
TsAGI Science Journal, 48(1): 31–42 (2017)

APPLICATION OF VARIOUS MODELS OF
TURBULENCE FOR CALCULATION OF
INCOMPRESSIBLE INTERNAL FLOWS

P.A. Baranov,1 S.V. Guvernyuk,2 M.A. Zubin,2 S.A. Isaev,3 &
A.E. Usachov4,∗

1Battery Company “RIGEL,” 38 Professor Popov Str., Saint Petersburg, 197376,
Russian Federation

2Institute of Mechanics, Lomonosov Moscow State University, 1 Michurinskii
prospekt, Moscow, 119192, Russian Federation

3Saint Petersburg State University of Civil Aviation, 38 Pilotov Str., Saint
Petersburg, 196210, Russian Federation

4Central Aerohydrodynamic Institute (TsAGI), 1 Zhukovsky Str., Zhukovsky,
Moscow Region, 140180, Russian Federation

*Address all correspondence to: A.E. Usachov, Central Aerohydrodynamic Institute
(TsAGI), 1 Zhukovsky Str., Zhukovsky, Moscow Region, 140180, Russian Federation,
E-mail: uzts@tsagi.ru

Five models of turbulence are used for numerical simulation of the incompressible internal turbulent
flow in a plane channel with a cylindrical cavity on the wall. The results of the numerical simulation
are compared with the experimental data at Reynolds number Re = 1.34 × 105. Conclusions about
the applicability of turbulence models for similar types of flow are made based on comparison of the
calculation and experimental data.
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1. INTRODUCTION

A large variety of differential turbulence models are available nowadays, which are used to
describe different types of turbulent flow. The purpose of this investigation is to compare five
current turbulence models that are widely applied in practice for numerical simulation of internal
two-dimensional turbulent flows. A plane channel with an open cylindrical cavity on the wall was
chosen as the flow type to study. The problem was formulated as a comparison of the numerical
simulation data obtained by various turbulence models and with the experimental data.

2. GENERAL EQUATIONS AND SOLUTION METHOD

The total system of equations describing the motion of viscous fluid in the Cartesian coordinate
system can be presented in tensor form as follows [1]:
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• Continuity equation
∂Uj

∂xj
= 0 (1)

• Equation of momentum variation (Reynolds-averaged Navier–Stokes equation)
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′
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wheret is time;xi is the Cartesian coordinate (i = 1, 2, 3);Ui is the fluid flow averaged
velocity component in thexi direction;p is the averaged static pressure;ρ is the density;
andµ is the dynamic viscosity coefficient.

In accordance with the Boussinesq hypothesis, the Reynolds stresses on the right-hand side
of the equation are simulated as follows:
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wherek = u′iu
′
i/2 is the kinetic energy of turbulence fluctuations; andµt is the dynamic coeffi-

cient of turbulent viscosity determined in accordance with the chosen turbulence model.
To close the Reynolds-averaged Navier–Stokes equations, the Spalart–Allmares (SA) turbu-

lence model with correction of the source term [2], realizablek-ε turbulence model [3], shear
stress transport (SST)k-ω Menter model [4,5], transition SSTk-ω model [6], and turbulence
model for Reynolds stress model (RSM) were applied [7–12]. The operability of the turbulence
models was estimated by comparing the calculation and experimental data by solving the prob-
lem of viscous fluid motion in a plane-parallel channel with a vortex cell in the form of a circular
cut in its wall [13].

3. EXPERIMENTAL FACILITY AND TEST PROCEDURE

The experimental investigation of the flow in a channel with a crosswise cylindrical cavity was
performed at the Institute of Mechanics, Lomonosov Moscow State University, in a special vor-
tex cell facility, ViYa [Fig. 1(a)]. The facility is a small-sized direct wind tunnel, in which the
air flow is generated by pressure fan 1. In order to flatten and stabilize the flow, elongated set-
tling chamber 2 is situated in front of nozzle 3, with a honeycomb and a fine-meshed screen for
disturbance damping installed in this settling chamber.

The settling chamber smoothly meets plane-contoured subsonic nozzle 3 with compression
ratio 4, which is joined to the facility operating channel 4 made of acrylic glass with a 0.05-m-
high and 0.08-m-wide rectangular cross section. Replaceable units with cylindrical cavities of
different diametersd at the same inlet length ofL = 0.052 m are installed on the lower horizontal
wall of the channel [Figs. 1(b) and 1(c)]. The upper wall of the channel can be deflected by angle
α up to 10°, which enables the longitudinal pressure gradient to be regulated in the vicinity of
the cell. The propeller and the nozzle ensure uniform flow in channel inlet sectionx = x∗ with
velocity U in the range from 1.5 to 50 m/s. The Reynolds number defined byL andU varies
within 6 × 103 < Re< 1.8× 105.

