УДК 549.514.81 + 550.42 (470.1)

DOI: 10.19110/2221-1381-2016-5-38-52

ГЕОХИМИЯ И U-Pb-BO3PACT ЦИРКОНА ПИЖЕМСКОГО Титанового месторождения (средний тиман)

А. Б. Макеев¹, А. О. Красоткина², С. Г. Скублов^{2,3}

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) РАН, Москва;

abmakeev@igem.ru

²Санкт-Петербургский горный униаерситет, Санкт-Петербург; *krasotkina93@mail.ru*

³Институт геологии и геохронологии докембрия РАН, Санкт-Петербург; *skublov@yandex.ru*

Геохимические исследования посвящены памяти академик Н. П. Юшкина, который при жизни уделял много внимания этому научному направлению. Впервые проведено локальное датирование (U-Pb-метод, SHRIMP-II) циркона из титановых руд Пижемского месторождения. Установлен широкий разброс значений возраста в интервале от 2740 до 334 млн лет. Датировки объединяются в три совокупности: неопротерозойские (5 точек), мезо-палеопротерозойские (26 точек), архейские (3 точки) с выраженным полимодальным распределением максимумов в интервалах 600, 900, 1000–1600, 1600–2000 и 2660–2740 млн лет. Определен геохимический тип циркона с гетеровалентным изоморфизмом ксенотимового типа (Zr+Si)⁴⁺ → (Y+REE)³⁺+P⁵⁺. Для большинства зерен характерно относительно низкое содержание Y + REE в интервале от 150 до 3000 ppm, но в выборке присутствует более 10 % зерен циркона с аномально высоким суммарным содержанием этих элементов (до 1–3.5 мас. %), коррелирующим с содержанием фосфора. Полученные данные согласуются с результатами исследования возраста и геохимии циркона из вышележащего конглобрекчиевого горизонта проявления Ичетью и четласских лампрофиров. Установлен особый, «тиманский» тип иттрий-фосфор-редкоземельного циркона. Это доказывает единый источник циркона двух промышленных объектов, при этом циркон мог поступать из разных по глубине уровней нижележащего кристаллического фундамента. Датирование циркона свидетельствует о том, что сама титаноносная толща более древняя, чем считалось ранее (средний девон), ее возраст определяется как докембрийский.

Ключевые слова: циркон, Пижемское месторождение, U-Pb-возраст, редкоземельные элементы, Средний Тиман.

GEOCHEMISTRY AND U-Pb AGE OF ZIRCON FROM PIZHEMSKOE TITANIUM DEPOSIT (MIDDLE TIMAN)

A. B. Makeyev¹, A. O. Krasotkina², S. G. Skublov^{2,3}

¹Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry (IGEM) RAS, Moscow;

abmakeev@igem.ru

²Saint-Petersburg Mining University, Saint-Petersburg; krasotkina93@mail.ru

³Institute of Precambrian Geology and Geochronology RAS, Saint-Petersburg; skublov@yandex.ru

The geochemical studies are devoted to the memory of Academician N. P. Yushkin, who during his life paid much attention to this scientific direction. For the first time zircons from the titanium ores of Pizhemskoe deposit were analyzed with local dating (U-Pb method, SHRIMP-II). The wide range of age values within the interval from 2740 Ma to 334 Ma was determined. The ages could be arranged into three groups: neoproterozoic (5 points), meso- paleoproterozoic (26 points), archaean (3 points) with marked polymodal distribution of maximums in the intervals of 600, 900, 1000–1600, 1600–2000 and 2660–2740 Ma. The geochemical type of zircon with xenotime heterovalent isomorphism $(Zr+Si)^{4+} \rightarrow (Y+REE)^{3+} + P^{5+}$ was determined. The relatively low Y + REE content in the range of 150 to 3000 ppm is common for the majority of grains. However the data selecting includes more than 10 % of zircon grains with anomalously high total content of these elements up to 1–3.5 % wt., which also correlates with P content. The obtained material corresponds to the dating results and geochemistry of zircons selected from overlying conglomerate-breccia bed of the Ichetyu occurrence and chetlasskiy lamprophyres. The specific «Timansky» type of yttrium-phosphorus-rare-earth zircon was determined. This fact proves a single zircon source for both industrial sites. In addition zircon could originate from different depth levels of underlying crystal basement. The zircon dating shows that the titaniferous formation is elder than it was considered earlier (Middle Devonian) and its age should be estimated as Precambrian.

