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ABSTRACT

This paper presents an extension of the recently developed method for simultaneous dimension reduction
and metastability analysis of high-dimensional time series. The modified approach is based on a combina-
tion of ensembles of hidden Markov models (HMMs) with state-specific principal component analysis
(PCA) in extended space (guaranteeing that the overall dynamics will be Markovian). The main advantage
of the modified method is its ability to deal with the gaps in the high-dimensional observation data. The
proposed method allows for (i) the separation of the data according to the metastable states, (ii) a hierar-
chical decomposition of these sets into metastable substates, and (iii) calculation of the state-specific
extended empirical orthogonal functions simultaneously with identification of the underlying Markovian
dynamics switching between those metastable substates. The authors discuss the introduced model assump-
tions, explain how the quality of the resulting reduced representation can be assessed, and show what kind
of additional insight into the underlying dynamics such a reduced Markovian representation can give (e.g.,
in the form of transition probabilities, statistical weights, mean first exit times, and mean first passage
times). The performance of the new method analyzing 500-hPa geopotential height fields [daily mean values
from the 40-yr ECMWF Re-Analysis (ERA-40) dataset for a period of 44 winters] is demonstrated and the
results are compared with information gained from a numerically expensive but assumption-free method
(Wavelets–PCA), and the identified metastable states are interpreted w.r.t. the blocking events in the
atmosphere.

1. Introduction

Many meteorological and climatological applications
are characterized by the need to find some low-
dimensional mathematical models for complex systems
that undergo transitions between different phases. Such
phases can be different circulation regimes in meteo-
rology (Tsonis and Elsner 1990; Kimoto and Ghil

1993a,b; Cheng and Wallace 1993; Efimov et al. 1995;
Mokhov and Semenov 1997; Mokhov et al. 1998; Corti
et al. 1999; Palmer 1999) or glacial–interglacial se-
quences in climatology (Benzi et al. 1982; Nicolis 1982;
Paillard 1998). Starting from the seminal paper by
Charney and DeVore (1979), atmospheric blocking for-
mation is also often associated with flip-flops between
two states of atmospheric flow, one with strong (un-
blocked) and other with blocked zonal flow. Regimes
of this kind can sometimes be not directly observable
(i.e., “hidden”) in many dimensions of the system’s de-
grees of freedom and can exhibit persistent or meta-
stable behavior (Majda et al. 2006; Franzke et al. 2008).
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If knowledge about the system is present only in the
form of observation or measurement data, the challeng-
ing problem of identification of those metastable states,
together with construction of reduced low-dimensional
models, becomes a problem of time series analysis and
pattern recognition in many dimensions. The choice of
the appropriate data analysis strategies (implying a set
of method-specific assumptions on the analyzed data)
plays a crucial role in correct interpretation of the avail-
able time series.

In their recent pioneering works, A. Majda and co-
workers have demonstrated the presence of hidden per-
sistent patterns in data generated by different atmo-
spheric models on various scales and shown their con-
nection to the blocking events in the atmosphere
(Majda et al. 2006; Franzke et al. 2008). The strategy
they used to identify those hidden patterns—a hidden
Markov model (HMM) with Gaussian output, hereaf-
ter HMM–Gauss—implies the following assumptions
about the underlying data: (i) The hidden process
switching between the metastable states is Markovian
(i.e., has no long term memory-effects) and (ii) the ob-
served process in each of the metastable states is Gauss-
ian and there is no causal dependence between the con-
secutive observations (i.e., the data points are assumed
to be statistically independent of each other). Of par-
ticular interest in the present context is the numerical
scaling of the expectation–maximization framework on
which the HMM–Gauss strategy is based: (i) it scales as
O(n3) w.r.t. the dimension n of the corresponding phase
space of observation data (this reduces the applicability
of the method to low-dimensional cases) and (ii) it
scales as O(K2) w.r.t. the number K of the hidden
states; (iii) the results are not unique because the ex-
pectation–maximization (EM) strategy finds only the
local optima of the corresponding likelihood function
(Baum 1972). On the other hand, the HMM–Gauss
method scales linearly w.r.t. the length of the time se-
ries, thus making it possible to analyze very long time
series.

The first attempts to develop more widely applicable
generalizations of the HMM–Gauss approach resulted
in construction of the following methods: (i) Wavelets–
PCA (Horenko and Schuette 2008, manuscript submit-
ted to Econ. J., hereafter HoSc), (ii) HMM–PCA (hid-
den Markov models with principal component analysis
(PCA; Horenko et al. 2006; HoSc) and (c) HMM–
PCA–SDE [hidden Markov models with principal com-
ponent analysis and stochastic differential equations
(SDAs; Horenko et al. 2008)].

Wavelets–PCA is an “assumption free” approach,
which means that no a priori knowledge about the
properties of the underlying process is needed to iden-

tify the hidden persistent phases. The method is based
on the minimization of the functional describing the
weighted distance between the observed data and their
projections on a finite set of K linear manifolds. As a
result, the method provides the probabilities with which
the data points can be assigned to K hidden states char-
acterized by K specific sets of essential dimensions.
However, the numerical cost of the method is scaling
quadratically with number of transitions between the
hidden states, which seriously restricts the applicability
of the method to the relatively short time series with
few (�10–20) transitions between the hidden states
(HoSc).

The HMM–PCA is based on the same idea (the mini-
mization of the distance functional) as the Wavelets–
PCA method except for two additional assumptions
made for the analyzed data: (i) the process switching
between the metastable states is assumed to be Mar-
kovian and (ii) in each of the metastable states the
projections of the data onto the dominant state-specific
dimensions are Gaussian. Compared with the HMM–
Gauss approach in terms of its assumptions, the HMM–
PCA allows only the weakening of the constraint re-
garding the Gaussianity of the observed process in all of
the dimensions. However, concerning the numerical
gains of the method, it scales as kn log(n), where n is
the observation dimension and k K n is the number of
principal components (because instead of the full co-
variance matrix inversion as in the HMM–Gauss
method, HMM–PCA requires only the identification of
k dominant eigenvectors, which can be achieved by ap-
plying Raley–Ritz or Lanczos methods). This property,
together with linearity of the method w.r.t. the length of
the time series, makes HMM–PCA applicable for
analysis of high-dimensional time series. However, the
Markov assumption about the hidden process restricts
the applicability of the method to data without
memory.

