

УДК 55(234?852), 551/732

О ВОЗРАСТЕ ФОРМИРОВАНИЯ ОСНОВАНИЯ ШПИЦБЕРГЕНА: U—РЬ-ДАТИРОВАНИЕ ДЕТРИТНОГО ЦИРКОНА ИЗ ВЕРХНЕДОКЕМБРИЙСКИХ И НИЖНЕКАМЕННОУГОЛЬНЫХ ОБЛОМОЧНЫХ ПОРОД СЕВЕРО-ЗАПАДНОЙ ЧАСТИ ЗЕМЛИ НОРДЕНШЕЛЬДА

© 2017 г. А. Н. Сироткин 1,* , член-корреспондент РАН Ю. Б. Марин 2 , Н. Б. Кузнецов 3,4 , Г. А. Коробова 2 , Т. В. Романюк 5,6,**

Поступило 30.01.2017 г.

Изучен характер распределения возрастов детритного циркона из верхнерифейских и раннекаменноугольных песчаников северо-западной части Земли Норденшельда (о. Западный Шпицберген). Полученные результаты дополняют данные, известные ранее для пород докембрийских и палеозойских толщ запада Шпицбергена. Совместное рассмотрение этих данных показывает, что временной интервал средний рифей — ранний карбон включительно подразделяется (как минимум) на 5 этапов, во время которых питающие провинции, поставлявшие детрит в осадочные бассейны, реликты которых представлены в современной структуре Западного Шпицбергена, существенно различались. Самый древний из выявленных эпизодов изменения источников осадочного материала (рубеж среднего и позднего рифея) соответствует времени консолидации древнего фундамента архипелага Шпицберген.

DOI: 10.7868/S0869565217330143

Время консолидации фундамента разных частей Западной Арктики, питающие провинции, возраст и палеогеографические условия формирования палеозойских и мезозойских осадочных бассейнов, сформированных на этом фундаменте — обсуждаемые вопросы. Для их решения использован метод датирования детритных зёрен циркона (dZr) из песчаников и метапесчаников, слагающих верхнедокембрийские и палеозойские толщи северо-запада Земли Норденшельда (о. Западный Шпицберген) (рис. 1, врезка).

На о. Западный Шпицберген развиты в разной степени метаморфизованные протерозойские образования, а также толщи разных уровней

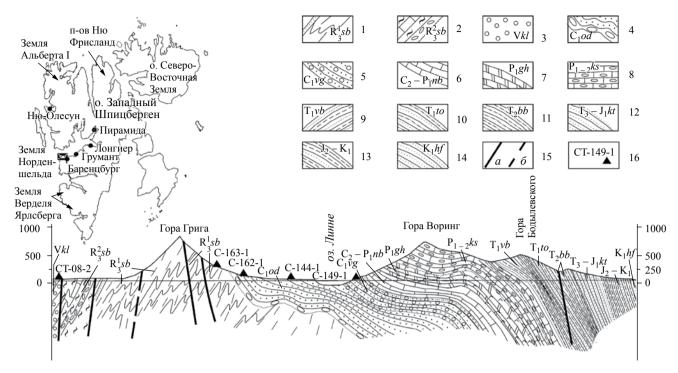
фанерозоя [3]. На северо-западе Земли Норденшельда (рис. 1) в видимом основании разреза залегает толща дислоцированных и зелёносланцево метаморфизованных карбонатных и терригенных пород верхнерифейской серии Софиебоген, выше — диамиктиты вендской свиты Кап-Линне. На протерозойских образованиях с ярко выраженным структурным несогласием залегает мощная (6–7 км) осадочная толща, включающая значительную часть разреза каменноугольной системы, перми, триаса, юры, нижнего мела и залегающий с несогласием палеоген. Мезозойская часть этой последовательности известна как разрез "ГЕОТОП" (или Festningen [10]) — типовой разрез мезозоя западной части архипелага Шпицберген.