Keywords: zircon, Pizhemskoe deposit, U-Pb age, rare earth elements, Middle Timan.

Введение

Титаноносные песчаники Пижемского месторождения слагают малоручейскую свиту, которая распространена локально (6 × 18 км) на севере Вольско-Вымской гряды (Средний Тиман) на площади примерно 90 км², образуя Пижемскую депрессию. Отложения малоручейской свиты с угловым и стратиграфическим несогласием залегают на метаморфических породах (глинистых хлорит-серицит-каолинит-кварцевых сланцах) верхнего протерозоя (PR₂). Титаноносная толща перекрывается аллювиально-дельтовыми мономинеральными кварцевыми (98 мас. % SiO₂) среднедевонскими песчаниками пижемской свиты (D_2pz) (стекольного качества) и вулканогенно-осадочной толщей позднего девона (D_3 fr), в строении которой принимают участие базальтовые покровы мощностью до 10 м и их туфы. Геологическое строение толщи и минералогические особенности титановых руд Пижемского месторождения близки Ярегскому месторождению Южного Тимана, но в отличие от последнего пижемские лейкоксен-кварцевые песчаники не содержат нефти [10, 11]. В минеральном составе тяжелой фракции преобладает лейкоксен, содержание его в песчаниках варьирует в пределах 5–15 %. Кроме того, присутствует реликтовый ильменит, лейкоксенизированный ильменит (Fe-рутил, «псевдорутил»), циркон, ру-

тил, монацит-куларит. Для руд характерна также наложенная сидеритизация, каолинизация и ожелезнение (в виде гематита и гетита). Мощность рудной малоручейской толщи (mr¹⁻²) изменяется от 10 до 90 м, увеличиваясь на северо-запад и восток, и определяется палеорельефом, образуя две сближенные корытообразные линзовидные залежи (Западную и Восточную), удлиненные в СЗ-направлении. Отсутствие руководящих окаменелостей не позволяет определить иной возраст титаноносной толщи, кроме досреднедевонского. По Rb-Srизотопным данным возраст малоручейской титаноносной толщи определен как позднерифейский — 685 млн лет [18]. Нерешенной задачей остается определение возраста и источника редкометалльной минерализации Пижемского месторождения, в том числе циркона, который имеет здесь промышленный интерес.

Генезис Пижемского месторождения является предметом дискуссий. Вначале была высказана гипотеза о россыпной природе Пижемского месторождения [1-3, 17 и др.)]. В последнее время установлено множество фактов, доказывающих несостоятельность этой точки зрения [4, 5, 9 и др.]. Среди них стоит отметить: отсутствие органических остатков (фауны и флоры), латеральной и фациальной зональности для рудной малоручейской толщи, классического разреза коры выветривания рифейских сланцев (которые предполагались коренным источником лейкоксена); несоответствие уровня содержания Ті в породах рифейского фундамента и в руде Пижемского месторождения, исключающее аккумуляцию Ті в таких масштабах при образовании коры выветривания по сланцам. Из минералогических критериев следует упомянуть остроугольность и неокатанность кварца в песчаниках Пижемского месторождения; игольчатую форму новообразованного рутила, исключающую его россыпное происхождение [5]; признаки гидротермального образования сидерита in situ (многочисленные секущие прожилки мощностью 1-2 мм). Изотопный состав углерода сидерита пижемских руд такой же, как углерода алмаза проявления Ичетью [12, 13], — это означает, что углерод сидерита мантийный, а не коровый осадочный.

