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Abstract. A scheme of a statically determinate planar truss is proposed 

and an analytical calculation of its deflection and displacement of the 

mobile support are obtained. The forces in the rods from the external load, 

uniformly distributed over the nodes of the lower or upper belt, are 

determined by the method of cutting out nodes using the computer 

mathematic system Maple. In the generalization of a number of solutions 

of trusses with a different number of panels to the general case, the general 

terms of the sequence of coefficients in the formulas are found from 

solutions of linear homogeneous recurrence equations. To compose and 

solve these equations, Maple operators were used. In the process of 

calculation it was revealed that for even numbers of panels in half the span, 

the determinant of the system of equations degenerates. This corresponds 

to the kinematic degeneracy of the structure. The corresponding scheme of 

possible speeds of the truss is given. The displacement was determined by 

the Maxwell-Mohr’s formula. The graphs of the obtained dependences 

have appreciable jumps, which in principle can be used in the selection of 

optimal design sizes. 

1 Introduction  

Numerical methods for calculating rod systems [1-5] have an alternative. With the 

advent of mathematical systems (Maple, Mathematica, Derive, Reduce) producing 

symbolic operations, it became possible to derive finite formulas for various characteristics 

of the stress-strain state of the trusses. However, formulas for concrete designs with a 

certain number of rods and a certain configuration are not very interesting for practical 

engineers. For example, when choosing a scheme for a projected design, it is desirable to 

have formulas that are derived for an arbitrary number of panels. Then the engineer by the 

formulas can pick up not only the sizes of a design, but also the optimum number of panels. 

Such problems arise when solving optimization problems [6-9]. In this paper, we propose 

an inductive approach for deriving the formulas for the dependence of the planar truss 

bending on the number of panels. Previously, this approach was used in solving problems 

of planar [10-13] and spatial [14-16] trusses. 
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2 Truss and Methods  

Consider a beam truss with a double lattice (Fig. 1)/ The height of  truss is 2h and a span 

length of 2L an / The are  m =8n + 10 rods, including three support rods. A feature of the 

truss grille is the central truncated stance. 

 

 

Fig. 1. Truss, load on the lower belt n=5 

Calculation of forces is made by cutting out the nodes in the system of symbolic 

mathematics Maple. For this purpose, a matrix of directing cosines of all forces in the rods 

is compiled. The solution of the system of equations gives the values of the forces 

necessary to calculate the deflection according to the Maxwell-Mohr's formula. It was 

noted that for an even number of panels in half the span, the determinant of the system of 

equilibrium equations degenerates. This indicates an instantaneous variability of the design, 

which is completely unacceptable in practice. As a confirmation of this fact, we present a 

picture of the distribution of the possible velocities  of the nodes of the truss (Fig. 2). It was 

noted that for an even number of panels in half the span, the determinant of the system of 

equilibrium equations degenerates. This indicates an instantaneous variability of the design, 

which is completely unacceptable in practice. As a confirmation of this fact, we present a 

picture of the distribution of the possible velocities of the nodes of the truss (Fig. 2). 

Obviously, u / a = v /h. This follows from the consideration of the centers of instantaneous 

velocities, which in particular are in the supports of the truss. 

 

Fig. 2. Distribution of the possible velocities, n = 2 

Proceeding from this, we will consider only truss with an odd number of panels in half 

the span. We introduce a new parameter n = 2k – 1. The displacement of the middle node of 

the lower belt is determined by the Maxwell-Mohr's formula 
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It is indicated: il  — the length of the rods, 
( )P

iS — the forces in the rods from the given 

load, 
(1)

iS  — the forces from the unit force applied to the knot of the lower belt in the 

middle of the span, E is the modulus of elasticity of the rods, and F is the area of their cross 

sections.  

3 Results 

The solution for trusses with an arbitrary number of panels has the form  

3 3 3 2

1 2 3( ) / (2 ).P C a C c C h h EF                                   (1) 

where  2 2c a h  . The calculation of a series of trusses reveals sequences of 

coefficients for 3a , 3 3,h c . Operators of the Maple system rgf_findrecur and rsolve from 

the solution of recurrence equations give the following patterns  
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  (2) 

For the coefficient 
1C , a recurrence equation of the seventh order   

1, 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 73 5 5 3 .k k k k k k k kС С С С С С С С              

This equation was solved with initial conditions   

1,1 1,2 1,3 1,4 1,51, 7, 119, 461, 1325С  С  С  С  С     . 