Результаты ранее датированных dZr из песчаников нескольких уровней триаса [1], матрикса юрских конгломератов [6], песчаников нижнего мела и матрикса конгломератов палеогена [1] показывают, что чем моложе породы, тем более значимую роль в наборах dZr играют древние возрасты. Так, в триасе доминируют dZr с возрастами 430-320 млн лет, являющиеся, по-видимому, продуктами эрозии каледонских сооружений. В юре преобладают dZr с возрастами 726-634 млн лет — продукты эрозии Протоуральско-Тиманского орогена. В мелу главную роль играют dZr из гренвильских и

¹Полярная морская геологоразведочная экспедиция, Ломоносов, Санкт-Петербург

²Санкт-Петербургский горный университет

³Геологический институт Российской Академии наук, Москва


⁴Казанский (Приволжский) федеральный университет

⁵Институт физики Земли им. О.Ю.Шмидта Российской Академии наук, Москва

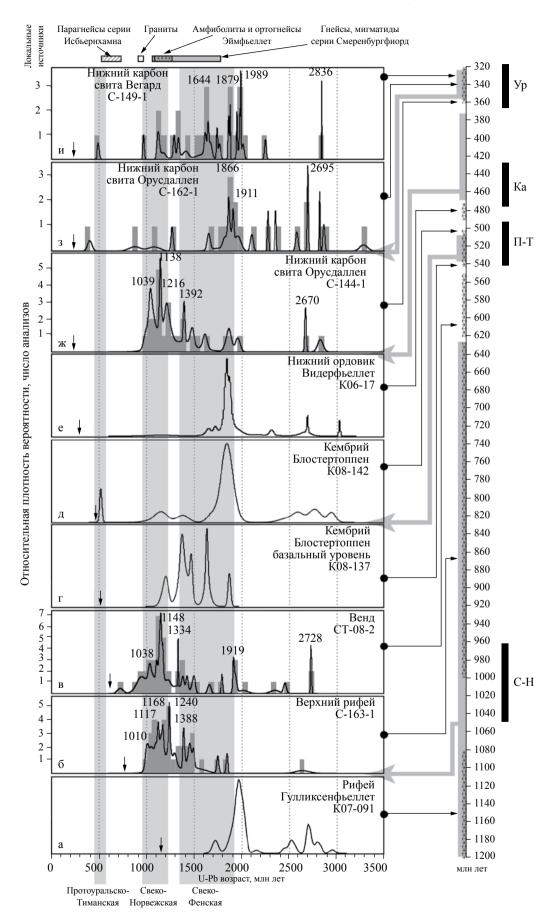
⁶Российский государственный университет нефти и газа им. И.М. Губкина, Москва

^{*}E-mail: pechenga-67@yandex.ru

^{**}E-mail: t.romanyuk@mail.ru

Рис. 1. Геологический разрез через северо-западную часть Земли Норденшельда. 1, 2— серия Софиебоген (1— нижняя кварцито-сланцевая, 2— верхняя сланцево-карбонатная с конгломератами толщи); 3— свита Кап-Линне, конгломераты; 4— свита Орустдален, песчаники, конгломераты; 5— свита Вегард, гравелиты, песчаники, конгломераты; 6— свита Норденшельдбреен, известняки; 7— свита Гипсхукен, гипсы, доломиты; 8— свита Кап-Старостин, окремнённые известняки; 9— свита Вардебухта, аргиллиты, алевролиты, песчаники; 10— свита Твиллингодден, песчаники, алевролиты; 11— свита Браваисбергет, алевролиты; 12— серия Кап-Тоскана, песчаники; 13— подсерия Янусфьеллет, аргиллиты, песчаники, конгломераты; 14— свита Гельвецияфьеллет, песчаники, аргиллиты; 15— разломы, установленные (a) и предполагаемые (b); 16— места отбора проб.

карельских источников сноса. В нижнем палеогене доминируют карельские и позднеархейские dZr.


Для изучения верхнерифейско-каменноугольных образований, подстилающих разрез "ГЕОТОП", нами были отобраны пробы из верхнего рифея (С-163-1 — мусковитовый кварцит серии Софиебоген), венда (Ст-08-2 — матрикс диамиктитов свиты Кап-Линне), нижнего карбона (С-144-1, С-162-1 — песчаник и гравелит свиты Орусдален, С-149-1 — гравелит из свиты Вегард). Сепарация и отбор dZr (Л.П. Фёдорова), изготовление препаратов и изотопное LA-ICP-MS-датирование dZr выполнено в ЦИИ ВСЕГЕИ (И.Н. Капитонов). Дискордантность анализов вычислена по формуле

$$100\% \cdot \left[\frac{\text{BO3pact}(^{206}\text{Pb}/^{238}\text{U})}{\text{BO3pact}(^{206}\text{Pb}/^{238}\text{U})} - 1 \right]$$

