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HepK, a protein-histidine kinase from the cyanobacterium 
Anabaena sp. strain PCC 7120, binds sequence-specifically 
to DNA

Ruanbao Zhou1,2* and Olga A. Koksharova2,3	

Abstract 
Two-component phosphorelay systems are minimally consisted of a sensory protein-histidine kinase (HK)
and a response regulator (RR). HK autophosphorylates its conserved histidine residue in response to stimulus 
from an environment, this phosphate group then is transferred to a conserved aspartic acid residue of an RR, 
which is generally a transcription factor. HepK is a member of the family of sensory protein-histidine kinases 
in two-component phosphorelay systems (TCPS). We previously showed that HepK is an autokinase, and 
that DevR is its cognate RR, together comprising a mini two-component phosphorelay system that mediates 
developmental regulation of biosynthesis of a heterocyst envelope polysaccharide in the cyanobacterium 
Anabaena sp. PCC 7120. Unlike a typical TCPS, both HepK and DevR lack known DNA-binding domains. 
However, mutations in hepK, hepC and hepA all block the synthesis of heterocyst envelope polysaccharide. A 
hepK mutation of Anabaena blocks the induction of hepA expression. We hypothesized that HepK may regulate 
transcription of hepA or hepC by binding to DNA. To test this hypothesis we have performed a gel-shift 
analysis and have shown that although lacking a known DNA-binding motif, a truncated, soluble version of 
HepK binds sequence-specifically to a fragment of DNA found upstream from hepC, a gene that is located 
immediately upstream from hepA and also required for the synthesis of heterocyst envelope polysaccharide. 
The conserved phosphorylation histidine residue of HepK kinase is not required for this DNA-binding 
activity. Therefore, regulation of the synthesis of heterocyst envelope polysaccharide by HepK may be, at 
least in part, independent of two-component phosphorylation. The membrane-anchored HepK kinase with 
specific DNA-binding activity may serve as a membrane-tethered transcription factor, which may require 
an activation of regulated intramembrane proteolysis. We have found no other example of a protein histidine 
kinase without a known DNA binding motif that binds DNA sequence-specifically. Our finding may enable 
development of small DNA molecule as highly specific anti-microbial drugs because protein histidine kinases 
are broadly conserved in microbial pathogens but absent in humans.
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Introduction
Two-component phosphorelay regulatory systems are widespread 
in prokaryotes, and are found also in fungi, amoebae and plants 
[1,2]. Typically, a sensory protein-histidine kinase phosphorylates its 
own conserved histidine residue in response to an environmental 
stimulus. Histidine kinases are not commonly known to function 
by binding to DNA, although they have been shown to regulate 

the transcription of target genes indirectly by activation of 
a specific response regulator. Response regulators generally 
contain an N-terminal regulatory domain with a conserved 
aspartate residue, to which the phosphoryl group of the kinase 
is transferred, and a variable C-terminal effector domain [3]. The 
response-regulator protein usually regulates the expression of 
certain genes to effect an adaptive response [4]. Most known 
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response regulators are transcription factors whose effector 
domains bind DNA. However, some response regulators have 
no known effector domain [1] and the effector domain of some 
others are enzymatically active [5,6].

Three proteins with similarity to members of two-component 
regulatory systems are known to influence heterocyst deve-
lopment in filamentous cyanobacteria. HepK was identified 
as a sensory protein-histidine kinase [7] and DevR and PatA 
resemble response regulators. All three lack known DNA-binding 
domains [7,9,10]. Mutations in hepK, hepC and hepA all block the 
synthesis of heterocyst envelope polysaccharide, rendering the 
heterocysts incapable of N2 fixation under aerobic conditions 
[10,11]. A hepK mutation of Anabaena sp. strain PCC 7120 blocks 
the induction of hepA, whereas inactivation of hepC, located 
directly upstream from hepA, leads to constitutive expression 
of hepA [10].

The catalytic core of histidine kinases, including of HepK, con-
tain highly conserved regions (the H, N, D/F, G1 and G2 boxes) 
that are distinct from the previously characterized Ser/Thr/Tyr 
kinase domain [12]. That catalytic core does not appear to be 
obligatorily dependent upon catalytic phosphorylation of a His 
rather than a Ser, Thr, or Tyr, because histidine kinase homologs 
are known in which the phosphorylated His is substituted by 
Tyr [13] or Ser [14]. Unanticipated similarities of the catalytic 
core to DNA gyrase B and to DNA-mismatch-repair enzyme 
MutL [12,15,16] provide hints that a histidine kinase might be 
able to interact directly with DNA. We previously demonstrated 
that HepK is a sensory protein-histidine kinase in HepK-DevR 
two-component regulatory system [7]. Because HepK may 
regulate the transcription of hepA or hepC, we tested whether 
HepK can bind DNA upstream from these genes. We report here 
that a water-soluble version of HepK that lacks the two putative 
transmembrane regions of that protein is a histidine kinase 
that binds sequence-specifically to DNA upstream from hepC. 
Therefore, the regulation of the synthesis of heterocyst envelope 
polysaccharide by HepK may be, at least in part, independent 
of two-component phosphorylation. Except for a kinase that 
bears a presumptive response regulator with a DNA-binding 
motif [17], we have found no other known example of a histidine 
kinase that binds DNA sequence-specifically. 