По мнению авторов, Пижемское циркон-титановое месторождение имеет эндогенное происхождение, а именно фреатомагматическое. Само Пижемское месторождение по форме рудных тел напоминает кальдеру, характеризуется ячеистым строением с конусообразными глубокими выемками (до 100 м), заполненными песчано-глинистым материалом и имеющими пространственную связь с глубинными разломами. Об этом свидетельствуют геологические разрезы, составленные по материалам разведочного бурения. Заполнение Пижемской кальдеры песчано-глинистым материалом, возможно, происходило по типу грязевых вулканов. Инициатором и движущим фактором подобного процесса могли быть глубинное внедрение неопротерозойских базальтоидов или собственно лампрофиров (аналоги которых керсантит-спессартитового ряда широко распространены в соседней Четласской гряде) и их взаимодействие с метеорными водами. Последние, образуя агрессивный водяной пар, разрушали лампрофиры, которые предположительно находятся на некоторой глубине под Пижемским месторождением (они аналогичны по составу четласским предполагаемому источнику титана Пижемского месторождения) и выносили продукты их разрушения в кальдеру. Доказательством того, что протолитом титановых

руд были именно лампрофиры, а не сланцы, являются результаты изучения типоморфных особенностей породообразующих и акцессорных минералов обоих объектов [5, 8 и др.]. Отсутствие дальнего переноса материала доказывается формой кластогенного остроугольного, совершенно неокатанного кварца. Материал кальдеры (малоручейской титаноносной толщи) сформировался в агрессивной среде (CO₂ + горячий водяной пар) и поэтому не содержит фауны и флоры — по сути, зернистые разности пород титановых руд являются продуктами разрушения щелочно-ультраосновных пород.

Методика исследований. Датирование циркона U-Рb-методом проводилось в ЦИИ ВСЕГЕИ на ионном микрозонде высокого разрешения SHRIMP-II по стандартным методикам. Для выбора точек анализа использовались изображения зерен циркона в проходящем свете, в режиме катодолюминесценции (CL) и в обратно-отраженных электронах (BSE). Содержание редкоземельных (REE) и редких элементов в цирконе определялось на ионном микрозонде Cameca IMS-4f в ЯФ ФТИАН (аналитики С. Г. Симакин, Е. В. Потапов) по приведенным методикам [16, 21]. Размер исследуемого участка минерала не превышал в диаметре 15-20 мкм; относительная ошибка измерения для большинства элементов составляла 10-15 %; порог обнаружения элементов в среднем равнялся 10 ppb. При построении спектров распределения REE состав циркона нормировался на состав хондрита СІ [24]. Оценка температуры кристаллизации циркона выполнена с помощью термометра «Ті-вцирконе» («Ti-in-zircon») [27].

Результаты и их обсуждение

Характеристика циркона. Объектом настоящего исследования стал циркон, выделенный из сборной 250 кг технологической пробы (ПЖ-50) титановой руды средней сероцветной толщи (mr²) малоручейской свиты, составленной из 170 керновых проб 21 разведочной скважины, пробуренных в юго-западной части месторождения. Размерность кристаллов варьирует от 60 до 270 мкм, примерно половина из них — изометричные, другие — слабоудлиненные с К_{уд} от 1.4 до 3.1, умеренно- и слабоокатанные. Цвет кристаллов циркона водяно-прозрачный, бледно- и темно-розовый и бледно-желтый. Изометричные кристаллы чаще водяно-прозрачные и бледно-желтые с плохо выраженной зональностью или без неё. Удлиненные кристаллы циркона, как правило, демонстрируют в катодолюминесценции (CL) магматическую осцилляционную зональность.

Возраст циркона. Локально было продатировано 35 зерен циркона мелкой фракции (-0.25+0.07 мм) из пробы ПЖ-50 Пижемского месторождения (рис. 1), до этого в ГИ КНЦ РАН (методом TIMS для одиночных зерен) изучены 7 зерен циркона [11]. Полученные результаты сравниваются ниже с данными по геохимии и возрасту циркона, выделенного из шлиховых проб вышележащего полиминерального конглобрекчиевого пласта проявления Ичетью и керновых проб лампрофиров Четласского Камня [6-8, 10].

