor bundle 1= (¥, L, X), endowed with a connection 4,
describes Dirac fermion fields in presence of a gravitational field 4 if 1 is associated
with some reduced Lorentz group subbundle A, of the principal bundle A associated
with TX and endowed with a connection I". In general, connections A; and I'; differs
from each other in torsion. Since any atlas of A, can be expanded up to an atlas P*
of the bundle A (Kobayashi and Nomizu 1963), there is an atlas W of TX for any
atlas '¥; of 4 such that ¥, and W% are associated with each other, i.e. they are defined
by the same local sections z, and we see tetrad functions h, = y,(z") in (4) for the
Dirac operator. In consequence, fermion fields ¢ and ¢’ in presence of different
gravitational fields h and &' are represented by sections of spinor bundles 4 and A’
which are associated with different subbundles A, and A} of the principal bundle A.
For instance, their field functions ¢, =y/%,¢ and ¢;=y% ¢, and the Dirac operator
Ap on them are always written with respect to different reference frames because there
are no Lorentz gauge transformations between atlases W4 and W%

Note that any spinor bundle 4, endowed with some connection A;, describes locally
fermion fields as fields in presence of gravity. f U = X isa paracompact set, homotopic
to a point, a trivial bundle 1|, is associated with some reduced Lorentz group
subbundle A, of the trivial principal bundle A, associated with TU ,and a connection
A; on Aly and A,y can be expanded up to some connection on Ay and TU.
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Thus, fermion fields must be described only in complex with a certain gravitational
field h. The total space P of the principal GL*(4, R) bundle A can be represented as
a total space of the principal Lorentz group bundle A, with the base P/L. Let
A, =(V,L, P/L) be the fibre bundle associated with A;. Since

for any h, each spinor bundle 1 is a subbundle of 4, over the subspace tIA,/L < P/L.
Therefore, any section ¢, of 1, defines a section @ = @y, Of 4. Conversely, a
section ¢ of A can be expanded up to some section ¢, of A, because P/L is a
paracompact space and tIA,/L is a closed subset of P/L. Thus, sections ¢, of i,
describe a complex of fermion fields and gravitational fields.

Let us consider gauge transformations in gravitation theory with a g]ance to this
complex.” There are two kinds of the first type gauge space-time transformations,
namely, above mentioned atlas changes of TX and atlas transformations of spinor
bundles A which compose the pseudo-group L(X). The former transformations do
not alter spinor fields functions, whereas the latter transformations do not change a
gravitational field. Transformations of ¥, act on tetrad functions

hi—')hig’ gEL(Ui)’ (5)

but a tetrad gravitational field h is defined by h; up to thesé changes. There is injection
of L(X) into GL*(4, R),(X), and its image includes gauge transformations of atlases
.. The second type partner of L,(X) is the Lorentz gauge group Ly(X) of (3). These
transformations do not act on a gravitational field. They transform tetrad functions
by rule (5) and alter a torsion part of the Lorentz connection A; on A.

Only holonomic transformations from the gauge group GL ¥ (4, R),(X) possess the
second type partners (Ivanenko and Sardanashvily 1987). These are fibre-to-fibre
morphisms of the tangent bundle TX, which are induced by diffeomorphisms y of
the manifold X. They yield transformations of tensor fields 7 (as global sections of
tensor bundles):

L,:7(x) > T(x) = @)y~ '(x)) | - ©)

which alter these fields t(x)— 7'(x) in a point. If diffeomorphism y is represented as a
flow, the generator of morphisms (6) takes the familiar form of the Lie derivative. An
action functional [, Ldx, U c X, is invariant under (6) if y(U) =

Note that any change of a gravitational field h also effect matter spinor fields ¢.
Let ¢, be a section of A, such that ¢ = @ |a,, and let f be the correspondmg
V-valued function on P. We choose an atlas W, = {U,,¥,,:(q) =[z.(9)]1 ™", g€ UL}
of the bundle A, and some atlas ¥ = {U,, ;} of A. Then, the field functions of ¢, read

odq) =f(zL@) =W '9:(q)) =f"(g:(@)

where qeU/;, n(q)eU,;, and g(g) is an element of the coset x//,:,-(q)eGL*(4, R)/L. The
property

fgd@k) =f ) =k"f(g{a), keL.

holds. Functions ¢;;(q) realize the so-called induced representation L1GL*(4,R) of
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the group GL*(4, R) by the rule
9o 0.(a) =f"(9:/@)) ~S"(95 ' 9:a)) = f'(94a")k) = kordq),
k=g;"q)95 '9:@eL, Vg =g5"Ysq a4V

Therefore, any change of a gravitational field h—h' = g5 * h induces the transformation
@i(x) = @i(h) = kpi(x) = ko (H). (7)

We can neglect the factor k in the right side of this expression because of gauge

equivalence of fields k¢; and ¢;. Moreover, we can replace transformation law (7) by
the low

©i(x) = @i(x) = @;(x). - (8)

But this does not mean that ¢'(x) = ¢(x) because
@' () = (7)™ pi(x) = (W5 " oilx) = W) T W hio(x) # o(x).

