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ABSTRACT
The paper deals with a problem posed by Mathieu Vidal to provide a formal rep-
resentation for defective conditional in mathematics (Vidal, 2014). The key feature
of defective conditional is that its truth-value is indeterminate if its antecedent is
false. In particular, we are interested in two explanations given by Vidal with the
use of trivalent logics. By analyzing a simple argument from plane geometry, where
defective conditional is in use, he gives two trivalent formal explanations for it. For
both explanations, Vidal rigorously shows that (most well-known) trivalent logics
cannot adequately represent defective conditional. Preserving Vidal’s criteria of de-
fective conditional ad max, we indicate some arguable points in his explanations
and present an alternative explanation containing the original conjunction and dis-
junction in order to show that there are trivalent logics that might be an adequate
formal explanation for defective conditional.

KEYWORDS
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three-valued logic; many-valued logic; non-classical logic.

1. Introduction

In his paper (Vidal, 2014), Vidal analyses a simple argument from mathematics (to be
precise, from plane geometry) that is valid, according to classical logic, on one hand,
and is obviously counter-intuitive or unacceptable to mathematical practice, on the
other hand.1 Let us quote this argument to make reading self-contained and refer the
reader for more details to (Vidal, 2014, p. 169):

“(0) Let q be a quadrilateral.
(1) For every quadrilateral, if it is a rhombus and a rectangle, it is a square.
(∴∴∴) —————————————————————————–
(2) If q is a rhombus, then q is a square or if q is a rectangle, then q is a square.”

This argument is valid from the standpoint of classical logic and yet is “highly
counter-intuitive” because “in Euclidean geometry, if a quadrilateral is a rhombus and

CONTACT Yaroslav Petrukhin. Email: yaroslav.petrukhin@mail.ru, petrukhin@philos.msu.ru.
1Note that the correspondence between proofs in mathematical practice and the ways they are represented

by formal proofs in logic has been fruitfully discussing in the literature. See the status praesens in (Hamami,

2018).



a rectangle, then it is a square. However, the possession of only one of the properties
‘rhombus’ and ‘rectangle’ does not ensure that of the property ‘square’, as stated by
(2)” (Vidal, 2014, p. 169). The scheme (A ∧ B) → C |= (A → C) ∨ (B → C) is
responsible, in Vidal’s view, for drawing such an unwanted conclusion.2

In the paper we focus on the part of Vidal’s work containing two explanations that
deals with trivalent logics only. We stress the fact that the purpose of this paper isn’t
to find some gaps in Vidal’s approach. Rather, based on indicating some arguable
points in his presentation, its purpose is to provide an alternative explanation which
leads to a positive conclusion, contrary to Vidal’s negative verdict which is that most
well-known trivalent logics can’t adequately represent defective conditional. At least,
through his paper he has never claimed a formal representation can’t be given with
the use of some trivalent logic. The existence of such an alternative explanation, again,
isn’t a gap in his paper. Such a possibility is believed to lie in the nature of defective
conditional itself. To put it specifically, this notion is vague, and, hence, allows several
equitable explanations. See the list of references in Vidal’s paper for the details.3

We, however, are inspired by Vidal’s explanations and want to stick to them and
their notation ad max. It’s not the case that he explicates every criterion, and some-
times the criterion is given implicitly. So, we will support our guesses in such cases
with quotations and discuss alternative, parallel interpretations.

The paper is organised as follows. In section 2, we discuss Vidal’s criteria for the
logics which can solve his problem. Besides, in section 2.1 and 2.2, respectively, we
discuss his first and second explanations. Section 3 is devoted to our own explanation
of Vidal’s problem. Section 4 deals with concluding remarks.

2. The criteria of both Vidal’s explanations

We start out with the criteria that both explanations share and then discuss the cri-
teria that each explanation shares separately. Possibly, due to the vague character of
defective conditional, Vidal doesn’t give a strict definition of it. The general argumen-
tation form of his two formal explanations for defective conditional (Proposition 1 and
Proposition 2, respectively) is ad absurdum. Suppose that there exist some trivalent
logics that can formally represent defective reasoning. Hence, defective connectives as
well as the relation of logical consequence in these logics must have some specific prop-
erties. Then Vidal gives two formal proofs that (A ∧ B)→ C |= (A→ C) ∨ (B → C)
is valid in these logics. Therefore, the logics in question aren’t defective. In this paper,
we don’t want to give any definition of defective logic, too, and we analyse the crucial
criteria of two explanations given by Vidal with indicating arguable and discussable
points.