Materials and methods
Production and purification of truncated HepK
Unable to produce catalytically active, intact HepK (GenBank 
accession no. U68034) by expression in Escherichia coli, we 
produced a truncated, water-soluble version of HepK that 
lacks two presumptive transmembrane regions, as follows. A 
3’-terminal portion of hepK encoding residues 267-575 of HepK 
was amplified by PCR with primers 5’-GGAATTCCATATGCG-
GACTAGTCGAGCGATCGCT-3’ and 5’-CGGGATCCTAACTTTGCTC-
CTGAAGTG-3’ (introduced NdeI and BamHI sites are underlined). 
The PCR product was cloned between the NdeI and BamHI sites 
of plasmid pET-14b (Novagen, Inc., Madison, WI), which provided 
an N-terminal hexa-histidine tag. The resulting plasmid was de-

noted pRL2406, and the tagged, truncated product was denoted 
H6-’HepK. DNA sequencing confirmed that the PCR product 
was error-free. To overproduce H6-’HepK, Escherichia coli strain 
BL21 (DE3) transformed with pRL2406 was grown in 500 ml LB 
medium supplemented with 100 µg ml-1 ampicillin at 37°C to an 
OD600 of 0.5-0.6, 0.5 mM isopropyl-β-D-thiogalactopyranoside 
was added, and incubation was continued for 5 h. H6-’HepK was 
purified to homogeneity as follows: E. coli suspended in 50 mM 
Na phosphate, 100 mM NaCl, pH 7.0, was broken with a French 
press (American Instrument Co. Div. Travenol Laboratories, Inc., 
Silver Spring, MD). The supernatant solution from centrifugation 
for 20 min at 20,000 x g at 4°C was applied to a cobalt-based 
resin column (Clontech Laboratories, Inc., Palo Alto, CA), which 
was then washed thrice with 50 mM Na phosphate, 300 mM 
NaCl, 5 mM imidazole, pH 7.0. H6-’HepK eluted with 50 mM 
Na phosphate, 300 mM imidazole, pH 5.5, was loaded onto a 
Sephadex G-100 gel-filtration column (Amersham Pharmacia 
Biotech Inc., Piscataway, NJ) from which it was eluted at 4°C with 
50 mM Na phosphate, 100 mM NaCl, pH 7.0, at 20 ml h-1. Hexa-
histidine-tagged DevR (H6-DevR) and hexa-histidine-tagged 
mutant ’HepK (H6-’HepK-H348A) were prepared as described 
previously [7].

Gel mobility shift assay in vitro for DNA-protein complexes
Mobility shift assays [19] were performed with a “DIG Gel Shift 
Kit” (Roche Molecular Biochemicals, Indianapolis, IN) accord-
ing to [20]. The DNA probes used in these experiments are 
shown in Figure 1. The DNA probes were prepared by PCR with 
the following primers: A1, 5’-GCTCTAGAATTAGGTTTATCC-3’ 
and 5’-GAAATGGATTGAATACAATCCTC-3’; B2, 5’-CCGAATTC-
TACAGAGCTTTGTTTCTCAG-3’ and 5’-GATATGAATTCGACAAC-
CTAATTTTTAAC-3’; X1, 5’-ATCGATTTTTTAACATAAATTGCC-3’ and 
5’-TACTTGTTTACTTGCACAATAATTTTC-3’; X12, 5’-CTATGACTATT-
TAAAGAG-3’ and 5’-TACTTGTTTACTTGCACAATAATTTTC-3’; X2, 
5’-CAAAGGTTAGGTTAATTGCC-3’ and 5’-CGATTTTTAAAATCAG-
TATCC-3’, and X13, 5’-TCCACAATATTTAAGTATTTTAT-3’ and 
5’-GGATATAAGACTCTGTAGAAATG-3’. The DNA fragments were 
3’-end-labeled by using DIG-11-ddUTP and terminal transferase. 
Labeled DNA probes (0.4-0.8 ng) were incubated with 0.3 µg of 
purified H6-’HepK or H6-’HepK-H348A (protein) in binding buffer 
(25 mM HEPES, pH 7.9, 5 mM MgCl2, 25 mM NaCl, 0.5 mM DTT, 
5% glycerol, 5 µg BSA) containing 0.5 µg of poly-(dI-dC/dI-dC) 
in a final volume of 20 µl. For gel shift competition, H6-’HepK 
or H6-’HepK-H348A was bound with at least 75-fold excess (75- 
to 270-fold molar ratios based on the molecular weight of the 
competitor DNAs) of unlabeled competitor DNA for 15 min at 
room temperature before addition of the probe. Incubation 
with the probe lasted for 20 min. The mixture was then loaded 
on an 8% polyacrylamide gel (30:1 acrylamide-bisacrylamide) 
in Tris-glycine buffer (50 mM Tris, 380 mM glycine, 2 mM EDTA, 
pH 8.5 [19]) that had been pre-run for 1 h at 4°C and 140 V. 
Electrophoresis was performed at 4°C in a Tris-glycine buffer, 
for 2 to 2.5 h at a constant voltage of 140 V (ca. 30 mA). The gel 
was then electroblotted onto a Hybond-N+ Nylon membrane 
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(Amersham Pharmacia) at 200 mA in the same Tris-glycine 
buffer at 4°C for 1 h, the membrane baked at 80°C for 2h, and 
chemiluminescence detected according to the manufacturer’s 
instructions.