Результаты определения возраста циркона, выделенного из немагнитной лейкоксеновой фракции пробы ПЖ-50, показали широкий разброс значений — от 334 до 2740 млн лет (рис. 2, табл. 1). Датировки разделяются на три совокупности: неопротерозойские (5 точек), мезопа-

Рис. 1. Изображение в CL циркона Пижемского месторождения (левая часть рисунка — высокоиттриевый циркон; средняя часть — умеренно иттриевый циркон) и лампрофиров Четласского Камня (правая часть рисунка). Размер поля анализа равен ~20 мкм. Номера анализов совпадают с табл. 1, 2

Fig. 1. Image in CL zircon of the Pizhemskoe deposit (left part of drawing — high-Y zircon; middle part of drawing — moderately Y-zircon) and lamprophyres of the ridge Chetlassky Kamen (the right part of drawing). The size of the field of the analysis is equal ~ 20 microns. Numbers of analyses coincide with Table 1, 2

леопротерозойские (26 точек), архейские (3 точки) с выраженным полимодальным распределением максимумов в интервалах 600, 900, 1000–1600, 1600–2000 и 2660–2740 млн лет (рис. 3). Самое «молодое» измеренное значение возраста — 334 ± 8 млн лет — получено для зерна циркона (точка 33.1), которое характеризуется повышенным содержанием Y, P, HREE и других компонентов, что приводит к нарушению равновесия изотопной U-Pb-системы (D = 319 %).

Установленные значения возраста циркона из титановых руд близки возрасту циркона из лампрофиров керсантит-спессартитового ряда Четласского Камня, что говорит о возможном вкладе циркона из ксенолитовой части лампрофиров в образование Пижемского месторождения. Собственных лампрофировых цирконов, подтверждающих позднепротерозойский возраст этих пород [8], пока не обнаружено. Широкий диапазон более древних значений возраста свидетельствует о поступлении циркона во все объекты из различных по глубине

Рис. 2. График с конкордией с результатами датирования циркона Пижемского месторождения

Fig. 2. Schedule with Concordia with results of dating of zircon of the Pizhemskoe deposit.

залегания пород фундамента. Пять зерен циркона образуют дискордию со значением верхнего пересечения с конкордией — около 1893 ± 37 млн лет, что соответствует широко проявленному в северо-западном регионе свекофеннскому этапу метаморфизма. К этой возрастной отметке также тяготеют результаты, полученные «классическим» методом датирования единичных зерен циркона в ГИ КНЦ РАН [6].

Датировки циркона из дайки лампрофиров (проба 55/193) также распределились в три совокупности: неопротерозойские (890–940 млн лет — 2 точки), мезопротерозойские (1100–1600 млн лет — 4 точки), палеопротерозойские (2040 млн лет — 1 точка). Самый молодой возраст — 361 ± 9 млн лет — получен для зерна циркона (точка 43.1), в котором нарушено равновесие изотопной U-Pb-системы (большое значение обратной дискордантности D = -37 %, табл. 1). Распределение датировок циркона из лампрофиров повторяет особенности и вписывается в облик полимодального распределения возрастных максимумов для циркона Пижемского место-

Рис. 3. Распределение значений U-Pb-возраста циркона Пижемского месторождения

Fig. 3. Distribution of U-Pb values of age of zircon of the Pizhemskoe deposit

Таблица 1. Характеристика и U-Pb-возраст циркона Пижемского месторождения и лампрофиров Четласского Камня Table 1. Characteristic and U-Pb age of zircon of the Pizhemskoe deposit and lamprophyres of the Chetlassky Kamen Ridge