The 1st criterion says that the inference scheme (A∧B)→ C |= (A→ C)∨(B → C)
must be invalid. As illustrated above with the argument from plane geometry, this in-
ference scheme leads to a mathematically counter-intuitive conclusion. We indicate
that it’s not clear whether this inference scheme is unique with respect to characteri-
zing defective conditional or there are other inference schemes that lead to the above-

2We indicate that by “the possession of only one of the properties” Vidal interprets inclusive disjunction in
a clear-cut exclusive sense. Exclusive disjunction denoted here by Y is never under discussion in Vidal’s paper.

It’s likely to be explainable by the fact that the inference scheme (A∧B)→ C |= (A→ C)Y (B → C) is invalid

even classically.
3We may add that in theoretical computer science the term ’defective logic’ often refers to a hardware error,

for example, ’a defective logic chip’ etc. (Menon and Sinha, 2014; Pan and Breuer, 2007).
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mentioned or some other mathematically counter-intuitive conclusions, too. Quite ob-
viously, (A∧B)→ C |= (A→ C)∨(B → C) isn’t unique. For example, contraposition
inferences are sometimes thought to be suspicious (Jacquette, 2000). We, however,
find this topic being beyond this paper’s scope. On the other hand, we indicate that
this inference scheme might be derivable in some proof system with a certain basic set
of inference schemes. Does it mean that, by transitivity, any basic inference scheme
occurring in a formal proof of (A ∧ B) → C |= (A → C) ∨ (B → C) must also be
mathematically counter-intuitive just on the basis of the fact that it leads to the in-
ference scheme that was originally shown to lead to the unacceptable conclusion? We
suggest it’s quite obviously, too, that the positive answer to this question would make
mathematically counter-intuitive almost all inference schemes. Again, we repeat the
mantra that this methodological question goes beyond this paper’s scope.

The 2nd criterion says that defective conditional is the one, where its truth-value
is indeterminate if its antecedent is false (Vidal, 2014, p. 169). Denoted by “I”, the
indeterminate value is a truth-value gap (Vidal, 2014, p. 173). Such an interpretation
of the third value (in contradistinction to the interpretation as, say, a truth-value glut)
clearly presupposes that “I” isn’t a designated value.4

The 3rd criterion deals with defective disjunction. Vidal gives two formulations of
this criterion. The first one says that “we can eliminate theories where the result of
a disjunction is indeterminate when it contains at least one indeterminate disjunct”
(Vidal, 2014, p. 173). According to the second one, “we argued that a mathematician
should consider the disjunction to be false if the first disjunct is false and the other one
is indeterminate.” (Vidal, 2014, p. 173). We indicate the formulations under conside-
ration are not equivalent, namely, the first one is stronger. To prove it, suppose one of
the disjuncts is true and the other is indeterminate. According to the first formulation,
disjunction mustn’t be indeterminate while the second formulation doesn’t deal with
this case. With regard to the cases, when one of the disjuncts is indeterminate and the
other one is false, disjunction is false, under the second formulation, and mustn’t be
indeterminate, under the first formulation. Hence, both formulations deal with these
cases.

The 4th criterion blocks the following interdefinability of defective connectives:
(A → B) ↔ (¬A ∨ B) and (A → B) ↔ ¬(A ∧ ¬B) because both defective dis-
junction and conjunction are commutative while defective conditional is not. Without
blocking, one loses the specifics of defective conditional, where only one of its compo-
nents has a defective aspect while commutativity of defective disjunction/conjunction
implies that both of its components has a defective aspect (Vidal, 2014, p. 172).

