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Here we report on the metal assisted chemical etching method of silicon nanowires

(SiNWs) manufacturing, where the commonly used hydrofluoric acid (HF) has been

successfully replaced with ammonium fluoride (NH4F). The mechanism of the etching

process and the effect of the pH values of H2O2: NH4F solutions on the structural

and optical properties of nanowires were studied in detail. By an impedance and

Mott-Schottky measurements it was shown that silver-assisted chemical etching of

silicon can be attributed to a facilitated charge carriers transport through Si/SiOx/Ag

interface. It was shown that the shape of nanowires changes from pyramidal to vertical

with pH decreasing. Also it was established that the length of SiNW arrays non-linearly

depends on the pH for the etching time of 10min. A strong decrease of the total

reflectance to 5–10%was shown for all the studied samples at the wavelength <800 nm,

in comparison with crystalline silicon substrate (c-Si). At the same time, the intensities of

the interband photoluminescence and the Raman scattering of SiNWs are increased

strongly in compare to c-Si value, and also they were depended on both the length and

the shape of SiNW: the biggest values were for the long pyramidal nanowires. That can

be explained by a strong light scattering and partial light localization in SiNWs. Hereby,

arrays of SiNWs, obtained by using weakly toxic ammonium fluoride, have great potential

for usage in photovoltaics, photonics, and sensorics.

Keywords: silicon nanowires, impedance, total reflectance, photoluminescence, Raman scattering

INTRODUCTION

In recent decades, the possibility of using silicon nanowires (SiNWs) in sensorics (Cui et al., 2001;
Wang and Ozkan, 2008; Cao et al., 2015; Georgobiani et al., 2018), photovoltaics (Kelzenberg et al.,
2008; Stelzner et al., 2008; Sivakov et al., 2009), photonics (Brönstrup et al., 2010), and micro-and
optoelectronics (Föll et al., 2010; Yang et al., 2010) has been shown. Nanowires are usually obtained
as a result of anisotropic growth of a 1D crystal on a nanometer scale. The first SiNWs were
fabricated via bottom-up approach by vapor-liquid-solid (VLS) method with different noble metals
(mostly gold) as catalyst (Wagner and Ellis, 1964). Metal-assisted chemical etching (MACE) of
silicon was observed for the first time in the 1990s, when a cleaning solution HF-H2O2-H2O
was used to remove metal impurities from the silicon substrate (c-Si) (Morinaga et al., 1995).
Then this method was adapted for luminescent porous silicon formation (Gorostiza et al., 1999;
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FIGURE 1 | (A,C,E,G,I) SEM micrographs of SiNWs with different pH of H2O2:NH4F (view from above); (B,D,F,H,J) SEM cross-sectional micrographs of SiNWs with

different pH of H2O2:NH4F.
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Li and Bohn, 2000; Chattopadhyay et al., 2002). In 2002, Peng
et al for the first time adapted it for high aspect ratio SiNWs
fabrication and systematically investigated the mechanism and
further develop it into a new mciro/nanofabrication method
(Peng et al., 2002, 2006, 2008). Also MACE method of
SiNWs fabrication was systematically investigated in Nahidi
and Kolasinski (2006), Sivakov et al. (2010), Bai et al. (2012),
and Dawood et al. (2012). Usually in MACE such catalysts, as
nanoparticles of Au (Li and Bohn, 2000; Dawood et al., 2012), Ag
(Sivakov et al., 2010), or Pt (Li and Bohn, 2000; Chattopadhyay
et al., 2002) and such oxidizing agents as H2O2 (Li and Bohn,
2000; Sivakov et al., 2010; Dawood et al., 2012), KMnO4 (Bai
et al., 2012; Jiang et al., 2017), or Fe(NO3)3 (Nahidi and
Kolasinski, 2006), are used in the process. SiNWs, which were
fabricated by a standard MACE procedure, are found to possess
such optical properties as extremely low total reflection (Gonchar
et al., 2012), enhancement of Raman scattering and interband
photoluminescence (PL) (Gonchar et al., 2014). However, HF,
that is surely used in the MACE, is toxic and dangerous, and may
also lead to hypocalcemia and hypomagnesemia (Bertolini, 1992).
Therefore, it is very important, with a view to the future large-
scale production of SiNWs, to study the possibilities of modifying
the MACE method using safer and less toxic chemicals.