Точка анализа Analysis point	Характеристика (оттенок, зональность при наличии) Charateristics (hue, zonality if present)	Размер, мкм Size, mcm	К _{уд}	²⁰⁶ Pb _c , %	U, ppm	Th, ppm	²³² Th / ²³⁸ U	²⁰⁶ Pb*, ppm	Возраст Age ²⁰⁶ Pb/ ²³⁸ U, млн лет Ма	Возраст Age ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет Ма	D, %
		Пиже	мское	местор	ждение	/ Pizhem	skoe dep	osit			
1.1 (кайма) (rim)	черный / black	86×143	1.66	1.25	137	77.9	0.59	34.9	1646±38	1664±74	1
2.1 (центр) (center)	темно-серый dark gray	86×143	1.66	0.09	137	102	0,77	38.3	1814±39	1878±25	4
3.1	светло-серый, мозаичная Light gray, mozaic	86×114	1.32	0.00	30.6	43.0	1.45	13.9	2740±64	2699±29	-1
4.1 (край) (rim)	черный / black	114×143	1.25	1.43	1382	1838	1.37	112	571±13	1431±42	151
5.1 (центр) (center)	темно-серый, секториальная dark gray, sectorial	86×129	1.50	0.21	128	45.2	0.36	40.2	2001±43	2012±24	1
6.1	темно-серый, осцилляционная dark gray oscillation	114×114	1.00	1.42	200	116	0.60	41.1	1359±31	1580±55	16
7.1 (центр) (center)	темно -серый dark gray	114×143	1.25	0.26	193	26.5	0.14	41.7	1444±32	1430±34	-1
8.1 (центр) (center)	светло-серый, секториальная light gray, sectorial	77×157	2.04	1.45	39.7	30.4	0.79	3.21	572±17	614±280	7
9.1 (центр) (center)	черный / black	100×100	1.00	0.26	475	188	0.41	97.4	1377±31	1324±21	-4
10.1	черный / black	86×100	1.16	0.20	269	128	0,49	49.0	1237±27	1196±33	-3
11.1	темно-серый, осцилляционная dark gray, oscilaltion	71×129	1.81	0.22	111	57.7	0.54	18.9	1164±28	1155±62	-1
12.1 (кайма) (rim)	черный / black	86×114	1.32	0.41	483	160	0.34	81.5	1151±25	1247±31	8
13.1 (центр) (center)	темно-серый, секториальная dark gray, sectorial	114×143	1.25	0.40	106	66.8	0.65	18.4	1187±32	1205±58	2
14.1	светло-серый, осцилляционная light gray, oscillation	104×130	1.25	1.46	30.7	17.6	0.59	5.11	1124±32	1061±220	6
15.1	темно-серый dark gray	83×143	1.72	0.22	159	94.3	0.61	40.2	1660±36	1693±30	2
16.1 (центр) (center)	черный black	99×125	1.26	0.53	404	147	0.38	96.0	1565±33	1490±32	-5

41

Продолжение табл. 1

Продолжение табл. 1 Сопtinue of table														
Точка анализа Analysis point	Характеристика (оттенок, зональность при наличии) Charateristics (hue, zonality if present)	Размер, мкм Size, mcm	К _{уд}	²⁰⁶ Pb _c , %	U, ppm	Th, ppm	²³² Th / ²³⁸ U	²⁰⁶ Pb*, ppm	Возраст Age ²⁰⁶ Pb/ ²³⁸ U, млн лет Ма	Возраст Age ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет Ма	D, %			
Пижемское месторождение / Pizhemskoe deposit														
17.1 (центр) (center)	темно-серый, секториальная dark gray, sectorial	73×119	1.63	0.84	73.1	175	2.48	13.3	1228±30	1084±120	-12			
18.1 (центр) (center)	темно-серый, секториальная dark gray sectorial	91×104	1.14	0.21	164	218	1.38	24.2	1020±23	978±65	_4			
19.1 (кайма) (rim)	черный / black	130×156	1.20	0.36	365	183	0.52	81.9	1489±32	1424 ± 38	-4			
20.1 (центр) (center)	темно-серый, секториальная dark gray	104×130	1.25	0.40	158	43.2	0.28	46.6	1896±41	1812±30	-4			
21.1 (центр) (center)	темно-серый, осцилляционная dark gray	60×182	3.03	0.71	335	56.8	0.17	61.4	1237±27	1124±67	-9			
22.1 (ядро) (core)	темно-серый dark gray	104×208	2.00	0.33	88.5	109	1.28	27.9	2007±45	1915±36	-5			
23.1 (ядро) (core)	темно-серый dark gray	78×104	1.33	0.86	167	129	0.80	33,1	1327±30	1253±65	-6			
24.1 (центр)	светло-серый, секториальная light gray, sectorial	78×104	1.33	0.50	68.7	71.0	1.07	16.2	1555±36	1495±63	-4			
25.1 (кайма) (rim)	черный / black	68×130	1.91	0.40	902	387	0.44	119	918±20	$1694\pm\!18$	85			
26.1 (кайма) (rim)	черный / black	117×146	1.25	0.57	252	95.2	0.39	45.6	1225±30	1110 ± 46	-9			
27.1	черный / black	154×154	1.00	0.34	378	291	0.80	113	1912±40	1977 ± 17	3			
28.1	светло-серый, осцилляционная light gray, oscillation	146×268	1.84	0.50	145	119	0.84	12.1	591±15	701±100	19			
29.1	черный / black	98×195	1.99	0.05	340	140	0.43	78.3	1531±33	1541±19	1			
30.1 (ядро) (core)	темно-серый dark gray	59×184	3.12	0.49	164	235	1.48	14.4	627±15	589±110	-6			
31.1 (кайма) (rim)	черный / black	85×141	1.66	1.60	437	73.1	0.17	100	1500±32	1856±37	24			
32.1 (центр) (center)	светло-серый, осцилляционная light gray, oscillation	85×158	1.86	0.34	88.6	36.2	0.42	39.1	2662±56	2678±35	1			
33.1	черный / black	89×129	1.45	0.89	1950	1637	0.87	89.9	334±8	1400±34	319			
34.1	черный / black	87×94	1.08	0.22	275	186	0.70	125	2737±54	2679±12	-2			
35.1 (ядро) (core)	черный / black	94×200	2.13	0.16	568	279	0.51	96.6	1162±25	1112±24	_4			