The 5th criterion manifestly underlies the previous one and says both conjunction
and disjunction must be commutative (Vidal, 2014, p. 172).5

The 6th criterion implicitly follows from the 4th one. (A → B) ↔ (¬A ∨ B) and
(A → B) ↔ ¬(A ∧ ¬B) hold iff their negation is  Lukasiewicz-style negation, i.e. it
satisfies the classical negation clauses (negation of T is F, and vice versa) added with

4Note that we don’t mean here to unduly restrict the constraint of the first explanation that the set of

designated values is an upper set of the set of values.
5We provide another argument in favour of commutativity of ∧ and ∨. The inference scheme (A ∧ B) →

C |= (A → C) ∨ (B → C) is equivalent to (B ∧ A) → C |= (A → C) ∨ (B → C). It is also equivalent to
(A ∧ B) → C |= (B → C) ∨ (A → C) and the other inference schemes obtainable via commutativity. We

stress the fact that we neither mean the validity of (A ∧ B) → C |= (A → C) ∨ (B → C) can’t be treated in
non-commutative logics nor we say that there are no logics, where the equivalencies in question are invalid. We
just mean if one considers highly counter-intuitive the fact that the conclusion (A → C) ∨ (B → C) follows
from the premise (A∧B)→ C, then she/he is also supposed to consider highly counter-intuitive the fact that,

say, the conclusion (B → C) ∨ (A→ C) follows from the premise (B ∧A)→ C.
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the clause that negation of I remains I.6

2.1. Vidal’s first explanation

The first feature of this explanation is that there exists the linear order T > I > F
between the truth-values. It allows Vidal to define a truth-value of disjunction as the
maximum among the truth-values of its disjuncts and a truth-value of conjunction
as the minimum among the truth-values of its conjuncts, as usual. In fact, in the
case of disjunction Vidal generalizes the traditional definition with the maximum and
defines a truth-value of disjunction is to be greater or equal to the maximum among
the truth-values of its disjuncts. We indicate that this generalisation allows, among
other ones, such a strange inclusive disjunction that takes T when both of its disjuncts
take F. To the best of our knowledge, there is no such disjunction in the literature.
To be sure, a question what is it to be disjunction remains open in the literature,
where some conceptual backgrounds could be found in supporting unconventional
kinds of disjunction (e.g. non-commutative one (Abrusci and Ruet, 1999; Fitting,
1994)). However, let us remind the reader that the concern is mathematical practice,
and we do doubt about the context containing mathematical arguments (at least, in
plane geometry from the textbook), where inclusive disjunction satisfies this clause.7

There is another thing about defective disjunction worth to be discussed here. De-
fined with the maximum and the minimum over this order, defective disjunction is
incompatible with both formulations occurring in the 3rd criterion. Let’s recall the
reader that the first one says that “we can eliminate theories where the result of a
disjunction is indeterminate when it contains at least one indeterminate disjunct”
(Vidal, 2014, p. 173). According to the second one, “we argued that a mathemati-
cian should consider the disjunction to be false if the first disjunct is false and the
other one is indeterminate.” (Vidal, 2014, p. 173). If a truth-value of disjunction to
be greater or equal to the maximum among the truth-values of its disjuncts, then it’s
easy to see that the first formulation fails in the case, when one of the disjuncts is
false, another one is indeterminate and disjunction itself is indeterminate. Moreover,
the second formulation says it straight that disjunction must be false in this case.

The second feature of this explanation is that D is an upper set of 〈V,>〉, where
D is a set of (designated) truth-values and > is the linear order in the first feature.
Hence, A |= B if, for all possible interpretations, the truth-value of A is less or equal
to the truth-value of B (Vidal, 2014, p. 174).

As a result, Vidal proves Proposition 1 to show that, for any trivalent logic L so
defined, the inference scheme (A ∧ B) → C |= (A → C) ∨ (B → C) is L-valid.
Therefore, L can’t be an adequate formal representation of defective conditional. We
confine ourselves to the formulation of Proposition 1 only, and refer the reader for
the proof of it to (Vidal, 2014). fc is the truth-function denoted by the connective c
belonging to the set C of all connectives, → is defective conditional, and [S] is the
truth-value of a sentence S.