It is well-known that aqueous solutions of ammoniumfluoride
(NH4F) can be used to dissolve SiO2, and the etching rate
depends on the concentration of NH4F and the pH of the
solutions (Judge, 1971). Thus, NH4F is shown can be used as
an alternative to HF in the method of electrochemical etching in
the manufacture of porous silicon, and the structural properties
of the resulting porous silicon depend on the pH of the NH4F
solution used: at pH = 4.5 a pebble-like surface was formed, and
at lower PH a nanoporous silicon layers were formed (Dittrich
et al., 1995). Recently, the possibility of using NH4F in theMACE
process has been also shown, and optical properties of SiNW,
formed using NH4F, differed little from nanowires formed by

FIGURE 2 | The dependence of the length of SiNWs with different pH value of

H2O2:NH4F.

standard MACE technology with HF (Gonchar et al., 2016).
However, the mechanism of the etching process and the influence
of the pH of the etching solution on the structural and optical
properties of SiNW remain open.

In this work, the etching process mechanism and the effect
of pH values of H2O2:NH4F solutions on the structural and
optical properties of SiNWs were studied using impedance
measurements and Mott-Schottky analysis, as well as total
reflectance, interband photoluminescence and Raman scattering
intensities measurements.

METHODS

The samples of SiNWs were produced by MACE of (100)-
oriented p-type c-Si wafer with resistivity of 10–20 �•cm. HF
was replacement on NH4F in all reactions. The PH value was

FIGURE 3 | (A) Impedance spectra of p-doped silicon in ∼5M NH4F/1M

H2SO4 electrolyte containing 30% of H2O2. (B) impedance spectra for

different interfaces and pH.
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controlled by PH indicator. Prior to the MACE procedure, c-Si
wafers were rinsed in 2%HF solution for 1min to remove a native
silicon oxide. In the first stage of MACE process, c-Si wafers
were placed in the aqueous solution of 0.02M of silver nitrate
(AgNO3) and 5M of NH4F in the volume ratio of 1:1 for 30 s and
a thin (∼100 nm) layers of Ag nanoparticles were deposited on
the surface of the wafers. In the second stage, c-Si wafers with Ag
nanoparticles were placed in the etching solution containing 5M
of NH4F and 30% H2O2 in the volume ratio of 10:1 for 10min.
The PH value of the NH4F aqueous solution was changed by
adding of H2SO4 droplets and varied in the range from 1 to 5. All
the etching stages were carried out at room temperature. After the
etching process all the samples were rinsed in de-ionized water
and dried at room temperature. The main etching reaction the
same that was described in Zhang et al. (2008):

Si+H2O2 + 6F− + 4H+
= SiF2−6 + 4H2O, (1)

however in our case the ions of F− and H+ were obtained not
from the dissociation of HF as in standard MACE procedure,
but from the dissociation of NH4F and H2SO4. Ag nanoparticles

played the role of catalysts for the etching process. The removal
of Ag nanoparticals from SiNW arrays was performed by
immersing in concentrated (65%) nitric acid (HNO3) for 15min.

The structures of SiNWs were studied by a scanning electron
microscope (SEM) of Carl Zeiss SUPRA 40 FE-SEM. Impedance
spectra and Mott-Schottky measurements were performed using
Solartron 1287 electrochemical interface and Solartron 1255B
frequency response analyzer. All the measurements were carried
out in three-electrode teflon cell using Ag/AgCl reference
electrode joined through polypropylene Luggin capillary. The
total reflectance (which includes both diffuse and specular
components) spectra at the wavelength from 250 to 850 nm
were studied with an integrating sphere on a Perkin Elmer
spectrometer Lambda 950. The interband PL and Raman spectra
were measured in a back scattering geometry with a Fourier-
transform infrared (FTIR) spectrometer of Bruker IFS 66v/S
equipped with a FRA-106 unit. Excitation was carried out by cw
Nd:YAG laser at the wavelength 1.064µm (excitation intensity
was 100 mW and spot size was 2mm). All experiments were
carried out in air at room temperature.

TABLE 1 | Open circuit potential (OCP) and flat band potential for different

interfaces and pH.