Окончание табл. 1 End of table 1													
Точка анализа Analysis point	Характеристика (оттенок, зональность при наличии) Charateristics (hue, zonality if present)	Размер, мкм Size, mcm	К _{уд}	²⁰⁶ Pb _c , %	U, ppm	Th, ppm	²³² Th / ²³⁸ U	²⁰⁶ Pb*, ppm	Возраст Age ²⁰⁶ Pb/ ²³⁸ U, млн лет Ма	Возраст Age ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет Ма	D, %		
	Ламп	рофиры Ч	етласс	кого Кам	иня Lamp	orophyres	s of Chet	lassky K	lamen				
36.1	темно-серый, осцилляционная dark gray oscillation	67×133	1.99	0.10	480	144	0.31	155	2060±44	1955±13	-5		
37.1 (ядро) (core)	темно-серый, осцилляционная dark gray oscillation	108×117	1.08	0.37	141	54,0	0.40	24.3	1173±27	1161±56	-1		
38.1 (край) (rim)	темно-серый, осцилляционная dark gray oscillation	100×125	1.25	0.38	282	95,4	0.35	63.2	1491±33	1480±32	-1		
39.1 (край)	темно-серый, осцилляционная dark gray oscillation	67×108	1.61	0.40	263	97,2	0.38	64,4	1607±35	1597±24	-1		
40.1 (ядро) (core)	темно-серый, осцилляционная dark gray oscillation	60×95	1.58	0.26	2275	717	0.33	291	893±20	918±18	3		
41.1	черный / black	40×70	1.75	0.70	3605	1229	0.35	488	937±20	1012 ± 18	8		
42.1 (центр) (center)	темно-серый, осцилляционная dark gray oscillation	65×80	1.23	0.29	194	80,0	0,43	31,7	1119±26	1126±45	1		
43.1 (ядро) (core)	яркий, светло- серый, осцилляционная bright, light gray, oscillation	45×80	1.78	0.67	245	397	1,68	12,2	361±9	228±160	-37		