Proposition 1. (Vidal, 2014, p. 174). Let L be a many-valued logic 〈V,D, fc : c ∈ C〉

6This criterion excludes so called cyclic (Post-style) negation (Post, 1921) as well as dual cyclic negation

(Petrukhin, 2018a). Moreover, it excludes Heyting’s negation (Heyting, 1930) which transforms I to F as well
as Heyting’s dual negation which transforms I to T (Brunner and Carnielli, 2008).
7On the other hand, it’s so mathematically, if one proves the desired result as a corollary of more general one.

We thank the anonymous referee for attracting our attention to the fact that the advantage of such a general

definition is that it concerns more potential definitions of disjunction, and among them the ones following the
3rd criterion and that with this more universal conception of disjunction, the proof applies to more systems.
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such that:

(1) There exists a linear order > between the truth-values in V .
(2) If [A] ≤ [B] for all possible interpretations, then A |=L B.
(3) [A ∨B] ≥ max([A], [B]); [A ∧B] = min([A], [B]); [A→ B] = f([A], [B]).

Then (A ∧B)→ C |= (A→ C) ∨ (B → C) is valid in L.

2.2. Vidal’s second explanation

The second explanation starts with clear-cut changes in the definitions of both conjunc-
tion and disjunction occurring in the first explanation. Vidal uses the truth-tables for
conjunction and disjunction that appear originally in (Ebbinghaus, 1969; Sobociński,
1952). Combining them and the original truth-table for defective conditional together
with the logical consequence relation from the first explanation, Vidal seems to obtain
the desired defective logic, where (A ∧ B) → C |= (A → C) ∨ (B → C) is invalid.
We indicate that the definition of disjunction satisfies the weak version of the 3rd
criterion.8

However, Vidal says that this logic can’t be a defective one because in the counter-
model for (A∧B)→ C |= (A→ C)∨ (B → C), the value of the premise (A∧B)→ C
is I and the value of the conclusion (A→ C)∨ (B → C) is F: “If we consider defective
sentences to be irrelevant, a semantic consequence whose premises are defective is
not conclusive” (Vidal, 2014, p. 174). Hence, the relation of logical consequence A |=
B is restricted to the case that B is T, whenever A is T.9 With this restriction,
(A ∧ B) → C |= (A → C) ∨ (B → C) is valid. Moreover, Vidal imposes two other
linear orders that are possible between T, I, F, viz, the order T >1 F >1 I to define
disjunction as the maximum and the order F >2 T >2 I to define conjunction as
the maximum. Note that the idea to impose various orders on truth-values within
one logic or, to put it differently, to relativise an order over truth-values with respect
to connectives is widely used in logics of generalized truth values (Grigoriev, 2016;
Shramko, Dunn and Takenaka, 2001; Zaitsev, 2009). Hence, it’d be desirable to have
some plausible background to justify it (for example, a justification of interconnections
between defectiveness and the orders in question).

As the second result, Vidal proves Proposition 2 to show that, for any trivalent logic
L so defined, the inference scheme (A ∧ B) → C |= (A → C) ∨ (B → C) is L-valid.
Therefore, L can’t be an adequate formal representation of defective conditional. We,
again, confine ourselves to the formulation of Proposition 2 only, and refer the reader
for the proof of it to (Vidal, 2014). The notation is the same as in Proposition 1 above.

Proposition 2. (Vidal, 2014, p. 175) Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 with
V = {T, I,F} such that:

(1) We have two linear orders: T >1 F >1 I and F >2 T >2 I.
(2) If, for all possible interpretations, [B] = T if [A] = T, then A |=L B.
(3) [A ∨B] ≥ max1([A], [B]); [A ∧B] = max2([A], [B]); [A→ B] = f([A], [B]).

Then (A ∧B)→ C |= (A→ C) ∨ (B → C) is valid in L.

8We recall the reader the definition of disjunction from the first explanation is shown to satisfy neither the

weak, nor the strong versions of the 3rd criterion.
9Note, however, footnote 4.
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3. Our explanation

In this section, we present our explanation of Vidal’s problem. First of all, following
Vidal’s first explanation ad max, we present Proposition 3. Then we show that the
combination of Vidal’s both explanations gives some fruitful results (Proposition 4).
Next we consider the relations of logical consequence which have not been viewed
by Vidal, but either naturally arise from his second explanation (Propositions 5 and
6) or are common for many-valued logics (Proposition 7). Moreover, in Proposition
7, we deal with the relation of logical consequence which was used in Vidal’s second
explanation. Besides, in the case of Propositions 6 and 7 we consider the connectives
which have not been studied by Vidal. Furthermore, we present Proposition 8 which
can be viewed as one more alternative approach to Vidal’s problem.

