УДК 621.039.73

КРИСТАЛЛИЗАЦИЯ №20-АІ203-Р305 РАСПЛАВОВ В ОБЛАСТИ СОСТАВОВ БЛИЗКОЙ К СТЕКЛОМАТРИЦАМ ДЛЯ РАО.

Мартынов К.В.¹, Ширяев А.А.¹, Стефановский С.В.¹,Некрасов А.Н.², Котельников А.Р.² ¹ИФХЭ РАН, Москва,²ИЭМ РАН, Черноголовка (mark0s@mail.ru)

CRYSTALLIZATION OF Na₂O-Al₂O₃-P₂O₅ MELTS IN THE FIELD OF COMPOSITIONS **CLOSED TO HLW GLASS MATRIXES.**

Martynov K.V.¹, Shiryaev A.A.¹, Stefanovsky S.V.¹, Nekrasov A.N.², Kotelnikov A.R.² ¹IPCE RAS, Moscow,²IEM RAS, Chernogolovka(mark0s@mail.ru)

Abstract. The Na₂O-Al₂O₃-P₂O₅ melts are made in corundum crucibles at a temperature of 1100°C and under atmospheric pressure from previously prepared glasses. During their cooling with a moderate speed (100°C/hour) formation of various crystal phases as well as change of liquidus compositions is shown. The new topology of the melting diagram of three-component system is offered and the localization of some equilibria in the field close to composition of the glass used for HLW immobilization is defined.

Keywords: melting diagram, liquidus composition, melt crystallization, HLW phosphate glass matrix

Стекломатрицы Na-AI-Р состава, которые получают при охлаждении соответствующих расплавов, используют для промышленной иммобилизации РАО высокой удельной активности [Вашман А.А. и др., 1997]. От режима охлаждения зависит фазовый состав получаемого материала и его полезные свойства [Мартынов К.В. и др., 2015]. Для понимания процессов кристаллизации расплава и изменения его ликвидусного состава, необходимо иметь представление о диаграмме плавкости соответствующей системы. Для тройной системы Na₂O-Al₂O₃-Р₂О₅ таких данных крайне мало [Гусаров В.В. и др., 2002]. Изучение фазовых превращений составов, в области близкой К стекломатрицам для РАО было целью настояшей работы.

Экспериментальные исследования проводили в два этапа. На первом этапе шихты, составленные из твердых реагентов NaPO₃, NaNO₃, NH₄H₂PO₄, Al(OH)₃ (Рис. 1), корундовых тиглях плавили в при 1200°C температуре И атмосферном давлении, после чего расплавы сливали в графитовые изложницы. В результате быстрой закалки расплавов были получены стекла, составы которых показаны на Рис. 2. Элементные составы стекол, определенные методом РСМА с ЭДС, различным образом смещались относительно составов шихты, что схематично показано стрелками на Рис. 1. Из расплавов шихт, имевших составы, лежащие в поле I получились прозрачные стекла практически того же состава (Рис. 2в). Из расплавов шихт поля III получились непрозрачные стекла, обогатившиеся Al₂O₃, без видимых в СЭМ кристаллических фаз (Рис. 2-г). При этом наблюдалась сильная коррозия тиглей из-за растворения корунда в расплавах. Из расплавов шихт поля II образовались стекла с кристаллами AIPO₄, имеющими по результатам рентгенофазового анализа структуру кристобалита. Кристаллы

дифференциации, накапливались в донной тиглей. Составы расплавов части образовавшихся из них стекол смещалися в область обедненную AIPO₄ (Рис. 2-д). мол.% Na₂O мол.% Al₂O₃

Р-кристобалита, благодаря гравитационной

и

Рис. 1. Составы шихт для приготовления стекол: а - кристаллические фазы в системе Na₂O-Al₂O₃- P_2O_5 (1 - Na₃Al₂P₃O₁₂, 2 - Na₇Al₄P₉O₃₂, 4 -NaAIP₂O₇);б – состав стекломатрицы для РАО; в – составы шихт