The coefficient 
2C  is obtained from the solution the linear 

equation 2, 2, 1 2, 2 2, 3 2, 4 2, 52 2 .k k k k k kС С С С С С          

Expression (1) with coefficients (2) gives the solution of the problem posed for the load 

along the lower belt of the truss. 

Similarly, for the load on the upper belt of the truss (Figure 3), we obtain the deflection 

in the form (1) and the similar coefficients  
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Coefficients are obtained from the same recurrence equations, but with other initial data  

1,1 1,2 1,3 1,4 1,51, 17, 113, 483, 1315.С С  С  С  С        

 

Fig. 3. Truss, load on the upper belt n=7 
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The simplest recurrence equations and their solutions will be for the case of loading by 

force in the middle of the span (Figure 4): 
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Fig. 4. Truss, load on the center, n=5 

4 Discussion 

Consider for example the graph of the dependence of the relative (dimensionless) deflection 

0' / ( )EF P L    on the number of panels for the case of loading on the upper belt. Figure 

5 shows the curves of the obtained dependence at 
02 100 , (2 1)L na m P P n    . The 

curves behave almost chaotically. At the beginning of the graph, they fall sharply, then 

increase in an abrupt way. The slope of the asymptote is obvious from the formula (1) 

lim '/ / (8 )
k

k h L


  . 

 
 

Fig 5. Dependence of the dimensionless deflection on the number of panels during loading on the 

upper belt.  1 — h=5.00m,  2 —  h=6.00 m, 3 —  h=7.00 m 
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Figure 6 clearly shows the forces in the rods, referred to the magnitude of the force 

(L=2na=150m, h=10 m) . The thicknesses of the lines are proportional to the magnitude of 

th ( ) / , 1,..,P

iS P i m , the blue color is divided into compressed rods, the red ones are 

stretched. It can be seen that the main load is carried by the belts, the forces in the bars of 

the lattice are significantly (by an order of magnitude) smaller. At the same time as 

expected, the descending rods were stretched. 

 

 

Fig 6.  The distribution forces in the rods of the truss when the lower belt is loaded, n=5 

 When the number of panels is changed, the picture of the distribution of forces remains almost 

unchanged (Figure 7), with the exception of the "trefoil" rods in the middle of the span, where the 

signs of effort change. 

 

Fig 7.  The distribution forces in the rods of the truss when the lower belt is loaded, n=7 

 

In addition to the size of the vertical deflection, the deformability of the truss can be 

estimated from the horizontal displacement of the mobile support from the action of the 

loads. The horizontal displacement of the support is determined by the Maxwell-Mora 

formula 

3
( ) (2)
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A i i i
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where 
(2)

iS  — the forces from the unit horizontal force applied to the left support. Omitting 

the intermediate calculations, we give the formula for the displacement of the support from 

the action of loads along the upper belt (Figure 1) 
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2 3 23 (16 24 3( 1) 20 3) / (6 ).k

A Pa k k k hEF        

When the lower belt is loaded, the displacement is similar 

2 3 23 (16 24 3( 1) 4 3) / (6 ).k

A Pa k k k hEF       . 

5 Conclusions 

A feature of the proposed construction of the truss is a shortened middle stand. The 

fastening of this rack in the form of a "trefoil" made it possible to obtain a statically 

determinate scheme of the truss, for which analytical methods of calculation are available. 

Three solutions of the deflection problem for three types of load and the solution of the 

problem of shear support are obtained. Kinematic analysis revealed a latent design defect, 

manifested in the degeneracy of the determinant of equilibrium equations for even numbers 

of panels. The solutions found are of a rather simple form and can be used to test numerical 

results. This is especially important for trusses with a large number of panels, where 

numerical methods begin to malfunction due to the obvious accumulation of rounding 

errors. A brief review of some papers using the described induction method for the 

analytical calculation of trusses is given in  [19]. 
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