We propose the following truth tables for the main connectives. Some of them are
introduced in the literature for different purposes while ∧D and ∨D are original.

A ¬K
T F
I I
F T

∨E T I F
T T T T
I T I F
F T F F

∨D T I F
T T I T
I I I F
F T F F

∨K T I F
T T T T
I T I I
F T I F

∧E T I F
T T T F
I T I F
F F F F

∧D T I F
T T T F
I T I I
F F I F

∧K T I F
T T I F
I I I F
F F F F

∧W T I F
T T I F
I I I I
F F I F

The connectives ¬K , ∨K , and ∧K are K3’s ones, where K3 is Kleene’s strong
logic (Kleene, 1938)10 which is the {¬,∨,∧}-fragment of  Lukasiewicz’s logic  L3

( Lukasiewicz, 1920). The connectives ¬K , ∨E , and ∧E are E’s ones, where E is
Finn and Grigolia’s nonsense logic (Finn and Grigolia, 1993) which is the {¬,∨,∧}-
fragment of Ebbinghaus’ logic E3 (Ebbinghaus, 1969). Note that ∨E and ∧E were
first studied in (Sobociński, 1952). However, the entailment relation of Sobociński’s
logic S3 differs from the one of E3. Moreover, ¬K , ∨E , and ∧W are connectives of
Ha lkowska’s (Ha lkowska, 1989) nonsense logic Z.11 Furthermore, ¬K , ∨W , and ∧W ,
where A ∨W B = ¬K(¬KA ∧W ¬KB), are connectives of Kleene’s weak logic Kw

3

(Kleene, 1938)12 which is a fragment of Bochvar’s nonsense logic B3 (Bochvar, 1938).
Besides, the notion of logical consequence in L ∈ {K3,  L3, E, E3, Z, Kw

3 , B3} is
defined in the following way: Γ |=L A iff it holds that if, for each G ∈ Γ, [G] = T, then
[A] = T, for all possible interpretations. To the best of our knowledge, ∨D and ∧D
have not been mentioned in the literature before. Let us call them defective disjunction
and defective conjunction, respectively. Note that A ∨D B = ¬K(¬KA ∧D ¬KB) and
A ∧D B = ¬K(¬KA ∨D ¬KB).

Moreover, let us define the following classes DC and DCR (R stands for restricted)
of defective conditionals such that 7→∈ DC and 7→R ∈ DCR, if 7→ and 7→R are defined

10(Petrukhin and Shangin, 2018) is devoted to automated proof searching for all K3’s truth-functional binary

extensions.
11(Petrukhin, 2018b) is devoted to the presentation of the natural deduction systems for E and Z.
12In (Petrukhin, 2017), a natural deduction system for Kw

3 is presented.
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as follows, where a1, a2, a3, a4, a5, a6, a7 ∈ {T, I,F}:13

7→ T I F
T T a1 F
I a2 a3 a4

F I I I

7→R T I F
T T a5 F
I a6 a7 T
F I I I

The classes DC and DCR have 81 and 27 elements, respectively.
Let us, following Vidal’s first explanation ad max, present some logics which solve

his problem. We generalise the notion of logical consequence on the case of sets, not
just formulae. Besides, we don’t define disjunction, in contrast to Vidal’s Proposition
1, as ∨K , but as ∨E . Actually, we stress, again, the fact that disjunction in Vidal’s
Proposition 1 does not satisfy his 3rd criteria.

Proposition 3. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) T > I > F.
(2) Γ |=L A iff it holds that, for each G ∈ Γ, [G] ≤ [A], for all possible interpretations.