Results
Recombinant H6-’HepK, overexpressed in E. coli and purified 
to homogeneity (Figure 2A, lane 3), binds fragment X1 
(Figure 3A, lane 2), and also X13 (Figure 3B, lane 2), a 
subfragment of X1 (Figure 1), but not fragments X2, B2, A1 
and X12 (Figure 3A, lanes 3-10 and Figure 1). Competition 
experiments with unlabeled A1 showed that a 75-fold excess 
of A1 (by mass; 270-fold molar excess) does not significantly 
affect the formation of a complex between X1 and H6-’HepK 
(Figure 3C, lanes 3 and 5), whereas a 75-fold excess of X1 
reduces complex-formation by approximately 90% (Figure 3C, 
lanes 4 and 3). Phosphorylation of H6-’HepK is labile to acid 
and stable to alkali, supporting the idea that its site of auto- 
phosphorylation is a histidine residue [7,22]; the H348A 
substitution abolishes autophosphorylation [7]; and 
(unphosphorylated) H6-’HepK-H348A binds X1specifically 
(Figure 4, lane 2). Competition experiments with unlabeled A1 
(Figure 4, lane 4) and unlabeled X1 (Figure 4, lane 3) showed 
similar results to that of wild-type H6-’HepK (Figure 3C, lanes 
5 and 4). These results provide additional information that 
the specific binding does not require phosphorylation. The 
control experiment, the purified H6-DevR protein (Figure 2B, 
lane 3) produced no mobility shift of X1 (Figure 3C, lane 2), 
showing that the site-specific binding by H6-’HepK is not due 
to the hexa-histidine tag. 

Discussion
Several bacterial proteins with high homology to histidine 

Figure 1. DNA fragments used for gel mobility shift assays: A1, bp -580 to -503 (78 bp) relative to the transcriptional start point 
of hepA (Zhu et al., 1998); B2, bp -255 to -166 (90 bp); X1, bp -2103 to -1824 (280 bp), and its subfragments X13, bp -2024 to bp 
-1905 (120bp) and X12, bp -1974 to -1824 (151 bp); and X2, bp -1758 to -1614 (145 bp).

Figure 2. SDS-PAGE analysis of recombinant H6-’HepK (A) 
and H6-DevR (B). 
A: kDa, protein standards (molecular masses in kDa) shown 
to the left of lane 1. Lane 1, total extracts of E. coli BL21 (DE3) 
bearing pET-14b. Lane 2, total cell extracts of E. coli BL21 
(DE3) bearing pRL2406 induced with IPTG. Lane 3, H6-’HepK 
(~20 µg in 10 µl) purified by a cobalt-based affinity column 
followed by Sephadex G-100 chromatography. 
B: Lane 1, total extracts of E. coli BL21 (DE3) bearing pET-
14b. Lane 2: total cell extracts of E. coli BL21 (DE3) bearing 
pRL2461 (Zhou & Wolk, 2003) induced with IPTG. Lane 3, 
H6-DevR (~10 µg in 10 µl) purified by a cobalt-based affinity 
column followed by Sephadex G-100 chromatography. The 
12% polyacrylamide gel (A) and the 15% polyacrylamide gel 
(B) were stained with Coomassie brilliant blue R-250.