Sample Open circuit potential, V Flat band potential, V

Si_pH = 0–1 −0.17 −0.26

Si_pH = 2–3 −0.25 −0.34

Si_pH = 4–5 −0.34 −0.46

Si_pH = 6–7 −0.55 −0.75

Si/Ag_pH = 0–1 −0.14 −0.32

Si/Ag_pH = 2–3 −0.30 −0.38

Si/Ag_pH = 4–5 −0.33 −0.39

Si/Ag_pH = 6–7 −0.42 −0.50

RESULTS AND DISCUSSION

Typical SEM microphotographs of SiNW layers, which were
obtained by using different pH of the etching solution
H2O2:NH4F are presented in Figure 1. Note, that for pH = 6
or 7 the etching rate was very slow and the optical properties
of SiNWs are slightly different from c-Si substrate. It is seen
from the Figure 1, that the shape of SiNW is changing from
vertical cylinders to pyramidal like structures with pH increasing.
Figure 2 presented the dependence of the length of SiNWs from
the pH value. The length of SiNW is maximum at pH = 2
and then decreases with increasing pH. SiNW porosity was
calculated by using Bruggeman model (Bruggeman, 1935) and
was approximately 50–60% for all samples.

Impedance spectra of p-doped silicon in 5M NH4F/1M
H2SO4 electrolyte containing 30% of H2O2 illustrate two
semicircles with series resistance close to zero (Figure 3A).
Thus, an equivalent circuit for the cell can be represented
by parallel RC circuits connected in series. Applying positive
bias vs. open circuit potential (OCP) leads to a first element
resistivity decrease while increasing the radius of the second
semicircle. Applying negative potential leads to first semicircle
radius growth. As soon as Warburg resistance can be considered
negligible in concentrated NH4F/H2SO4 solution, the presence
of the second semicircle can be referred to an electric double
layer with non-equilibrium silicon oxide formed at the surface

FIGURE 4 | Mott-Schottky measurements at 1,000Hz.
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of Si electrode. Resistivity of SiOx layer predictably increases
with shifting to positive potentials vs. Ag/AgCl reference due
to growing layer thickness. As soon as first semicircle appear at
higher frequencies (typically >1,000Hz) it can only correspond
to the processes at Si/SiOx interface. This parallel RC element can
be ascribed to the accumulation layer in Si resulting in downward
bending of the valence and the conduction bands. Decreasing the
radius of this semicircle with shifting to positive potentials is than
well-explained by band flattening in p-doped silicon.

Notably both the SiOx layer thickness and electrolyte potential
are strongly affected by pH. With increasing pH of electrolyte
OCP of the cell decreases reducing silicon oxidation rate
(Figure 3B, Table 1). However, the radius of the second RC
elements grows due to lower dissolution rate of silicon dioxide
resulting in higher capacitance of the layer (Figure 3B).

Addition of silver particles to the system introduces a
number of changes to the impedance spectra. First, Z” at
high frequencies strongly decreases implying lowering of the
capacitance at Si/SiOx interface. Secondly, the radius of the
second semicircle greatly increases indicating larger thickness
of SiOx layer. These effects are associated with inhomogeneous
nature of Ag/Si electrodes where both silver coated and
uncoated regions contribute the impedance spectra. Probably
Si/SiOx/Ag/Ag2O/H2O2 electrochemical chain provides smaller
barrier as compared to direct electric double layer contact
Si/SiOx/H2O2. However, in case of low frequencies the depletion
of charge carriers from Ag/Si results in limitation of carrier
transport and SiOx layer capacitance growth.

To determine flat band potentials of p-doped Si and Ag/Si
electrodes Mott-Schottky measurements were performed at
1,000Hz. The choice of the frequency was dictated by the
necessity to attain depletion of the charge carriers while avoiding
diffusion limitations. Resulting plots for different pH of etching
solutions and derived flat band potential values are summarized

FIGURE 5 | Total reflectance spectra of SiNWs with different pH of

H2O2:NH4F; inset shows the dependence of total reflection of SiNWs from the

pH value of H2O2:NH4F.

in Figure 4 and Table 1. One can see, the flat band potentials
being pH dependent in case of etching of p-doped silicon
converge into closely the same value in case of Ag/Si. On the other
hand, OCP values stay very close in both p-Si andAg/Si, with only
small shift of OCP in case of Ag/Si. This effect corresponds well
to smaller band bending and smaller capacitance of the interface
layers. Thus, silver assisted chemical etching of silicon can be
ascribed to facilitated transport through Si/SiOx/Ag interface.