If Γ is empty, then |=L A iff it holds that, for each formula F , [F ] ≤ [A], for all
possible interpretations.14

(3) [A ∨ B] = [A ∨E B], [A ∧ B] = [A ∧K B] = min([A], [B]), [A → B] = [A 7→ B],
where 7→∈ DC, [A↔ B] = [(A→ B) ∧ (B → A)], [¬A] = [¬KA].

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.15

(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.16

Proof. (a) Consider an interpretation such that [p] = T, [q] = [r] = F. Then [p∧ q] =
F. Since → is defective conditional, so [(p ∧ q)→ r] = I. Moreover, since [p] = T and
[r] = F, so [p→ r] = F. Besides, since [q] = F and → is defective conditional, so [q →
r] = I. Therefore, [(p→ r) ∨ (q → r)] = F. Thus, (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r).17

(b) Immediately follows from the definitions of the class DC and defective condi-
tional.

(c) Immediately follows from the definition of ∨E .

13Note that Vidal allows → to be any binary connective. We require → to be a defective implication, i.e.
[A→ B] = I if [A] = F. Besides, we require → to be classical conditional when [A] = [B] = T and when both
[A] = T and [B] = F. As a result, we obtain the class DC. In the case of DCR, we have one more condition: if

[A] = I and [B] = F, then [A → B] = T. We need this restriction for the technical reasons only in the case of
Propositions 5-7 below.
14Note that since T is the maximum value, if [A] = T, then, for an arbitrary formula ϕ, it holds that [ϕ] ≤ [A],

for all possible interpretations.
15“We argued that a mathematician should consider the disjunction to be false if the first disjunct is false and

the other one is indeterminate.” (Vidal, 2014, p. 173).
16We thank the anonymous referee for attracting our attention to the fact that ¬p ∨ ¬q |=L ¬(p ∧ q) and
¬p ∧ ¬q |=L ¬(p ∨ q) while ¬(p ∧ q) 6|=L ¬p ∨ ¬q and ¬(p ∨ q) 6|=L ¬p ∧ ¬q.
17Note that in this proof, we have not looked over all the logics for which this Proposition holds, because we
have not dealt with the cases when [A→ B] = ai, where 1 6 i 6 4 and ai ∈ {T, I,F} (see the definition of the
class DC). However, we have found a valuation such that (p ∧ q) → r 6|=L (p → r) ∨ (q → r), for each logic L
in question.
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(d) Consider an interpretation such that [p] = T and [q] = F. Then [p → q] = F,
[¬p ∨ q] = F, and [¬(p ∧ ¬q)] = F. Then [(p → q) → (¬p ∨ q)] = I, [(¬p ∨ q) →
(p → q)] = I, [(p → q) → ¬(p ∧ ¬q)] = I, and [¬(p ∧ ¬q) → (p → q)] = I. Therefore,
[((¬p ∨ q) → (p → q)) ∧ ((p → q) → (¬p ∨ q))] = I. Thus, [(¬p ∨ q) ↔ (p → q)] = I.
Similarly, [¬(p ∧ ¬q) ↔ (p → q)] = I. Besides, [¬(p → q)] = T. Hence, [¬(p → q)] �
[(¬p ∨ q)↔ (p→ q)] and [¬(p→ q)] � [¬(p ∧ ¬q)↔ (p→ q)]. Thus, it’s not the case
that, for each formula F and all possible interpretations, [F ] ≤ [(¬p ∨ q) ↔ (p → q)]
and [F ] ≤ [¬(p ∧ ¬q)↔ (p→ q)]. Thus, 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔
(p→ q).

(e) By a routine proof, A ∨B |=L B ∨A and A ∧B |=L B ∧A.18

(f) Immediately follows from [¬KA]’s definition.

Nothing prevents us from combining two Vidal’s approaches. We take all the condi-
tions from Vidal’s second approach except the definition of logical consequence which
we take from Vidal’s first approach.

Proposition 4. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) T > I > F.
(2) Γ |=L A iff it holds that, for each G ∈ Γ, [G] ≤ [A], for all possible interpretations.

If Γ is empty, then |=L A iff it holds that, for each formula F , [F ] ≤ [A], for all
possible interpretations.