kinases are apparently not kinases [1]. For example, Azotobacter 
vinelandii NifL contains five conserved blocks characteristic 
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of histidine sensor kinases, including the conserved His 
residue [23], but purified NifL has not been observed to 
autophosphorylate [21,24] nor is that residue required for 
in vivo function of NifL [25]. However, HepK evidently is an 
autokinase: purified H6-’HepK autophosphorylates highly 
efficiently in vitro [7]. Some transcriptional activators, e.g., 
GAL4 [26], NtrC [27,28] and Spo0A [29] bind DNA independent 
of their state of phosphorylation, but activate transcription 
efficiently only when phosphorylated. Purified, intact HepK, 
complete with its two presumptive transmembrane domains 
[10], had no detectable autokinase activity in vitro [7]. It is 
possible that the two presumptive transmembrane domains 
of intact HepK in vivo are responsible for sensing a signal 
specific to heterocyst development, and subsequently trigger 
autokinase activity of HepK in vivo. Although the soluble, 
truncated, recombinant form of HepK binds DNA independent 
of phosphorylation, the biological consequences of that 
binding may depend on whether HepK is phosphorylated. 
ToxR is a transmembrane transcriptional activator with a 
cytoplasmic DNA-binding domain [30]. Because truncated 
HepK binds site-specifically to DNA but has no known DNA- 
binding motif, it may be a prototype for a new class of protein-
histidine kinase that, like ToxR, serves also as a membrane-
tethered transcription factor, which may also require an 
intramembrane proteolytic activation [31-33] in response to 
a signal specific to heterocyst development.

Genomic sequence data have identified no presumptive 
protein histidine kinase genes in animal genomes including 
human genome [34,35]. Since some two-component phos-

Figure 3. Mobility shift assays with H6-’HepK (in even-numbered lanes) probed with labeled DNA fragments (in parentheses). 
A: Lanes 1 and 2 (fragment X1), 3 and 4 (fragment X2), 5 and 6 (fragment B2), 7 and 8 (fragment A1), and 9 and 10 (fragment 
X12). B: Lane 1, X13 probe only; Lane 2, X13 probe+H6-’HepK. C: Labeled DNA fragment X1 as probe, with the following 
additions. Lane 1, no added protein; lane 2, H6-DevR; lane 3, H6-’HepK; lane 4, H6-’HepK +75-fold excess of unlabeled X1; lane 
5, H6-’HepK +270-fold molar excess of unlabeled fragment A1. 

Figure 4. Mobility shift assays with or without mutant 
protein H6-’HepK-H348A and labeled DNA fragment 
X1 as probe. Lane 1, no added protein; lane 2, as in lane 
1plus H6-’HepK-H348A; lane 3, as in lane 2 plus 75-fold 
excess of unlabeled X1; lane 4, as in lane 2 plus  270-fold 
molar excess of unlabeled DNA fragment A1.
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phorelay proteins are essential for the viability, virulence, and 
drug resistance of microbial pathogens including human 
fungal and bacterial pathogens [36-39], novel anti-microbial 
drugs targeted to protein histidine kinase in two-component 
phosphorelay systems may prove high specificity and minimal 
toxicity [40,41]. Several series of inhibitors to bacterial his-
tidine kinase have been reported in the literature [42-44], 
however, most appear to suffer from high hydrophobicity, 
poor selectivity, and excessive protein binding and/or limited 
bioavailability [45]. The strong hydrophobicity of these 
molecules makes formulation and drug delivery impossible. 
Unlike these compounds, small DNA molecules bound 
specifically by a protein-histidine kinase HepK are able to 
bypass the drawbacks of conventional inhibitors. These 
sequence-specific small DNA molecules have several unique 
advantages in developing of novel anti-microbial drugs, such 
as high solubility, high specificity, minimal toxicity, efficient 
synthesis, easy of formulation and delivery. Therefore, our 
finding provides an exciting opportunity for developing small 
DNA molecules as novel anti-microbial drugs.

Conclusion
We have shown that although lacking a known DNA-binding 
motif, a truncated, soluble version of sensory protein-histidine 
kinase HepK binds sequence-specifically to a fragment of 
DNA found upstream from hepC, a gene that is required for 
the synthesis of heterocyst envelope polysaccharide of cyan-
obacteria. The conserved phosphorylation histidine residue 
of HepK kinase is not required for this DNA-binding activity. 
Therefore, regulation of the synthesis of heterocyst envelope 
polysaccharide by HepK may be, at least in part, independent of 
two-component phosphorylation. For our best knowledge it is 
the first example of a protein histidine kinase without a known 
DNA binding motif that binds DNA sequence-specifically. Our 
finding may enable development of small DNA molecule as 
highly specific anti-microbial drugs because protein histidine 
kinases are broadly conserved in microbial pathogens but 
absent in humans.
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