Далее для интерпретации использовали только датировки с $|D| \le 10\%$. Для dZr моложе 1 млрд лет возраст вычисляли по 206 Pb/ 238 U, а для более древних dZr — по 207 Pb/ 206 Pb. Результаты датирования dZr приведены на рис. 2Б, В, Ж, З, И и в табл. 1. Для верхнерифейской (C-163-1), вендской

(Ст-08-2) проб и пробы, отобранной из базального уровня разреза нижнего карбона (С-144-1), возрастные спектры dZr сходны. В них доминируют средне- и раннерифейские зёрна с частотными пиками в интервале 1-1,4 млрд лет. Кроме того, в этих пробах есть единичные раннепротерозойские и архейские зёрна. В породах из более высоких уровней нижнего карбона (С-162-1, С-149-1) роль средне-, раннерифейских dZr меньше.

Рис. 2. Результаты изотопного датирования (гистограммы и кривые плотности вероятности) детритного циркона из докембрийских и каменноугольных толщ, подстилающих разрез "ГЕОТОП" и их сопоставление с возрастами детритного циркона других районов западной части Шпицбергена. Справа показана временная шкала и чёрными стрелками привязка к ней проб. Штриховые интервалы на шкале показывают оценку возраста проб. Серые толстые стрелки маркируют примерные рубежи пяти этапов изменения питающих провинций, а серые полосы на шкале времени - оценку временного интервала, во время которого это изменение могло произойти. Чёрные полосы на шкале времени - орогении: Ур – уральская, Ка – каледонская, П-Т – протоуральско-тиманская, С-Н – свеко-норвежская (гренвильская).

ДОКЛАДЫ АКАДЕМИИ НАУК том 477 № 3 2017

Таблица 1. Результаты изотопного датирования детритного циркона из 5 проб, отобранных в верхнерифейско-нижнекаменноугольной стратиграфической последовательности, подстилающего разрез "ГЕОТОП"

Номер, описание пробы	Координаты места отбора пробы	N	и, диапазон возрастов	PZ	RF3	$ m RF_2$	\mathbb{RF}_1	PR ₁	AR_2	AR_1
С-163-1, мусковитовый кварцит верхне- рифейской серии Софиебоген	77°58,0'с.ш. 13°51,1'в.д.	51	34 999 ± 15 – 2637 ± 72		1 999 ± 15	22 67% 1007 ± 20 – 1346 ± 23	8 24% 1386 ± 8 − 1585 ± 68	2 1742 ± 11 и 1842 ± 10	$1 2637 \pm 72$	
Ст-08-2, матрикс диамик- титов вендской свиты Кап-Линне	78°03,3′с.ш. 13°35,4′в.д.	52	44 726 ± 30– 2735 ± 4		6 14% 726 ± 30 – 961 ± 43	23 53% 1009 ± 46 – 1353 ± 51	5 11% 1383 ± 13 – 1503 ± 13	8 18% 1659 ± 17 – 2453 ± 14	2 2727 ± 3 и 2735 ± 4	
С-144-1, песчаник из нижнекаменно- угольной свиты Орусдален	78°04,7'с.ш. 13°42,4'в.д.	53	26 $991 \pm 12 - 2822 \pm 28$		1 991 ± 12	15 55% 1033 ± 13 – 1333 ± 200	$ 5 19\% 1391 \pm 8 \div 1610 \pm 22 $	3 $1845 \pm 28 \div 1956 \pm 24$	2 2670 ± 8 и 2822 ± 28	
С-162-1, гравелит из нижнекаменно- угольной свиты Орусдален	77°58,6′с.ш. 13°52,5′в.д.	51	22 $400 \pm 24 - 3281 \pm 42$	1 400 ± 24 (девон)	$1\\847\pm60$	2 1077 ± 63 и 1270 ± 11		12 55% $1651 \pm 16 2353 \pm 6$	$ \begin{array}{c} 5 \\ 23\% \\ 2579 \pm 13 - \\ 2861 \pm 10 \end{array} $	$1\\3281\pm42$
С-149-1, гравелит из ниж- некаменноуголь- ной свиты Вегард	78°05,1′с.ш. 13°45,2′в.д.	53	25 505 ± 57 – 2837 ± 5	1 505 ± 57 (кембрий)	1 967 ± 15	$ \begin{array}{c} 6 \\ 24\% \\ 1113 \pm 22 \div \\ 1334 \pm 20 \end{array} $	$ \begin{array}{c} 6\\24\%\\1412\pm52-\\1643\pm14\end{array} $	1040%1670 ± 31 –2245 ± 18	$\frac{1}{2837 \pm 5}$	