рождения. В отличие от последних, совокупность циркона из лампрофиров не содержит древних зерен архейского возраста. Необходимо отметить, что четласские лампрофиры несут в себе большое количество ксенолитов [8] как мантийных ультраосновных пород (лерцолитов, верлитов), так и вмещающих пород фундамента разнообразного состава и возраста (гнейсы, кварциты, метасоматиты и др.). Поэтому широкий разброс значений возраста циркона из лампрофиров представляется легкообъяснимым. Размер зерен циркона из лампрофиров, обычно представленных обломками, заметно меньше размера циркона Пижемского месторождения. Зональность у них только магматическая осцилляционная, так же как и у неопротерозойского циркона Пижемского месторождения. Можно сделать вывод, что одним (но не основным) из источников циркона Пижемского месторождения могли быть разновозрастные ксенолиты из среднетиманских лампрофиров, основная часть циркона могла поступать непосредственно из разновозрастных пород фундамента. Возраст циркона вышезалегающего полиминерального золото-алмаз-редкоземельно-редкометалльно-титанового проявления Ичетью описан нами ранее [6, 7] и существенно не отличается от возраста рассмотренных здесь объектов.

Геохимия циркона. Анализ циркона Пижемского месторождения по морфологии, структуре в CL и содержанию редких элементов показал, что весь циркон можно разделить на две совокупности: циркон с высоким содержанием Y и других редких элементов (более 3000 ppm Y, 6 зерен) и циркон с умеренным содержанием редких элементов (29 зерен, табл. 2).

Высокоиттриевый циркон отличается повышенным содержанием REE — от 2000 до 13400 ppm, пологим спектром их распределения (рис. 4, а), отсутствием (по крайней мере в четырех зернах с максимальным содержанием Y величина Ce/Ce* в среднем составляет 2.3) положительной Ce-аномалии и наличием редуцированной отрицательной Eu-аномалии (Eu/Eu* в среднем 0.56 для пяти зерен).

Умеренно иттриевый циркон демонстрирует сравнительно узкий диапазон распределения REE — для 24 зерен спектры распределения REE сливаются в одну полосу шириной не более одного порядка хондритового отношения (рис. 4, б). Эта полоса достаточно дифференцирована от легких к тяжелым REE (Lu_N/La_N отношение в среднем около 7000), четко выражены положительная Се-аномалия (Се/Се^{*} в среднем 43) и отрицательная Euаномалия (Eu/Eu^{*} в среднем 0.2). Такие характеристики

43

Рис. 4. Спектры REE для циркона Пижемского месторождения (а — высокоиттриевый; б — умеренноиттриевый циркон) и лампрофиров Четласского Камня (в). На рис. 4, б черными ромбиками обозначен состав умеренно иттриевого циркона за исключением подписанного отдельно

Fig. 4. REE ranges for zircon of the Pizhemskoe deposit (and — high-Y; — moderately Y-zircon) and lamprophyres of the ridge Chetlassky Kamen (c). In fig. 4c black diamond has composition of moderately Y-zircon except for signed separately

отвечают типичному циркону магматического генезиса [23]. Четыре циркона, показанные на рис. 4б белыми квадратами, отличаются повышенным содержанием LREE (в сумме от 60 до 160 ррт, табл. 2), практически выположенной положительной Се-аномалией (Се/Се* в среднем 4.0) и редуцированной отрицательной Eu-аномалией (Eu/Eu* в среднем 0.51). В этих зернах отмечено высокое содержание Са (в среднем 208 ppm), Li (в среднем 43.5 ppm) и Hf (в среднем 10170 ppm) при умеренном содержании U (416-785 ppm). С учетом того, что три из четырех точек (1.1, 12.1, 27.1 на рис. 1) принадлежат черным в CL каймам циркона, то происхождение этих кайм можно считать метаморфическим при активном воздействии флюида. Одна точка циркона (7.1) резко обособлена на рис. 4, б, ее отличает пониженное содержание средних и тяжелых REE, незначительная отрицательная Eu-аномалия, но при этом положительная Ce-аномалия хорошо проявлена (Се/Се* = 40), и сохраняется дифференцированный характер спектра REE. Пониженное Th/U-отношение (0.09 — табл. 2) говорит о возможном метаморфическом генезисе этого домена циркона.