If the structure of the data allows some insight into
the type of the underlying dynamics [e.g., the type of
the noise process (additive or multiplicative)], then this
additional information can be used in the construction
of more specific methods of data analysis. As was dem-
onstrated in our recent paper, one can construct meth-
ods combining HMM–PCA with fitting of reduced sto-
chastic differential equations (Horenko et al. 2008). As
was demonstrated on historical temperature data in Eu-
rope, the resulting HMM–PCA–SDE method can be
used for predictions and identification of the meta-
stable states even in very high dimensions. However,
this method inherits the drawback of the previous
methods concerning the non-Markovianity of the ana-
lyzed data. Moreover, as was shown for the tempera-
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ture data example, the metastability analysis of real
meteorological data is “spoiled” with the seasonal trend
that results in identification of four seasons as meta-
stable states. The above-described numerical problems
of the underlying EM algorithm prohibit reliable iden-
tification in cases in which many metastable states are
involved, especially in cases in which the time series are
relatively short, as in historical meteorological data.

In this paper we describe a hierarchical approach
based on successive decomposition of the multidimen-
sional time series in metastable states. Such an ap-
proach is especially useful for relatively short but mul-
tidimensional time series with many hidden states be-
cause simultaneous identification of all of the hidden
states would be hampered by the large uncertainty of
the parameter identification and the nonuniqueness of
the EM optimization result. The resulting method is
capable of dealing with data gaps (resulting from the
separation of the data on the previous hierarchical level
of analysis). We also demonstrate how to use the idea
of extended space representation to cast processes with
memory into the Markovian framework (thereby ful-
filling the first assumption of the HMM–PCA method).
We discuss the assumptions needed for the construction
of a new likelihood model of the data with gaps and
propose a modified EM algorithm for log-likelihood
optimization. We explain how the quality of the result-
ing reduced representation of the data can be acquired,
how it can help to estimate the number of the meta-
stable states, and what kind of additional information
about the analyzed process can be gained. We illustrate
the performance of the new method analyzing non-
Markovian 500-hPa geopotential height fields [daily
mean values from the 40-yr European Centre for Me-
dium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40) dataset for a period of 44 winters]
and compare the outcome to the results obtained with
the Wavelets–PCA approach. We interpret the results
w.r.t. the notion of blocking events in the atmosphere.

2. Topological dimension reduction in time series
analysis

a. Memory in the data and Markovian
representation

Let the observed data be given in the form of a time-
discrete sequence {zt}t�1, . . . , T of c dimensional data
vectors that describe the observation or measurement
of a process at T subsequent instances. We will say that
the process underlying the observations has a memory
depth d � 0 if the conditional probability distribution P
of future states of the process, given the present state
and all past states, depends only on the present state

and d previous states but not on all past states. Math-
ematically, this property can be expressed as

P�zt�1�z1, z2, . . . , zt� � P�zt�1�zt�d, . . . , zt�1, zt�.

�1�

We will call a process Markovian if d � 0. For D � d �
0 it is obvious that the extended stochastic process
x(D)

t � (zt, zt�1, . . . , zt�D) (which we will call a d-frame
recasting of the original process) is Markovian; i.e.,

P�xt�1
�D� �x1

�D�, x2
�D�, . . . , xt

�D�� � P�xt�1
�D� �xt

�D��. �2�

We will further omit the upper index D to simplify
the notation.

This means that any observed process with finite
memory can be cast into the Dc-dimensional extended
space and become Markovian (allowing us to apply
Markovian techniques of time series analysis, such as
HMMs).

There are two major problems associated with this
strategy: (i) reliable estimation of the memory depth d
is not a trivial task if the dimension c of the observation
data is high and (ii) the numerical cost of the time series
analysis increases significantly for large D because the
dimension of the extended space is D times larger than
the dimension of the original space.

The first of the abovementioned problems becomes
even more serious if the physics of the underlying pro-
cess is unknown, that is, if it is not a priori clear what
kind of stochastic dynamics should be expected (linear
or nonlinear, additive or multiplicative noise, etc.). Lin-
ear approaches, such as multivariate autoregressive
processes (MVARs; Brockwell and Davis 2002), can be
used for estimation of d in multiple dimensions. How-
ever, such analyses do not guarantee reliability because
there are examples of systems with finite nonlinear
memory (e.g., the time series of stock returns in fi-
nance) where linear analysis methods do not reveal any
significant memory effects (Tsay 2005). Another prob-
lem of such methods is their high numerical cost: the
MVAR method, for example, scales as O(c6). This pro-
hibits the application of these methods to very high-
dimensional systems without making additional as-
sumptions about the analyzed data (the single dimen-
sions are statistically independent, etc.).

On the other hand, the reported examples of appli-
cation of nonlinear memory estimation methods, like
conditional heteroscedastic models [such as ARCH
(Tsay 2005) or its generalizations], are limited to spe-
cific application areas (like econometrics and financial
data analysis) and low-dimensional cases; in general
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they do not allow a robust estimation for very large
datasets.

b. State-specific dimension reduction

All of the above arguments underline the importance
of dimension reduction methods in time series analysis.
To be able to find hidden metastable states in very
high-dimensional data, one should be able to couple the
problem of the identification of those states to an ap-
propriate dimension reduction strategy. We will now
briefly outline the main idea of one such approach, the
topological dimension reduction (Horenko et al. 2006;
HoSc; Horenko et al. 2008).