A uniform cross-section channel (α = 0) with an insert of diameterd = 0.06 m at flow
velocity U = 36 m/s (Re= 1.34× 105) was used in the present investigation. The values ofL
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FIG. 1: Experimental facility (ViYa-1)

andU were chosen as typical scales of the length and velocity. Figure 1(c) shows the typical
cross sections, where the measurements were performed. The dimensionless coordinates of typ-

ical cross sections are given in Table 1. The level of turbulence fluctuationsε (y) =
√

u′2 in
channel inlet sectionx = x∗ was measured by hot-wire anemometer DISA A-55. Outside of the
boundary layer, the value ofε was on the level of 1.6%.

The distribution of dynamic pressureq = ρu2
/

2 was determined by the difference between
the total and static pressures. In order to measure the pressures, the differential probes [obtained
from Honeywell (Morris Plains, New Jersey)] of various ranges were used (±62.5,±122.5, and
250 mm H2O column); their measurement error was 0.5%–1%. Measurement of the total and
static pressures in the flow and near the surfaces in various cross sections of the channel was
performed by microprobes, which were displaced by a coordinate spacer with a micrometer
screw allowing controlled displacement with accuracy up to 0.05 mm. In addition, the static
pressure was measured using pressure holes on the channel walls.

The static pressure measurements in three cross sections of the channel [see Fig. 1(c)] en-
abled the following conclusions to be made:

1. The weak effect of the side (front and rear) walls of the channel can be neglected, which
is confirmed by the almost constant pressure across the width of the channel measured by
the pressure holes on the channel lower wall and cylindrical cavity bottom.

TABLE 1: Dimensionless coordinates
of typical cross sections

|AB| x∗ x1 x2 x3

1 –3.73 –1.04 0.5 1.94
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2. There is almost constant static pressure throughout the channel height in the cross sections
in front of and behind the cavity.

3. There is the presence of a strong vortex flow in the cylindrical cavity, which is indicated
by a typical drop in static pressure on the side walls of the channel in the vicinity of the
cavity center.

The first peculiarity of the flow from the aforementioned conclusions was determined in the
process of choosing the two-dimensional computational model.

The presence of a favorable static pressure gradient in the channel in front of and behind
the cavity is the consequence of the displacing effect of the boundary layers. The incoming
boundary layer velocity profile recovered by the measured dynamic pressure in sectionx =
x1 along vertical coordinatey is shown in Fig. 2(a). The following integral parameters were
calculated using the B́ezier spline approximations of this profile:

δ∗ =

δ∫

0

(
1− u1 (y)

u1e

)
dy, δ∗∗ =

δ∫

0

(
1− u1 (y)

u1e

)
u1 (y)
u1e

dy

whereδ∗ = 0.015 is the displacement thickness andδ∗∗ = 0.0099 is the momentum thickness
(in which u1e is the constant velocity flow outside of the boundary layer in sectionx = x1).
Figure 2(b) shows the profileu2 (y)/u2e in the section passing through the cavity center, which is
constructed in a similar way using the dynamic pressure measurement data. The typical structural
elements of the separation flow in the cavity are well seen, namely, the displacement layer, vortex
core, and cyclic boundary layer.

4. SPALART–ALLMARES MODEL FOR EDDY VISCOSITY

The SA model [2] is a one-parameter model with one differential equation for turbulent viscos-
ity, which does not require calculation of the relative length scale. The model was constructed
particularly for aerospace systems calculations and predicting the parameters of wall flows, and
has been proven to be good when calculating boundary layers with adverse pressure gradients.

FIG. 2: Velocity profiles in the control sections: (a)x = x1; (b) x = x2
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For internal aerodynamics problems the SA model has been applied successfully in model-
ing the flow in turbomachines. The SA model is a low Reynolds number model that requires
appropriate resolution of the boundary-layer near-wall zone. In the FLUENT software tool [15]
it is used in combination with the near-wall functions in cases in which relatively coarse meshes
are applied. Note that the model is less sensitive to numerical errors when unstructured meshes
are used near the walls; however, it is not quite impeccable, and in particular cannot predict the
decay of homogeneous isotropic turbulence.