Примечание. N- общее количество датированных зёрен в пробе; n- количество зёрен с дискордантностью $|\,\mathrm{D}\,| \le 10\%$; $\mathrm{PZ}-$ палеозой; RF_1 , RF_2 , RF_3- нижний, средний, верхний рифей соответственно; PR_1 — нижний протерозой; AR_1 , AR_2 — нижний, верхний архей.

Изотопные возрасты древних пород различных районов Шпицбергена позволяют наметить первичные источники сноса изученных dZr. Наиболее древние комплексы известны на севере (п-ов Ню Фрисланд, Земля Альберта I) и представлены раннепротерозойскими метаморфизованными осадочно-вулканогенными породами и ассоциирующими с ними анатектическими гранитами [5, 7]. Широко распространены на всём Западном Шпицбергене нижнерифейские комплексы, испытавшие среднерифейский зональный метаморфизм, ультраметаморфизм, гранитизацию [1]. На севере [5] и юге [8] архипелага развиты среднерифейские метагабброиды, метагранитоиды, на Земле Веделя Ярльсберга – среднерифейские кварциты (свита Гулликсенфьеллет) и метавулканиты Чемберлендален, а на Северо-Восточной Земле — метаморфизованные осадочно-вулканогенные породы (серия Кап-Ханстен) [5]. Все они могли быть поставщиком детрита, которым сложены породы, участвующие в строении верхнерифейско-нижнекаменноугольного интервала изученного разреза.

Преобладающий возраст dZr из осадочных пород верхнего рифея, венда, нижнего карбона (проба С-144-1) хорошо согласуется с ранне-среднерифейским возрастом кристаллических комплексов. широко распространённых в верхних уровнях гетерогенного фундамента Шпицбергена, поэтому логично заключить, что осадочные толщи этих возрастов формировались преимущественно за счёт размыва местных источников. Источниками более древних раннедокембрийских dZr, преобладающих в двух пробах из более высоких уровней разреза нижнекаменноугольных отложений, могут быть кристаллические комплексы нижних уровней фундамента Шпицбергена, выходы которых известны в его северных частях [5]. Наличие dZr с возрастами, не типичными для кристаллических комплексов Шпицбергена, свидетельствует о том, что в осадочные бассейны во время накопления этих толш поступал материал не только из местных, но и удалённых источников. Это, прежде всего, единичные зёрна с возрастом, отвечающим времени формирования протоуральско-тиманских комплексов (\sim 750 ... \sim 510 млн лет [9]), а также архейские dZr.

Новые результаты датирования dZr дополняют данные, полученные ранее для пород докембрийских, палеозойских толщ запада Шпицбергена — среднерифейской толщи кварцитов Гулликсенфьеллет южной части Земли Веделя Ярлсберга, а также песчаников верхнекембрийской свиты Блостертоппен на Земле Веделя Ярлсберга и нижнеордовикской свиты Видерфьеллет на Земле Серкап [2]. К настоящему времени наборы возрастов dZr характеризуют 9 стратиграфических уровней сводного рифейско-палеозойского разреза западного Шпицбергена (рис. 2). Их сопоставление показывает,

что временной интервал средний рифей — ранний карбон включительно подразделяется (как минимум) на 5 этапов, во время которых существенно различались питающие провинции, поставлявшие детрит, слагающий песчаники изученных толщ в осадочных бассейнах, реликты которых представлены в современной структуре Западного Шпицбергена.

На первом этапе (средний рифей) в бассейн (кварциты Гулликсенфьеллет) поступал материал только древних кратонов, а продукты разрушения фундамента Шпицбергена в него не попадали. На втором этапе (поздний рифей, венд и начало позднего кембрия), во время накопления верхнерифейских и вендских образований и базальных уровней верхнекембрийской свиты Блостертоппен и ордовикской Видерфьеллет, бассейн заполнялся в основном местным мезопротерозойским материалом. На третьем этапе (конец кембрия, начало ордовика), во время накопления кембрийской свиты Блостертоппен и ордовикской свиты Видерфьеллет, в бассейн поступал материал из удалённых источников (возможно, с севера архипелага). На четвёртом этапе (со времени между ранним ордовиком и началом раннего карбона) в осадочный бассейн поступал преимущественно местный детрит. На пятом этапе (с конца раннего карбона) изменение питающих провинций выразилось не только в том, что в бассейн опять стал поступать древний детрит, но и в том, что в незначительном количестве появился эрозионный материал протоуральско-тиманских и каледонских комплексов.