(3) [A ∨ B] = [A ∨E B], [A ∧ B] = [A ∧E B], [A → B] = [A 7→ B], where 7→∈ DC,
[A↔ B] = [(A→ B) ∧ (B → A)], [¬A] = [¬KA].

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.
(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.

Proof. (a) Consider an interpretation such that [p] = [r] = F and [q] = T.
The other cases are proved similarly to the previous propositions.

Now we try to follow Vidal’s second approach ad max, but we define the notion of
logical consequence via ≤1 and ≤2. We start with ≤2, because in this case we need to
restrict the class DC only. In the case of ≤1, we will need more changes to be made.

Proposition 5. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) F >2 T >2 I.
(2) Γ |=L A iff it holds that, for each G ∈ Γ, [G] ≤2 [A], for all possible interpretations.

If Γ is empty, then |=L A iff it holds that, for each formula F , [F ] ≤2 [A], for all
possible interpretations.19

18We use the computer program MaTest (González, 2012) to check this assertion.
19Such a definition of the semantic consequence seems to be an unusual one. For instance, the interpretation,

where [G] = T and [A] = F, is not a counter-model to G |= A. On the other hand, >2 itself is an unusual
order of truth values, since F >2 T. But >2 is treated in (Vidal, 2014). Moreover, the definition of semantic
consequence via an order of truth values is one of standard approaches to semantic consequence in many-valued

logic.
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(3) [A ∨B] = [A ∨E B], [A ∧B] = [A ∧E B] = max2([A], [B]), [A→ B] = [A 7→R B],
where 7→R ∈ DCR, [A↔ B] = [(A→ B) ∧ (B → A)], [¬A] = [¬KA].

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.
(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.

Proof. (a) Consider an interpretation such that [p] = T, [q] = I, [r] = F.
The other cases are proved similarly to the previous propositions.

Now let’s turn to the abovementioned ≤1. In contrast to the case of ≤2, we need to
change the definitions of disjunction and conjunction also.

Proposition 6. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) T >1 F >1 I.
(2) Γ |=L A iff it holds that, for each G ∈ Γ, [G] ≤1 [A], for all possible interpretations.

If Γ is empty, then |=L A iff it holds that, for each formula F , [F ] ≤1 [A], for all
possible interpretations.

(3) [A∨B] = [A∨DB], [A∧B] = [A∧DB], [A→ B] = [A 7→R B], where 7→R ∈ DCR,
[A↔ B] = [(A→ B) ∧ (B → A)], [¬A] = [¬KA].20

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.
(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.

Proof. (a) Consider an interpretation such that [p] = I, [q] = [r] = F.
The other cases are proved similarly to the previous propositions.

Now we consider one of the most popular definitions of logical consequence in many-
valued logic, when I is not a designated value, i.e. we define the notion of logical conse-
quence via the preservation of the only designated value T. Recall that this definition
is used in the abovementioned logics K3,  L3, E, E3, Z, Kw

3 , and B3. Moreover, this
definition of logical consequence is used in Vidal’s second approach.

Proposition 7. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) Γ |=L A iff it holds that if, for each G ∈ Γ, [G] = T, then [A] = T, for all
possible interpretations. If Γ is empty, then |=L A iff [A] = T, for all possible
interpretations.

20In this Proposition, we use conjunction that, as far as we know, has not been mentioned before in the

literature. However, we can replace it with the more familiar one, i.e. [A ∧B] = [A ∧W B], and, still, keep the
same results as well as their proofs.
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(2) [A∨B] = [A∨DB], [A∧B] = [A∧DB], [A→ B] = [A 7→R B], where 7→R ∈ DCR,
[A↔ B] = [(A→ B) ∧ (B → A)], [¬A] = [¬KA].21

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.
(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.

Proof. (a) Consider an interpretation such that [p] = I, [q] = [r] = F.
The other cases are proved similarly to the previous propositions.

Now let us present one more explanation of Vidal’s problem. We follow Vidal’s
second explanation ad max, except the definition of the logical consequence and the
5th criteria (commutativity of conjunction and disjunction).