The differential equation for calculating turbulent viscosity coefficientν̃, written in Cartesian
coordinatesxi, in combination with the algebraic expressions for auxiliary functions and model
constants is formulated as follows:

∂ (ρν̃)
∂t

+
∂ (ρν̃Ui)

∂xi
= Gν̃ +

1
σν̃

{
∂
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[
(µ + ρν̃)
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]
+ Cb2ρ

(
∂ν̃
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)2
}
− Yν̃

µt = ρṽfν1 (4)

whereGν̃ is the turbulent viscosity generation;Yν̃ is the turbulent viscosity dissipation; and
constantsCb2 = 0.622andσν̃ = 2/3. The article format does not allow demonstrating all of the
equations for the turbulence models in full; therefore, here we only present the general equations
that provide the model overview. The exact equations of the turbulence models are given in Refs.
[2–12].

5. REALIZABLE k-ε MODEL

The realizablek-ε model [3] term means that, in contrast to the high Reynolds number analog,
this model contains restrictions on normal stresses that are in accordance with the physics of
turbulent flows. It is important to avoid negative values of eddy viscosity for flows with high
gradients. This is achieved by introducing a functional dependence instead of constantCµ, and
thus the formula for determining the turbulent viscosity is corrected.

The new transport equation for turbulent energy dissipation rateε is derived from the exact
transport equation of root-mean-square vorticity fluctuations:
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whereGk is the turbulence kinetic energy generation; and constantsσk = 1,σε = 1.2, andC2 =
1.9.

6. MENTER’S SHEAR STRESS TRANSPORT TURBULENCE MODEL

Menter’s SST model does not only couple the widespreadk-ω andk-ε models, but also takes
into account the shear stress transport [4,5]. The conventionalk-ω model and the transformed
k-ε model are coupled by the mixing function, which is constructed in such a way that it takes
unit value in the near-wall region, that is, the standardk-ω model is activated in it, and it equals
zero far from the wall, and then the transformedk-ε model predominates. The SST model is
supplemented by a damped term with cross-coupling derivatives in the equation forω. The

Volume 48, Issue 1, 2017



36 Baranov et al.

turbulent viscosity is determined by taking into account the turbulent shear stress transport within
the Johnson–King approach. There is a certain variation of the model constants from their values
in the original models. Relatively recently, Menter introduced corrections into the SSTk-ω
model, which had been made based on 10 years of experience of employing it [5]. Instead of the
vorticity Ω modulus, the invariant strain-rate tensor modulusS = |Sij | =

√
2SijSij is used in

the expression for eddy viscosity. Finally, Menter’s SST model is implemented in the following
form:
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whereGω is the generation of dissipation of kinetic turbulenceω per unitk; Yk is the dissipation
of turbulence kinetic energy;Yω is the dissipation of kinetic turbulenceω; Γk = µ + (µt/σk);
Γω = µ + (µt/σω); andDω is the cross-diffusion term.

7. TRANSITION SST MODEL

One of the latest modifications of Menter’s SST model is the four-equation turbulence model
that takes into account the laminar–turbulent transition [6]. Previous low Reynolds number tur-
bulence models did not take into account many important factors affecting the laminar–turbulent
transition in the boundary layer, namely, the external flow turbulence level, presence of pressure
gradients, and wall roughness. An attempt to take into account some of these factors is made in
the proposed turbulence model. For this purpose, two supplementary differential equations for
flow intermittencyγ and the local Reynolds number calculated by momentum thickness Reθ are
introduced. The transport equation for flow intermittencyγ is written as follows:
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wherePγ1, Eγ1, Pγ2, Eγ2, andPθt are the source terms; and constantsσγ = 1.0 andσθt = 2.0.

8. EQUATIONS FOR REYNOLDS STRESSES

To close the Reynolds-averaged Navier–Stokes equations it is possible to use the transport equa-
tions for Reynolds stresses. They are given here in the most general form [7–12]:
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whereδkj is the delta function. Some terms on the right-hand side of the transport equation
for Reynolds stresses are not determined. They are defined using additional relationships. This
refers to the turbulent diffusion transport and pressure correlations. To close them, additional re-
lationships with application of the equations for the turbulence kinetic energy and its dissipation
are used [9–12].

9. NUMERICAL SOLVER

Numerical simulation was performed using the VP2/3 software package (Saint Petersburg and
Moscow). The differential equations were solved by the well-proven numerical control vol-
ume method [14], which allows constructing conservative discrete schemes for non-orthogonal
curvilinear meshes with cells of various shapes. Both the steady-state and unsteady Reynolds-
averaged Navier–Stokes equations were solved by the control volume method [14].