Let us assume that with the help of one of the meth-
ods described above, we were able to estimate the up-
per bound D of the memory depth for the given time
series {zt}t�1, . . . , T. It is worthwhile to mention that we
do not need to determine the memory depth exactly
because all we are interested in later on is to cast the
process into Markovian framework, as explained
above. Therefore we need a lower bound on D. To
account for memory effects in the analyzed data, we can
extend the vector space of observables zt at each time t
with D previous observations {zt�1, . . . , zt�D}. The re-
sulting vector xt � {zt, zt�1, . . . , zt�d} is a component in
n � Dc-dimensional space. The idea of the method is to
identify the m principal directions with the highest vari-
ance in n-dimensional data xt(m K n). In contrast to
standard PCA, in which these principal directions are
supposed to be global (i.e., valid for the whole time
series xt), the idea of state-specific topological dimen-
sion reduction consists of the assumption that the prin-
cipal directions can vary in time and are defined
with the help of a sequence of K linear projectors Ti ∈
�n�m, i � 1, . . . , K; that is, Ti is understood to project
onto the subspace spanned by the local principal direc-
tions. Mathematically the problem of identifying Ti can
be stated as a minimization problem w.r.t. the residuum
functional, describing the least squares difference be-
tween the original observation and its reconstruction by
means of the m-dimensional projection

L�xt, Ti, �i� � 	
i�1

K

	
t�1

T

�i�t���xt � �i � � TiTi
T�xt � �i��2

2,

�3�

where 
i(t) (i.e., the hidden path) denotes the probabil-
ity to optimally describe the n-dimensional vector xt at
time t with the local projector Ti and 	K

i�1
i(t) � 1 for
all t. The quantity 
i(t) provides a relative weight to the
statement that an observation xt belongs to the ith hid-
den state. For the moment we assume the sequence of

probabilities 
i(t) to be known and fixed; in the next
section we will present a way to estimate this sequence
from a given observation xt . The functional L depends
on the projector matrices Ti and center vectors �i ∈
�n. Moreover, the projectors Ti are subject to the or-
thogonality condition

Ti
TTi � Idm�m. �4�

The solution of the optimization problem (3) sub-
jected to orthogonality constraints (4) is possible in
three cases (HoSc).

1) CASE 1: KNOWN HIDDEN PATH

If the hidden path 
i(t) is known, then the minimum
of the functional (3) can be found, analytically resulting
in a state-specific version of the PCA:

�	
t�1

T

�i�t��xt � �i��xt � �i�
T�Ti � Ti�i, �5�

�i �

	
t�1

T

�i�t�xt

	
t�1

T

�i�t�

, �6�

where �i is a matrix with m dominant eigenvalues of
the weighted covariance matrix 	T

t�1
i(t)(xt � �i)(xt �
�i)

T on the diagonal (nondiagonal elements are zero);
that is, each of the K hidden states is characterized by
a specific set of essential dimensions Ti (which can be
defined as corresponding dominant eigenvectors) and
center vectors �i ∈ �n calculated from the conditional
averaging of the time series w.r.t. corresponding occu-
pation probabilities 
i(t) (Horenko et al. 2006).

2) CASE 2: HMM–PCA

Let us make the following two assumptions: (i) the
unknown sequence of hidden probabilities 
i(t) can be
assumed to be an output of the Markov process Xt with
K states and (ii) the probability distribution P(Tixt |Xt

� i) (which is the conditional probability distribution of
the projected data in the hidden state i) can be assumed
to be Gaussian in each of the hidden states. If both of
these assumptions hold then the HMM framework can
be used and one can construct a special form of EM
algorithm to find the minimum of the residuum func-
tional (3) [for details of derivation and resulting algo-
rithmic procedure, please refer to our previous works
Horenko et al. (2006) and HoSc]. The resulting method
is linear in T and scales as O(mn2) with the dimension
of the problem and as O(K2) with the number K of the
hidden states. However, as with all of the likelihood-
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based methods in an HMM setting, HMM–PCA does
not guarantee the uniqueness of the optimum because
the EM algorithm converges toward a local optimum of
the likelihood function.

3) CASE 3: WAVELETS–PCA

Because both of the HMM–PCA model assumptions
are very difficult to check (especially for high-
dimensional data), we need to construct a method that
is free of those assumptions and which we can use for a
posteriori verification of the HMM–PCA results.
Therefore, we assume that the unknown function 
i(t)
can be represented as a finite linear combination of
(few) discrete Haar-wavelet functions �(x):

��x� � ��0,1� � �1 0 � x 	 1

0 any other.
�7�

With their help any hidden occupation probability func-
tion 
i(t) ∈ L2(R ) for a fixed scaling factor J ∈ Z can be
represented by a linear combination of the scaled wave-
let-functions:

�i�t� � 	
r∈Z

cr
i��2Jt � r�

cr
i � �

0

1

�i 
2
�J�r � s�� ds. �8�

If the number of ansatz functions involved in expan-
sion (8) can be assumed to be small, it allows us to
project the original high-dimensional optimization
problem to the low-dimensional space of the wavelet
coefficients c i

r. The integral transformation between the
wavelet representation and the occupation probabilities

i (t) can be efficiently implemented using the fast
Haar-wavelet transformation (FWT; Strang and
Nguyen 1997).

In our specific implementation of the wavelet-based
optimization procedure (HoSc), we made two simplify-
ing assumptions: (i) we assumed that the occupation
probability functions 
i(t) can take only discrete values
0 and 1 (i.e., the occupation probabilities are assumed
to be discrete step functions) and (ii) we fixed the upper
limit of the Galerkin subspace dimension for each of
the optimization runs (i.e., together with the first as-
sumption, it means that we set the upper limit of tran-
sitions between K hidden states).

The main advantage of the resulting Wavelet–PCA
approach is that it is independent of the model assump-
tions (Markovianity and Gaussianity) of the HMM–
PCA method. However, our specific implementation of
the method scales quadratically with the number of in-
volved Haar-wavelet functions; that is, the method is
not applicable for very long time series with large num-

bers of transitions between the hidden states. But it can
be used for validation of the model assumptions of the
HMM–PCA by comparison of the 
i(t) values identi-
fied by both methods for relatively short segments of
the analyzed time series.