Рис. 2. Составы стекол полученных при быстрой закалке расплавов от 1200°С: а и б – см. Рис.1; в – прозрачные стекла; г – непрозрачные (белые) стекла; д – стекла с кристаллами AIPO4 (Ркристобалит); Р₁-Р₂ – положение участка котектического равновесия AIPO₄+L (расплав) =Na7Al4P9O32

Синтез минералов

экспериментов Второй этап включал плавление приготовленных стекол при 1100°C охлаждение расплавов И со скоростью 100°С/час. Расплавы из стекол Рис. 2-в или не кристаллизовались вовсе, образуя прозрачные стекла (Рис. 3-в), или имела место слабая кристаллизация, выражавшаяся в потере прозрачности и наблюдавшейся появлении в СЭМ полосчатой структуры, но без видимых обособленных фаз (Рис. 3-г). Кристаллизация расплавов из стекол Рис. 2-г выражалась в появлении обособленных зерен AIPO₄. Ликвидусный состав остаточных расплавов и образовавшихся из них стекол немного смещался в сторону Na₂O (Рис. 3-д). Все эти стекла, даже в случае частичной кристаллизации AIPO₄ из расплавов, имели составы близкие к стекломатрицам для РАО. Объясняется это тем, что богатые Al₂O₃ расплавы имеют высокую вязкость. затрудняющую кристаллизацию, и остекловываются при достаточно высокой температуре. В результате их составы при понижении температуры далеко не доходят до котектики Р₁-Р₂.

Рис. 3. Составы стекол полученных при охлаждении расплавов от 1100°C co скоростью100°С/час: а и б – см. Рис.1; в – кристаллизации нет, стекла прозрачные; г кристаллизация, спабая фаза не идентифицирована; д – кристаллизация AIPO4; е кристаллизация Na₇Al₄P₉O₃₂ + AlPO₄; ж кристаллизация NaAIP₂O₇ + AIPO₄

Расплавы из стекол бедных Al_2O_3 (Рис. 2д), были гораздо менее вязкие и легко кристаллизовались с образованием сначала AIPO₄ (Р-кристобалита и Р-тридимита), а при достижении ликвидусным составом котектики P₁-P₂ – тройных фосфатов: Na₇Al₄P₉O₃₂ и NaAIP₂O₇ (Рис. 4). Ликвидусные составы остаточных расплавов, продуцирующие стеклофазу, если ее вообще удавалось обнаружить в образце, лежат в полях кристаллизации этих фосфатов: L+2 вплоть до котектики E₂-E₃ и L+4 (рис. 3-е и 3-ж).

Рис. 4. Результат кристаллизации расплавов из стекол Рис. 2-д: СЭМ-изображения образцов Рис. 3-е (а) и 3-ж (б), в – дифрактограмма образца Рис. 3-е, СиК_а-излучение: 1 - Na₇Al₄P₉O₃₂, 2 - AIPO₄ (Р-кристобалит), 3 - AIPO₄ (Р-тридимит).

Подобный сценарий. наименее благоприятный при остекловывании РАО, был описан в работе [Мартынов К.В. и др., 2015]. При небольшом недостатке (<5 мол.%) Na₂O расплаве относительно в регламентного состава (поле II на рис. 1) уже в печи при варке стекла может начаться AIPO₄. кристаллизация После розлива расплава в бидоны при его остывании кристаллизация AIPO₄ продолжится, а при достижении расплавом состава котектики Р1кристаллизация P_2 начнется тройных фосфатов. Расплав может закристаллизоваться практически полностью с превращением его остатка в стекло с очень низким (<10 мол.%) содержанием Al₂O₃. При этом основная часть элементов PAO стекле окажется в в концентрациях значительно превышающих расчетные. Еще большую проблему представляет то, что такие стекла, бедные Al₂O₃ имеют очень высокие скорости выщелачивания.

Литература

- Вашман А.А. и др. 1997. Фосфатные стекла с радиоактивными отходами. М.: ЦНИИатоминформ. 172 с.
- Гусаров В.В. и др. 2002. Физика и химия стекла. Т. 28. № 5. С. 440-450.
- Мартынов К.В. и др. 2015. Труды ВЕСЭМПГ. М.: ГЕОХИ РАН. Т. 1. С. 399-404.