For discretization of convective fluxes through the control volume faces, the second-order
upwind schemes were used [15]. The pressure was calculated using the semi-implicit methods
SIMPLEC (semi-implicit method for pressure linked equations-consistent) based on the SIM-
PLE procedure suggested by Patankar [16]. Based on this multi-block computational procedure
(MCP) technique, the software complex VP2/3 was elaborated, which has been applied success-
fully in the numerical simulation of different heat-and-mass transfer problems in viscous fluid
flows [16].

An unstructured triangular mesh with 137,678 cells was used in the numerical simulation.
The minimal distance to the wall wasy = 0.0002 of the reference length. The control ofy+

value showed that it did not exceed 2 near the wall.

10. RESULTS OF THE NUMERICAL SIMULATION

The results of the numerical simulation of incompressible steady-state flow in the channel with
the cylindrical cavity for the Reynolds-averaged Navier–Stokes equations closed by turbulence
models (4)–(8) are shown in Figs. 3–7. The fields of velocity vector and paths of the tag particles
found in the numerical simulation using various turbulence models are shown in Fig. 3.

The flow modeling in the cylindrical cavity using all three turbulence models provided close
results. A recirculation flow with a large eddy in the cavity center arose in the cavity, with a
small displacement of the eddy center toward the channel rear wall being observed for the SA
turbulence model [Fig. 3(a)]. In addition, when Menter’s SST turbulence model [Fig. 3(c)] and
the transition SST model [Fig. 3(d)] were used, a small secondary recirculation flow near the
leading sharp edge was observed.

The fields of velocity modulus with the same color gradation over the velocity modulus value
are shown in Fig. 4. An insignificant discrepancy in the velocity modulus was only observed in
the application of the SA turbulence model [Fig. 4(a)]. Figure 5 shows the fields of turbulent
viscosity, where turbulent viscosity in the eddy center is observed in all of the considered turbu-
lence models except for the realizablek-ε model. This effect does not coincide with the physical
processes in the center of a large eddy; however, it disappears when introducing the correction
for the curvature of streamlines in the indicated turbulence models [17].

11. COMPARISON OF THE NUMERICAL AND EXPERIMENTAL RESULTS

Let the results of the calculations of the averaged horizontal velocity component profile in the
cylindrical cavity center section performed using various turbulence models be compared with
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FIG. 3: Velocity vectors and paths of the tag particles: (a) SA turbulence model with correction of the
source term; (b) realizablek-ε model of turbulence; (c) Menter’s SSTk-ω model; (d) transition SSTk-ω
model; (e) Reynolds stress model

the experimental data. It is necessary to note that all of the results of the computations for av-
eraged horizontal velocity componentU obtained by the considered turbulence models are in
good agreement with the experimental data (see Fig. 6). Therefore, for more precise analysis,
the static pressure distributions on the bottom wall of the channel and cavity obtained in the
computations by various turbulence models and experimentally are compared (see Fig. 7). From
the analysis of the Figs. 6 and 7, the most satisfactory coincidence is observed in the case of the
SSTk-ω transition model of Menter with four equations.
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FIG. 4: Field of absolute velocity absolute values: (a) SA turbulence model with correction of the source
term; (b) realizablek-ε model of turbulence; (c) Menter’s SSTk-ω model; (d) transition SSTk-ω model;
(e) Reynolds stress model

FIG. 5: Turbulent viscosity field: (a) SA turbulence model with correction of the source term; (b) realizable
k-ε model of turbulence; (c) Menter’s SSTk-ω model; (d) transition SSTk-ω model; (e) Reynolds stress
model
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FIG. 6: Comparison of the calculation results of the averaged horizontal velocity component and the ex-
perimental results obtained by various turbulence models

FIG. 7: Comparison of the static pressure distribution over the channel wall and the cavity calculated by
various turbulence models and the experimental results

12. CONCLUSIONS

The results of the numerical simulation of five advanced turbulence models (the SA turbu-
lence models with correction of the source term, realizablek-ε turbulence model, SSTk-ω
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Menter model, transition SSTk-ω model, and turbulence RSM model) for incompressible in-
ternal steady-state flow in a channel with a cylindrical cavity on its bottom wall were compared.
Based on the comparison of the results of the numerical simulation with the experiment for the
averaged horizontal velocity component profile and the pressure distribution over the channel
bottom wall and cavity bottom in the longitudinal direction, it was shown that the best result was
provided by the transition SST turbulence model with four equations.
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