3. Hierarchical approach

As demonstrated above, the application of the hid-
den Markov framework to the HMM–PCA approach
results in a specific assumption about causal depen-
dence inside of the data series. It means that the con-
struction of the likelihood function implies that (i) the
data sequence being subjected to the HMM–PCA
analysis has to be contiguous and (ii) the time intervals
between the consecutive observations should be equal
(Horenko et al. 2006). Whereas assumption (ii) is usu-
ally satisfied for most of the available datasets, assump-
tion (i) is much more restrictive because there are a lot
of processes which cannot be permanently observed
(e.g., financial data are available only during trading
sessions on the stock market and are not available on
weekends and holidays). Assumption (i) will also pro-
hibit the application of the HMM–PCA in cases for
which one is interested in analyzing only specific seg-
ments of available data (e.g., the meteorological data
restricted to certain seasons) or in which the time series
is subjected to hierarchical decomposition into meta-
stable substates. It is worth mentioning that one can still
apply the Wavelets–PCA method in all of these cases
but, as was already mentioned above, the applicability
of Wavelets–PCA is restricted to the cases where there
are only a few transitions between the hidden states.

Therefore, we are interested in extension of the HMM–
PCA framework toward the cases where there are gaps
in observation sequence where the causal dependence
implied by a Markovian model is broken. To cast the
description of the data into the HMM framework, we
first define the complete observation set Xt � (Xt, xt),
where Xt is an output of some unobserved data (or
hidden Markov chain) and xt is observed data. We will
further assume that (i) the observation data {xt}t�1, . . . ,
T consists of a sequence of Ntraj contiguous observation
sequences xi, that is, {xt}t�1, . . . , T � {x1, x2, . . . , xNtraj};
(ii) the time intervals between subsequent observations
in each of the contiguous data sequences are equal, and
(iii) the gaps between the neighboring data sequences
are so big that each consecutive data sequence can be
assumed to be statistically independent from the pre-
decessor sequence. We will refer to the original time
series as a data sequence, whereas the contiguous seg-
ments of it with time-equidistant observations will be
called subsequences. The last assumption means that
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the following relation is valid for a joint conditional
probability distribution function P(Xt |�) (also called
the likelihood):

P�X1, X2, . . . , XT |
� � �
l�1

Ntraj

P�Xt1
l , . . . , XT l |
�, �9�

where � � (�, A, �1, T1, . . . , �K, TK), A is the transition
matrix of the hidden Markov process Xt, � is the in-
variant distribution of initial states of the hidden pro-
cess, and (�i, Ti) are parameters of essential linear
manifolds characteristic for each of the hidden states (t l

1

and Tl define the start and the end of the contiguous
subsequence l inside of the observation data).

We define the log-likelihood functional of the pro-
cess as

Llog�
 |X� � logP�X1,X2, . . . , XT |
�

� 	
l�1

Ntraj

L�
 |Xt1
l , . . . , XT l�, �10�

where L are standard HMM–PCA log-likelihood func-
tions for contiguous time series with observations equi-
distant in time (Horenko et al. 2006).

We employ the EM algorithm to maximize both like-
lihood and log-likelihood functions simultaneously.
Starting with some initial model �0, we iteratively refine
the model within two steps: the expectation step and
the maximization step.

a. The expectation step

In this step, the state occupation probability 
 l
t(i) �

P(Xt � i |xt, �) and the transition probability � l
t(i, j) �

P(Xt � i, Xt�1 � j |xt, �) are calculated for each time
t ∈ [t l

1, . . . , T l], given the observation xt and the current
model �. To calculate the two conditional probabilities
of the expectation step (or E-step), we first define two
additional variables:

�t
l�i� � P�xt1

l . . . xt, Xt � i |
� and �11�

�t
l�i� � P�xt1

�1, xt l
�2 . . . xT l |Xt � i, 
�, �12�

where �l
t(i) and �l

t(i) are forward and backward vari-
ables, respectively. The interpretation of �l

t(i) is as fol-
lows: it denotes the probability of the observation sub-
sequence l up to time t together with the information
that the system is in hidden state i at time t conditioned
w.r.t. the given model parameters �. The following for-
mulas show that the computation of the sequence �l

t(i)
for the whole sequence is possible with K2 T operations:

�t1
l

l
�i� � 
i�i�xt1

l �,1 � i � K, �13�

� t�1
l � j� � �	

i�1

K

�t
l�i�Ai j��j�xt�1�, �14�

1 � t � T � 1, 1 � j � K, �15�

where �j(xt�1) � �(xt�1 |Xt�1 � j) defines the condi-
tional observation probability of the data at time t � 1
in the hidden state j. The backward variable �l

t(i) can be
computed with analogous formulas:

�T l
l

�i� � 1, 1 � i � K �16�

� t
l�i� � 	

j�1

K

Aij�j�xt�1��t�1
l � j�, �17�

t � T l � 1, Tl � 2, . . . , 1, 1 � i � K. �18�

Using the definitions (11) and (12), one can finally
write for the probability P(xt l1, . . . , xT l |�) (Bilmes
1998)

P�xt 1
l , . . . , xTl

|
� � 	
i�1

K

�1
l �i�
i�i�xt 1

l � �19�

or equivalently

P�xt1
l , . . . , xT l |
� � 	

i�1

K

�t
l�i��t

l�i�, �20�

where l is chosen in such a way that t ∈ [t l
1, . . . , T l]. The

two conditional probabilities of the E-step can be cal-
culated efficiently by using the forward–backward vari-
ables:

�t
l�i, j� �

�t
l�i�Aij�j�xt�1��t�1

l � j�

P�xt 1
l , . . . , xT l |
�

. �21�

With these values, the probability of being in state i
at time t can be expressed as

� t
l�i� � 	

j�1

K

�t
l�i, j�. �22�

Note that the expected number of transitions from i
to any other state (including itself) within the whole

observation is 	Ntraj
l�1 	t�t l

1

T l−1
� t

l�i�, and the expected num-

ber of transitions from i to j is 	Ntraj
l�1 	t�t l

1

T l−1
� t

l�i, j�.

b. The maximization step

This step finds a new model �̂ via a set of re-
estimation formulas. The maximization guarantees that
the likelihood does not decrease in each iteration.