Total reflectance spectra of SiNW layers are presented in
Figure 5. All samples exhibit a strong decrease of the total
reflectance to 5–10% at the wavelength <850 nm in comparison
to c-Si substrate (50%). At pH >3, the total reflection spectra of
nanowires have a very similar form with c-Si, since for a weak
submicron length SiNW, the c-Si substrate has a significant effect
on the reflection value. Also in this case, reflection peaks appear
at 280 and 370 nm, which are associated with the c-Si direct band
gap. Low total reflection of SiNW layers can be explained by the

FIGURE 6 | (A) Spectra of interband PL and Raman scattering of c-Si

substrate and SiNWs with different pH of H2O2:NH4F, inset shows Raman

scattering peaks of c-Si substrate and SiNWs with different pH of H2O2:NH4F.

(B) The dependence of intensities of Raman scattering and interband PL of

SiNWs from the pH value of H2O2:NH4F.
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strong scattering and absorption of light in the visible region of
the spectrum, which can lead to a partial localization of light in
nanowires (Gonchar et al., 2012).The inset in Figure 5 shown the
dependence of the total reflection of SiNWs at 500 nm from the
pH value of H2O2:NH4F. It is seen that for this wavelength, all
samples have the same low values of the total reflectance (5–10%).

The spectra of interband PL (broad peak) and Raman
scattering (sharp peak at 520 cm−1) of the c-Si substrate and
a number of SiNW grown at different pH values are shown in
Figure 6A. The inset in Figure 6A shows a close view of the
Raman scattering peaks. SiNW’s diameter is about 50–200 nm
and far from the quantum confinement regime. That’s why peaks
and shapes of the interband PL and Raman scattering for all
samples are similar to c-Si. At the same time the intensities of
interband PL and Raman scattering for SiNWs increase strongly
as opposed to corresponding value for c-Si. This effect can be
explained by the light localization in such inhomogeneous optical
medium as SiNW layers (Gonchar et al., 2014).

Figure 6B shows the calculated from Figure 6A dependence
of SiNW’s Raman scattering and interband PL intensities from
the pH value. The signal intensity of the samples here was
normalized to the signal intensity of c-Si substrate (dash line).
Thus, the intensity of Raman scattering and interband PL
increases by 3–5 times and 3 times, respectively, for all SiNWs
layers in comparison with c-Si. Let’s remember, that the shape
and length of SiNWs is changed with the increasing of pH value
of H2O2:NH4F: the length is decrease and the shape is changing
from vertical cilinders to pyramidal like structures (see Figure 1.
Based on this, we can conclude that the intensity of Raman
scattering and interband PL depends not only on the length of
SiNW, but also on their shape.

CONCLUSION

The structural and optical properties of SiNWs, prepared by the
metal assisted chemical etching method, where the commonly
used hydrofluoric acid (HF) has been successfully replaced with
ammonium fluoride (NH4F), and their dependence from the pH
of the etching H2O2:NH4F solutions were studied in detail for

the first time. It is shown that as the pH of H2O2:NH4F decrease,
the shape of the nanowires changes from pyramidal to vertical.
The length of SiNW arrays demonstrated non-linearly pH
dependence. By impedance and Mott-Schottky measurements
it was shown that the SiOx layer thickness and electrolyte
potential are strongly affected by pH. With increasing pH of
electrolyte OCP of the cell decreases reducing silicon oxidation
rate. Silver assisted chemical etching of silicon can be ascribed to
facilitated charge carriers transport through Si/SiOx/Ag interface.
All samples exhibit a strong decrease of the total reflectance to 5–
10% at the wavelength <800 nm in comparison to c-Si substrate.
Also the intensities of interband PL and Raman scattering for
SiNWs increase strongly as opposed to corresponding value for
c-Si, but depends both from the length and the shape of SiNWs:
they were larger for long pyramidal nanowires. This effect can be
explained by the light localization in such inhomogeneous optical
medium as SiNW layers Thus, SiNW,manufactured using weakly
toxic NH4F, have great potential for applications in the field of
photovoltaics, photonics, and sensorics.
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