Functions ¢;(x) and ¢j(x) in (8) are always written with respect to different reference
frames because atlases V" =¥, |,;5, and ¥* =W, |, of the reduced bundles A, and
A, cannot be expanded up to the same atlas of A. '

The fact that changes of a gravitational field is accompanied by nonequivalent
transformations between spinor reference frames makes impossible for us to quantize
a geometric gravitational field in presence of the Dirac fermion matter.

In quantum field theory, chronological vacuum expectations F of quasi-free fermion
fields (e.g. fermions in presence of a Higgs vacuum) can be constructed as follows.
Let Ay be a commutative Z,-graded tensor-algebra of a vector topological space ®
of fermion fields. Expectations F are defined by the form

. 10 0 .
F(p'---9") R g&;exp(—- a0, M (¢, @7))

on Ag where M is some continuous Hermitian bilinear form on ®, and o; are elements
of a Grassmann algebra. In algebraic quantum field theory, ® =V x S(R*) where
S(R*) is the Scwartz space of test functions of Wightman’s theory, and the covariance

form M(x,y), x,yeR*, is a Green function of some linear differential operator A on
D, ie. : :

AM(x,y) = —id(x — y).

For instance, if A is Dirac operator (4) in the Minkowski space, the function — iM(x, y)
is the propagator of free fermion fields.

Fermion fields ¢ and ¢’ in presence of different fields h and } fail to compose a
vector space. Field functions of such fields as like as the Dirac operator A, on them
are aiways described with respect to different reference frames. Therefore, the above
mentioned quantization scheme is applicable to fermions only if the field A is fixed.
In general forms F’ and F on A4, which correspond to different gravitational fields,
are nonequivalent, and so describe different Higgs vacua (Sardanashvily and Zakharov
1989). Thus, description of fermions in presence of a gravitational field is analogous
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to their description in presence of some Higgs classical field (Sardanashvily and Ikhlov
1988). Note that any finite system of fermions in presence of a classical Higgs field
can be effectively represented as free fermions interacting with some quantum field.
Such representation, however, turns out to be impossible for fermions in presence of
a gravitational field. Firstly, Dirac operator (4) is defined only if h; #0, i.e. some
classical background tetrad field i must always exist. Secondly, one faces difficulty
in description of fermion fields ¢ in presence of a tetrad field h as fermion fields ¢’ in
presence of k', but which additionally interact with the deviation field o (h= H'0)
because fields ¢ and ¢’ are always written with respect to different reference frames.

To overcome this difficulty, one can assume that, in the quantum case, geometry
on spinor bundles does not correlate with space-time geometry on the tangent bundle.
In this case, quantities h* = o5 in (4) for the Dirac operator are not tetrad functions
of a pseudo-Riemannian metric on X. For instance,

PY Py # 0%, PP =HEN, Py = Goads P, | ©)

where g’ is the fixed metric tensor corresponding to the tetrad field 4’. Therefore, the
quantities ¢ do not describe fluctuations of a conventional gravitational field. For
example, let g,, =1#,,, and let ¢} be a small deviation from 62, i.e. g2 = 62 + &2. Then,
one can compare the expression

p#v — nuv + 8(’"’), p#v = ;7” -+ g(#v),

obtained from (9), with the expression
guv = ’1’” + 81(’”)’ giw = n#v - e:lvs

for small metric fluctuation. In the geometric terms, the deviations o coincides with
coefficients of the well-known soldering form 6 many authors tried unsuccessfully to
identify with a tetrad gravitational field in the framework of gauge Poincaré models
(Cho 1976; Tseitlin 1981). Therefore, to quantize deviations 6, one can use Lagrangians
of the Poincaré gauge theory, if all indices are paired by means of a background
metric g'. Extension of deviations ¢, in our opinion, can result in destruction of a
space-time geometry. _

Note that, if a gravitational field 4 is fixed, variations of a connection A; are reduced
only to variations of the torsion, and so do not violate the correlation between gauge
geometry on spinor bundles and space-time geometry. Therefore, the standard scheme
of gauge field quantization is applicable to 4;. ‘
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