To apply the EM algorithm, we need to re-estimate
parameters � describing the hidden Markov model and
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essential linear manifolds via the maximum likelihood
estimator. Thus, the observation xt at time t ∈ [tl1, . . . ,
Tl] has to be weighted with the probability for the hid-
den state i 
 l

t(i) for the respective subsequence l. To
calculate this re-estimation, we fix the sequence Xt of
hidden states [this means also keeping the sequence of

 l

t(i) fixed] and calculate the derivatives of the func-
tional (10) w.r.t. the parameter set �. By setting all of
the partial derivatives to zero for some fixed reduced
dimensionality m we get a coupled system of nonlinear
algebraic equations for the parameters that can be
solved analytically [analogous to the derivation shown
in Horenko et al. (2006) and HoSc]. We will skip the
derivation here and just present the final re-estimation
formulas:

�i �
1

	
l�1

Ntraj

	
t�t 1

l

T l�1

�t
l�i�

	
l�1

Ntraj

	
t�t 1

l

T l�1

� t
l�i�xt, �23�

CoviTi � Ti maxm
spec�Covi��, �24�

where maxm[spec(Covi)] denotes m dominant eigenval-
ues of the covariance matrix Covi;

Covi �
1

	
l�1

Ntraj

	
t�t 1

l

T l�1

� t
l�i�

	
l�1

Ntraj

	
t�t 1

l

T l�1

� t
l�i��zt � �i��zt � �i�

T.

�25�

The E and M steps are iteratively repeated until a
predetermined maximal number of iterations is reached
or the improvement of the likelihood becomes smaller
than a given limit. The entire EM algorithm has the nice
property that the likelihood function is nondecreasing
in each step (i.e., we iteratively approximate local
maxima). We will call the presented method ensemble
HMM–PCA to refer to the ability of the new method to
deal with an ensemble of statistically independent sub-
sequences and to stress the difference from the stan-
dard HMM–PCA. As for the scaling of numerical ef-
fort, the resulting ensemble HMM–PCA method is lin-
ear in the length of the observation series xt , quadratic
in the number K of hidden Markov states (essentially
because the transition matrix elements of the hidden
Markov chain should be estimated), and scales as
O(mn2) in the reduced dimensionality m (because only
m dominant eigenvectors of Covi matrix are required,
they can be obtained with numerically efficient sub-
space methods such as the Raley–Ritz iteration or
Lanczos method). Therefore the ensemble HMM–PCA

approach is applicable to systems with very high dimen-
sionality and very long observation data sequences.
This feature is demonstrated in section 5 where the
method is used for analysis of a multidimensional me-
teorological dataset.

4. Estimation of confidence intervals and choice of K

It is intuitively clear that the quality of the resulting
reduced model is very much dependent on the original
data, and especially on the length of the available time
series. The shorter the observation sequence, the bigger
the uncertainty of the resulting parameters. The same is
true if the number K of hidden states is increasing for
the fixed length of the observed time series: the bigger
K is, the higher the uncertainty will be for each of the
states. Therefore, to statistically distinguish between
different hidden states we need to get some notion of
the HMM–PCA robustness. This can be achieved
through the estimation of confidence intervals for both
parts of the model: the hidden Markov process and the
extended EOFs.

a. Hidden Markov process

To estimate the confidence intervals of the hidden
transition probabilities Aij we first make use of the sec-
ond derivatives (�2L /�A2

ij)(A) (also called Fisher infor-
mation) of the log-likelihood function (10) subject to
the constraint

	
j�1

K

Aij � 1, �i � 1, . . . , K �26�

(A is the hidden transition matrix of the Markov chain
estimated by the HMM–PCA algorithm). We denote
the number of the transitions in the identified Mar-
kovian sequence Xt between the states i and j as Nij.
The most probable sequence Xt of the hidden states can
be directly computed from the hidden probabilities

 l

t(i) by applying, for example, the Viterbi algorithm
(Viterbi 1967). Then it is easy to verify that the explicit
expression for the Fisher information of the identified
Markov chain Xt is

�2Llog

�Aij
2 �A� � �

�	
k�1

K

Nij�2

Nij
. �27�

The confidence intervals of the hidden Markov process
are then given by [Aij � �(Aij), Aij � �(Aij)], where

��Aij� � 1.96��
�2Llog

�Aij
2 �A���0.5

; �28�
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the multiplier 1.96 comes from the definition of 95%
confidence interval in Gaussian statistics.

b. Extended EOFs

The Gaussianity assumption for the observation pro-
cess in the HMM–PCA method gives an opportunity to
estimate the confidence intervals of the manifold pa-
rameters (�i, Ti) straightforwardly. This can be done in
a standard way of multivariate statistical analysis be-
cause the variability of the weighted covariance matri-
ces (25) involved in the calculation of the optimal pro-
jectors Ti is given by the Wishart distribution (Mardia
et al. 1979). The confidence intervals of Ti can be esti-
mated by sampling from this distribution and calculat-
ing the m dominant eigenvectors of the sampled matri-
ces, whereas the confidence intervals of �i can be ac-
quired from the respective standard deviations (Mardia
et al. 1979).

c. Optimal choice of K

If there exist two states with confidence intervals
overlapping for each of the respective reduced model
parameters, then those are statistically indistinguish-
able and K should be reduced and the HMM–PCA
calculation repeated. In other words, confidence inter-
vals implicitly give a natural upper bound for the num-
ber of hidden states. On the other hand, the spectral
theory of the Markov processes connects the number K
of metastable states with the number of the dominant
eigenvalues in the so-called Perron cluster (Schütte and
Huisinga 2003). This allows us to apply the Perron clus-
ter–cluster analysis (PCCA; Deuflhard and Weber
2005) to find the lower bound of K. Both these criteria
in combination can help to find the optimal number K
of the hidden states in each specific application.