Привязка выявленных изменений питающих провинций к временной шкале позволяет заключить следующее.

- 1. Рубежи изменения питающих провинций можно сопоставить с начальными эпизодами орогенных событий, произошедших в палеозое в Арктическом регионе протоуральско-тиманской (начавшейся между 540 и 510 млн лет [9]), каледонской (проявившейся на Шпицбергене 430—410 млн лет [7]) и уральской (проявившейся на Полярном Урале на рубеже ~365 млн лет [4]).
- 2. Кембрийскую и раннекаменноугольную перестройки питающих провинций можно уверенно сопоставить с хорошо датированными начальными фазами протоуральско-тиманской и уральской орогений соответственно.
- 3. Время изменения питающих провинций, сопоставляемое по времени с каледонской орогенией, вследствие неполноты данных, "зажато" между рубежами 460 и 360 млн лет.
- 4. На Шпицбергене зафиксированы тектонические события, обусловившие на рубеже среднего и позднего рифея изменение источников осадочного материала; это время время консолидации древнего фундамента архипелага.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кораго Е.А., Столбов Н.М., Соболев Н.Н., Бережная Н.Г. О детритовых цирконах из разреза триаса палеогена севера Земли Норденшельда. В кн.: Природа шельфа и архипелагов Европейской Арктики. Комплексные исследования природы Шпицбергена. М.: Геос, 2010. В. 10. С. 408—412.
- 2. Костева Н.Н., Кузнецов Н.Б., Тебеньков А.М., Романюк Т.В. Первые результаты изотопного U/Pb-датирования (LA–ICP–MS) детритных цирконов из нижнего палеозоя Шпицбергена // ДАН. 2014. Т. 455. № 3. С. 305–312.
- 3. *Красильщиков А.А.* Стратиграфия и палеотектоника докембрия — раннего палеозоя // Тр. НИИГА. 1973. Т. 172. 120 с.
- 4. *Кузнецов Н.Б., Романюк Т.В.* Палеозойская эволюция Полярного Урала: Войкарский бассейн с корой океанического типа существовал не менее 65 млн лет // Бюлл. МОИП. Отд. геол. 2014. Т. 89. В. 5. С. 56–70.
- 5. Сироткин А.Н., Евдокимов А.Н. Эндогенные режимы и эволюция регионального метаморфизма складчатых комплексов фундамента архипелага Шпицберген (на примере п-ова Ню Фрисланд). СПб.: ВНИИОкеангеология, 2011. 270 с.

- 6. Столбов Н.М., Костева Н.Н., Кораго Е.А. Детритные цирконы пачки брентскардхауген (Земля Норденшельда, Шпицберген). В кн.: Геолого-геофизические характеристики литосферы Арктического региона. СПб: ВНИИОкеангеология, 2012. С. 116—120.
- 7. Тебеньков А.М., Джи Д.Г., Йоханссен У., Ларионов А.Н. История тектонического развития фундамента Шпицбергена (по геохронологическим данным). Комплексные исследования природы Шпицбергена. Апатиты, 2004. В. 4. С. 90—100.
- 8. Balashov Ju.A., Peacat J.J., Tebenkov A.M., Sirot-kin A.N. Rb-Sr Whole Rock and U-Pb Zircon Datings of the Granitic-Gabbroic rocks from the Skalfjellet Subgroup, Southwest Spitsbergen // Polar Res. 1996. V. 15. P. 167–181.
- 9. Kuznetsov N.B., Belousova E.A., Alekseev A.S., Romanyuk T.V. New Data on Detrital Zircons from the Sandstones of Lower Cambrian Brusov Formation (White-Sea Region, East-European Craton): Unraveling the Timing of the Onset of the Arctida-Baltica Collision // Intern. Geol. Rev. 2014. V. 56. № 16. P. 1945–1963.
- 10. *Mørk A., Worsley D.* The Festningen Section // NGF Abstr. and Proc. 2006. № 3. P. 31–35.