Proposition 8. Let L be a trivalent logic 〈V,D, fc : c ∈ C〉 such that

(1) There are two linear orders: T >1 F >1 I and F >2 T >2 I.
(2) Γ |=L A iff it holds that, for each G ∈ Γ, [G] = [A] = T, for all possible interpre-

tations. If Γ is empty, then |=L A iff [A] = T, for all possible interpretations.
(3) [A ∨ B] = [A ∨E B] = max1([A], [B]), [A ∧ B] = [A ∧E B] = max2([A], [B]),

[A → B] = [A 7→ B], where 7→∈ DC, [A ↔ B] = [(A → B) ∧ (B → A)],
[¬A] = [¬KA].22

Then it holds that :

(a) (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r) (1st criteria).
(b) → is defective (2nd criteria).
(c) ∨ satisfies the 3rd criteria in its weak version.
(d) 6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q) (4th criteria).
(e) Both ∨ and ∧ are not commutative (5th criteria).
(f) ¬ satisfies the 6th criteria.

Proof. (a) Consider an interpretation such that [p] = [q] = [r] = F. Then [p∧ q] = F,
[p→ r] = I, and [q → r] = I. Then [(p∧ q)→ r] = I and [(p→ r)∨ (q → r)] = I. Since
[(p ∧ q)→ r] 6= T and [(p→ r) ∨ (q → r)] 6= T, so (p ∧ q)→ r 6|=L (p→ r) ∨ (q → r).

(d) Consider an interpretation such that [p] = T and [q] = F. Then [(¬p ∨ q) ↔
(p → q)] = I and [¬(p ∧ ¬q) ↔ (p → q)] = I (see the proof of Proposition 3). Thus,
6|=L (¬p ∨ q)↔ (p→ q) and 6|=L ¬(p ∧ ¬q)↔ (p→ q).

(e) Consider an interpretation such that [p] = [q] = F. Then [p ∧ q] = [p ∨ q] = F.
Thus, A ∨B 6|=L B ∨A and A ∧B 6|=L B ∧A.

Proofs of (b), (c), and (f) are the same as in the case of Proposition 3.

21As in the case of the previous Proposition we can, still, keep all the results, if we define conjunction in the
following way: [A ∧B] = [A ∧W B].
22Let us define conjunction as in Proposition 3, i.e. [A∧B] = [A∧K B]. However, in this case the same results
and proof hold.
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4. Conclusion

In this paper, we proposed several classes of logics which solve Vidal’s problem and
can be viewed as suitable candidates for defective reasoning. A further research can
be devoted to searching for alternative many-valued explanations of defective logic.
Besides, the combination of defective and relevant logics promises fruitful results. Vidal
(2014) writes that in some relevant logics with intensional implication (A∧B)→ C |=
(A→ C)∨ (B → C) isn’t valid. Moreover, he suggests to consider four-valued relevant
logics in order to find a solution to his problem.

We would like to mention one more issue. There are two folklore types of paradoxes
of classical conditional and logical consequence which motivated the development of
relevant logic. The first type of paradoxes consists of certain formulae, for example,
A → (B → A), (A ∧ ¬A) → B, B → (A ∨ ¬A) etc. The second type consists of
formulae of the type p→ q, where p and q don’t have any common content or causal
relationship.23 For example, in classical logic, the statement “If 2+2 = 5, then Moscow
is a big city” is true, although, intuitively, it is a nonsense. Relevant logic usually deals
with paradoxes of the first type and has some problems with the second type. The well-
known requirement that in formulae of the type A→ B formulae A and B should have
at least one common propositional variable, even excludes from consideration formulae
of the type p → q. However, it’s not always the case that p → q is a paradoxical
sentence. For example, the sentence “If I know the Pythagorean theorem, then I know
how to calculate the hypotenuse via the other two sides” has the form p→ q, but it’s
not a paradoxical one. In the case of defective logic, the sentence “If 2 + 2 = 5, then
Moscow is a big city” is neither true nor false, since it’s antecedent is false. Moreover,
the sentence “If I know the Pythagorean theorem, then I know how to calculate the
hypotenuse via the other two sides” is true. It seems that defective logic can solve
some problems which are in “possession” of relevant logic, but relevant logic fails to
solve them. The question is whether defective relevant logic will manage to solve the
paradoxes of the first and the second types?
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