5. Analysis of the hidden transition matrix

Application of the HMM–PCA algorithm to the ana-
lyzed multidimensional data results in a twofold dimen-
sion reduction: in addition to the identification of dom-
inant local extended orthogonal functions describing
the directions of maximal data variability, HMM–PCA
reveals a hidden discrete Markov process switching be-
tween different sets of those extended EOFs. Analysis
of the corresponding hidden transition matrix A can
help us to understand the global properties of the un-
derlying multidimensional dynamics, which is now
given by the series of one-dimensional discrete hidden
variable Xt. We will now briefly sketch some of these
properties and explain how to calculate them. For more

details, we refer the reader to the standard literature on
Markov chains (e.g., Gardiner 2004).

a. Relative statistical weights

The vector � of relative statistical weights of the hid-
den states can be calculated as the fixed point of the
Markovian transition operator; that is,

� � �A. �29�

Note that we use multiplication from the left because A
is a stochastic matrix with row sums all equal to 1.0.

b. Mean exit times

The mean exit time �ex
i is the expected time for the

process Xt to stay in the hidden state i until it switches
to any other state. Thus, it is one of the basic quantities
and can be used to compare different hidden states
w.r.t. their metastability. It can be directly computed
from the diagonal elements of the transition matrix A:

� i
ex �

�t

1 � Ai i
, �30�

where �t is the time step between the observations.

c. Mean first passage times

For any pair of two different hidden states i and j, the
mean first passage time �pas

ij represents the expected
time for the process Xt to start in the state i and to reach
the state j for the first time. It can be calculated from
the solution of the following linear system of equations:

� ij
pas � ��t � 	

k�1

K

�kj
pasAik, i � j,

0, i � j.

�31�

This quantity describes the dynamical properties of the
process Xt and can be used to analyze and compare
different transition pathways between metastable
states.

6. Analysis of historical geopotential height data

a. Description of the data

Using the method presented in the previous sections,
we analyze daily mean values of the 500-hPa geopoten-
tial height field from the ERA-40 data (Simmons and
Gibson 2000). We consider a region with the coordi-
nates 32.5°–75.0°N, 27.5°W–47.5°E, which includes Eu-
rope and a part of the eastern North Atlantic. The com-
bination of land and sea makes the selected region pref-
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erable for the appearance of dynamically relevant
phenomena; it also captures the area of maximum At-
lantic block formation (Wiedenmann et al. 2002). The
resolution of the data is 2.5°, which implies a grid with
31 points in the zonal and 18 in the meridional direc-
tion. We have also tested the sensitivity of the results
presented here by reducing the resolution by a factor of
2, taking only 16 � 9 grid points.

For the analysis we have considered geopotential
height values only for winter and for the period 1958/59
to 2001/02, where a winter includes the months Decem-
ber to February; thus, we end with a nonequidistant
time series of 3960 days. The reasons for considering
winter months only were (i) because of the increased
equator-to-pole temperature gradient, the synoptic ed-
dies and the quasi-stationary Rossby waves in the at-
mosphere are much more intense during winter, which
suggests much more pronounced regime behavior, and
(ii) if we focus on blocking events only, representing a
kind of metastability in the circulation, there is a pro-
nounced maximum in the block formation for the con-
sidered region during winter (Lupo et al. 1997).

We have mentioned already in the introduction the
problem with the seasonal cycle when analyzing atmo-
spheric data w.r.t. metastable behavior. To remove the
seasonal trend we apply a standard procedure, where
from each value in the time series we subtract a mean
build over all values corresponding to the same day and
month (e.g., from the data on 1 January 1959 we sub-
tract the mean value over all days which are the first of
January, and so on).

b. The blocking index

For the purpose of interpreting the results of the pre-
sented method w.r.t. metastability of blocking events,
we compute the Lejenas–Okland index from the data.
It indicates the appearance of a blocking anticyclone
and the duration of the event. We have a blocking if the
geopotential height difference at 500 hP between 40°N
and 60°N is negative over a region with 20° zonal ex-
tent. The exact formula is given in Lupo et al. (1997);
for the purpose of representation we have computed a
zonally averaged value of the index, rescaled it, and
reversed its sign. (A part of the time series of the index
is shown in Fig. 7.)

c. Discussion of the results

To choose the lower bound of the frame length in the
algorithm, the memory depth of the data was estimated
from the autocorrelation and partial autocorrelation
function. The dominant eigenvalues of the autocorre-
lation matrix and of the autoregressive (AR) coeffi-
cients computed at different time lags are presented in
Fig. 1. From the spectrum of the AR coefficients one
can see that the data has an internal memory of about
5 days and it can be approximately modeled by an au-
toregressive process of the order 5; the oscillations after
the fifth day are interpreted as noise. We conclude that
a frame length of 5 days will be sufficient to make the
data Markovian.

To choose the optimal number of hidden states K, we
first start the HMM–PCA algorithm with K � 8 for
different values of d � 1, 5, 10, 20, and 40 and m � 1.

FIG. 1. (left) Dominant eigenvalues of the autocorrelation matrix and (right) AR
coefficients, both computed for different time lags.
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As mentioned above, because only a relatively short
time series is available we need first to estimate the
upper bound for K by comparing the confidence inter-
vals of HMM–PCA parameters. To avoid the inherent
problem of the EM algorithm—namely, that it only
converges to the local maximum of the likelihood func-
tional (dependent on the initial parameter values)—we
perform the optimization with different randomly cho-
sen sets of initial parameters 100 times and take the
result with maximal likelihood. One of the transition
matrix spectra is shown in Fig. 2. If the confidence in-
tervals for a pair of states are overlapping it means that
the corresponding states are statistically undistinguish-
able and the whole optimization procedure should be
repeated for K � K � 1. It comes out that only for K �
4 are all of the hidden states statistically distinguish-
able; therefore, we proceed further with 4 hidden
states.

Next, we have to verify the assumptions needed to
apply the HMM–PCA method. The first possibility is to
a posteriori check the Gaussianity of the data in the
hidden states and the Markovianity of the hidden pro-
cess. However, it will not guarantee that these assump-
tions will also be fulfilled in any of the EM iterations.
Another possibility is to compare the results of the
HMM–PCA optimization with, for example, some frag-
ment of Wavelets–PCA results (because Wavelets–
PCA is much slower but does not imply any assump-
tions about the analyzed data). This will give us a pos-
sibility to estimate the robustness of optimization w.r.t.
the model assumptions. As we see from Fig. 3, the re-

spective Viterbi paths are almost identical for both
methods; therefore, it verifies the usage of the HMM–
PCA analysis.

Next, we have studied the sensitivity of the results
w.r.t. different frame lengths. The calculated Viterbi
paths, showing the most probable sequence of hidden
states, are displayed in Fig. 4. When the frame length
increases, the transitions between the hidden states re-
duce and the occupation duration increases. The dis-
crepancy of the Viterbi paths for different frame
lengths can happen because data with smaller frame
lengths are non-Markovian but the algorithm can still
find some metastable regime behavior, which is filtered
out if the larger frame length is applied.

We have tested the dependence of the results on the
resolution, using data on a 16 � 9 and on a 32 � 18 grid
for the analysis. The Viterbi paths for both grids are
shown in Fig. 4; they are nearly identical. Figures 5 and
6 display the center vectors �i for the two different
resolutions and d � 1. In both cases, the large-scale
structure of the pattern is captured by the algorithm.

From Figs. 5 and 6, we see that the hidden states
describe two different regimes: �1 and �3 are charac-
terized by a negative geopotential anomaly at higher
latitudes and a positive anomaly at lower latitudes,
whereas the other two states, �2 and �4, have anomalies
reversed in sign. Thus, the states in the first regime are
associated with an intensification of the zonal flow and
those in the second regime with a weakening of it. Each
regime can be then subdivided into states with stronger
anomalies (�3 and �4) and weaker anomalies (�1 and �2).

We expect that blocking events will be captured
mostly by hidden state 4; this is confirmed if we plot the

FIG. 2. Spectrum of the hidden transition matrix A for K � 8.
Only the first four dominant eigenvalues are statistically signifi-
cant because the parameter confidence intervals of the hidden
states corresponding to the lower part of the spectrum (eigenval-
ues 5–8) are overlapping. This indicates K � 4 as the upper bound
for the number of statistically distinguishable hidden states.

FIG. 3. Comparison of hidden Viterbi paths identified with the
Wavelets–PCA (dashed) and HMM–PCA (solid) algorithms
(both for K � 4, d � 5).
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probability 
4 and the blocking index (see Fig. 7). From
the Viterbi paths and the blocking index, we calculated
that state 4 and state 2 respectively capture 46% and
36% of all blocking events. If we consider as blocking
situations cases in which the blocking index is negative
over a period larger than 6 days (filtered index), the
numbers above change to 58% and 29%, respectively.
Looking at individual events, we found that the two
states also represent other weather patterns with an
anomalous geopotential gradient (e.g., cut-off lows).
Nevertheless, about 73% of all days in state 4 are as-
sociated with blockings; for state 2 this number is 47%.
If we consider the filtered blocking index, the numbers
change to 52% and 21%, respectively.

Calculating the projection matrix Ti, we find the lead-
ing m EOFs within each of the hidden states and com-
pare the variance patterns computed in this way with
those from a standard EOF analysis of the dataset. A
particular difference is the absence of the first EOF
pattern from the standard method in the local EOFs Ti

from the HMM–PCA algorithm. This mode describes
the variability of the meridional geopotential gradient
and, as discussed above, such a dynamics is already
captured by the time evolution of the functions 
i, i �
1, . . . , 4. The leading three variance patterns produced
by the HMM–PCA algorithm looked very similar for

the four hidden states; other EOFs differed if the cor-
responding states had positive/negative or weak/strong
geopotential anomalies.

But how do the results change when we make the
data Markovian, considering an extended space with
the dimension n � d * c? We can split the center vector
�i into d parts with the original dimension c, represent-
ing the mean state of the system at different time lags.
The resulting sequence can be interpreted as the “mean
time evolution” of the mean state in i. Fig. 8 displays
such a sequence for �4, showing the growth in time of
the meridional geopotential gradient anomaly.

To represent the results for larger frame lengths and
different states, we have computed the geopotential
height difference between 40°N and 60°N from the vec-
tor �i at different time lags, using exactly the same
criteria as for the calculation of the blocking index (see
section 2b), but now we consider all values, not only the
negative one. The results are displayed in Fig. 9. We see
that the overall time evolution is characterized by a
growth or a decay of the meridional geopotential gra-
dient, which for q � 5 reaches at the end its values from
the analysis with q � 1. For larger frame lengths, the
amplitude of the gradient is strongly reduced but the
time evolution shows more complex character with
changing phases of decay and growth (e.g., state 4 in the

FIG. 4. The Viterbi path of the hidden Markov chain for different resolutions of the data
and different frame lengths d: results from data on a 32 � 18 grid (solid) and on a 16 � 9
grid (dotted–dashed; only for d � 1, 5).
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case of q � 40). This can probably be explained by the
fact that because in those cases the duration of the
blocking is smaller than the dynamical frame length d,
many creations and/or destructions of the blocking situ-
ations are getting averaged out.

Because the proposed technique for frame lengths
�2 is a special type of time-lagged statistics, it can be
used to study onsets and withdrawal of diagnosed fea-
tures. In this, given a time lag q, we have computed
conditional composites for diagnosed events. For on-
sets, we have selected time slices tj, j � j1, j2, . . . , jNe (Ne

is the number of diagnosed events) when the occupa-
tion probability for the state 4(
 l

4) reaches unity. This
state was selected because it corresponds most closely
to blockings as diagnosed by the employed blocking
index. An additional condition is imposed that 
 l

4 re-
mains unity at least for five consequent days (a condi-
tion of persistence). For these time slices, a conditional
average is computed:

xo�q� �

	
tj�1

Ne

�4,tj�q

l xtj�q

	
tj�1

Ne

�4,tj�q

l

. �32�

An analogous conditional average is computed for
withdrawals by selecting the time slices tk, k � k1,
k2 , . . . , kNe

as the last days of the diagnosed events
when 
 l

4�1. After that, a conditional average for with-
drawals is computed:

xw�q� �

	
tk�1

Ne

�4,tk�q

l xtk�q

	
tk�1

Ne

�4, tk�q

l

. �33�

In both cases q � 0, . . . , d � 1, where d is the frame
length.

We note different interpretations of xo(q) and xw(q).
In the former case, q covers time intervals before the
block onset. As a result, the composite xo(q) corre-
sponds to typical synoptic conditions before the block
onset. In contrast, for xw(q), q covers time moments
when a block exists and, generally, is well developed.
As a result, xw(q) has to be interpreted as a typical
pattern of mature blocking state.

For onsets, the composite pattern exhibits develop-
ing meridional wavy structure (Fig. 10). This feature
first appears in the southwestern part of the studied

FIG. 5. The vector �i for the four different hidden states computed using a frame length of 1 day and
data on the 31 � 18 grid.
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FIG. 6. As in Fig. 5, but on the 16 � 9 grid.

FIG. 7. The time evolution of the zonally averaged blocking index (dashed) and the
probability for hidden state 4 
4 (solid line).
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FIG. 8. The vector �4 at different time lags t computed using a frame length of 5 days and the 31 �
18 resolution.

FIG. 9. Zonally averaged geopotential height difference between 40°N and 60°N for the �i vectors at
different time lags. The plots represent the results for different frame lengths d. The values for d � 1 are
indicated by lines with markers in the first plot, in which squares, stars, circles, and diamonds correspond
to states 3, 1, 2 and 4, respectively.
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domain as a positive anomaly of geopotential height
(q � 4 � 2). Afterward, at q � 1 � 0 this anomaly
spreads to the east and becomes more pronounced,
forming a ridge (a trough) in the southern (northern)
part of the domain. Eventually, this trough–ridge sys-
tem evolves to the blocked state. These features are
common for the development of typical Atlantic block-
ing (Berggren et al. 1949; Rex 1950a; Diao et al. 2006).

For withdrawals (Fig. 11), we see a very marked posi-
tive anomaly of geopotential height in the southern part
of the domain and a negative one in the northern part.
Neither anomaly moves for different values of q within
this composite. This emphasizes a stationarity of block-
ings within their life cycles. However, it becomes more
marked if one travels from q � 4 to q � 0. The reason
for this is the chosen length of frame, 5 days, which is
comparable to the typical duration of blockings (e.g.,
Rex 1950b; Wiedenmann et al. 2002; Lupo et al. 1997;
Diao et al. 2006; Croci-Maspoli et al. 2007). The fully
developed anomaly spreads above the greater part of
the northern Atlantic and attains a large magnitude.

Next we analyze the hidden transition matrix identi-
fied by the HMM–PCA in the Markovian case (K � 4,
m � 1, d � 5). The transition graph correspondent to
the identified matrix A is shown in Fig. 12. Each of the
hidden states corresponds to a dynamical pattern of 5

days. As we have seen above in Fig. 9, each of the
patterns is associated with specific blocking formation
or destruction events. Therefore, by analyzing the tran-
sition graph from Fig. 12 we can gain some insight into
the kinetics of such events. We start with the calculation
of relative statistic weights of the respective hidden
states. The solution of (29) yields �1 � 0.2363, �2 �
0.1836, �3 � 0.4234, and �4 � 0.1567; that is, the dy-
namical pattern corresponding to the blocking forma-
tion in hidden state 4 is the most infrequent one. To
compare the metastability of the hidden states, we can
calculate the mean exit times �ex

i from (30). We get the
following values: �ex

1 � 4.3, �ex
2 � 5.3, �ex

3 � 14, and
�ex

4 � 16 days. Together with Fig. 12, these can be in-
terpreted to mean that both 3 and 4 are metastable
states, whereas 1 and 2 correspond to a transition path-
way between them. Blocking events associated with the
hidden state 4 represent a metastable event in the
Markovian model: its typical duration is 16 days and
two typical transition pathways in the system are 3 →
1 → 2 → 4 and 4 → 2 → 1 → 3. To characterize and
compare these two pathways, we calculate the mean
first passage times. As results from (31), �pas

34 � 131 and
�pas

43 � 49 days; that is, it takes much longer to “create”
a blocking situation then to “destroy” it. This is also in
a good agreement with the respective statistical weights

FIG. 10. The computed onset composite xo(q) at different time lags q. For xtj
in (32) we have used

data with an annual cycle; units are gpdm.
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� of the corresponding states; the “unblocked” meta-
stable state 3 is visited almost 3 times more frequently
then the “blocked” state 4.

7. Conclusions

We have presented a numerical framework for the
simultaneous identification of hidden states and respec-
tive essential orthogonal functions (EOFs) in high-

dimensional data with gaps. It allows us to construct
reduced representation of analyzed data in the form of
a discrete Markov jump process switching between dif-
ferent sets of EOFs. We discussed the model assump-
tions and explained the necessity of combining different
methods relying on separate sets of model assumptions
for data analysis.

We have also demonstrated what kind of additional
insight into underlying dynamics can be gained from a

FIG. 11. The computed withdraw composite xw(q) at different time lags q. For xtj
in (33) we have

used data with an annual cycle; units are gpdm.

FIG. 12. Graphic representation of the hidden Markov process responsible for the metastable behavior
of the analyzed time series (identified with the HMM–PCA algorithm for K � 4, m � 1, d � 5). Circles
denote the hidden states and arrows show the connections between them; the numbers represent re-
spective probabilities of transitions.
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reduced Markovian representation (e.g., in the form of
transition probabilities, statistical weights, mean first
exit times, and mean first passage times). The proposed
pipeline of data analysis based on HMM–PCA was ex-
emplified in an analysis of 500-hPa geopotential height
fields in winter. Correspondence between the hidden
probability in one of the metastable states and the zon-
ally averaged blocking index was found, and the respec-
tive mean dynamical patterns in the hidden states were
found to be describing the creation and destruction of
the blocking situations. We estimated a transition ma-
trix (Fig. 12) of the hidden Markov process describing
the transition probabilities between different atmo-
spheric regimes. Respective Markovian processes give
a reduced model for the dynamics of the 500-hPa geo-
potential field and can be used for predicting the block-
ing or strengthening of the zonal flow in operative
weather forecast.

One of the basic problems of the multivariate meteo-
rological data is that only relatively short fragments of
the observation process are available for the analysis.
Therefore it is very important to be able to extract the
reduced description out of the data and to control the
sensitivity of the analysis w.r.t. the length of the time
series and the number K of the hidden states. We gave
some hints for the selection of optimal K and explained
how the quality of the resulting reduced representation
can be acquired.
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