Циркон из лампрофиров по характеру распределения REE можно разделить на две подгруппы — черные в CL зерна (точки 40.1 и 41.1, рис. 1) являются высокоиттриевыми (5165 и 5623 ppm соответственно). В них установлено повышенное содержание REE (3420 и 4243 ppm), спектры REE значительно приподняты в области легких REE (LuN/LaN отношение в среднем 160), положительная Ce-аномалия редуцирована (рис. 4, в). Однако сохраняется отрицательная Eu-аномалия (Eu/Eu* в среднем 0.06). Остальные шесть зерен циркона из лампрофиров по распределению REE близки к типичному умеренноиттриевому циркону Пижемского месторождения.

Для изученного циркона характерна положительная корреляция содержания Ү и Р (рис. 5, а). Составы умеренно иттриевого циркона Пижемского месторождения и лампрофиров совпадают на этом графике, а высокоиттриевые цирконы образуют единый тренд точек, соединяющийся с основной группой. Такое соотношение Ү и Р обусловлено ксенотимовой схемой изоморфизма в цирконе, при которой $(Y + REE)^{3+}$ и P^{5+} замещают $(Zr + Si)^{4+}$ [19]. Если в высокоиттриевом цирконе Пижемского месторождения содержание Ү не превышает 15000 ррт, то в цирконе из вышележащего проявления Ичетью содержание Ү достигает 100000 ррт [14]. При этом содержание Р закономерно увеличивается от 10000 до 40000 ppm с ростом содержания Y и суммы REE. Ранее для циркона, также аномально обогащенного Y и REE, из различных комплексов пород Фенноскандинавского щита, было установлено, что содержание Р увеличивается всего лишь до 500-800 ppm, что предполагает иную, не ксенотимовую схему изоморфного вхождения У и REE в структуру циркона [15]. Ксенотимовая схема изоморфизма для изученного циркона Тимана также подтверждается соотношением Y и суммы REE в пропорции 1:1 и практически непрерывным трендом изменения состава циркона по Y и REE с высокой степенью корреляции (рис. 5, б).

Содержание Y и Nb коррелирует только в высокоиттриевом цирконе Пижемского месторождения (рис. 5, в). В умеренноиттриевом цирконе содержание Nb варьирует от 6 до 70 ppm (табл. 2) вне зависимости от уровня содержания Y. Циркон из лампрофиров в целом, за исключением двух высокоиттриевых зерен, содержит меньше Nb. Teблица 2. Содержание редких и редкоземельных элементов (ppm) в цирконе Пижемского месторождения и лампрофирах ЧетласскогомКамня Table 2. Composition of rare and rare-earth elements (ppm) in zircon of the Pizhemskoe deposit and lamprophyres of the Chetlassky Kamen Ridge

		16.1	0.02	21.4	0.08	0.63	1.36	0.11	7.03	43.1	114	259	48.8	122	109	0.87	13.2	0.23	615	17.1	1.18	11426	171	648	0.26	0.11	137	496	22.2	472	26765	56.2	124	768
		15.1	0.13	13.3	0.12	2.05	4.88	0.62	29.5	132	269	464	6.69	6.94	188	2.23	8.84	0.50	1518	23.0	1.29	7778	92.0	232	0.40	0.16	26.8	985	15.6	964	5347	19.2	62.1	732
		14.1	0.14	25.8	0.13	1.60	3.70	0.98	16.7	62.3	121	219	36.9	12.5	258	1.67	40.1	0.22	722	23.7	1.62	7846	24.3	56.4	0.43	0.38	45.5	489	27.7	457	2495	17.9	41.5	882
		13.1	0.33	12.5	1.58	16.9	16.4	2.22	51.1	164	291	459	72.6	9.40	272	40.9	21.2	0.78	1669	15.7	2.78	8763	84.5	175	0.48	0.23	4.19	1088	31.3	1038	2132	11.5	80.3	814
	zircon	12.1	1.45	49.2	8.77	98.8	80.0	15.2	139	207	342	621	98.6	49.6	680	325	44.7	3.04	1903	30.5	25.2	10925	195	785	0.25	0.44	3.34	1662	158	1408	653	5.72	88.1	895
	syttrium	11.1	0.06	22.4	0.23	4.92	10.8	0.84	50.2	167	356	583	83.0	0.11	303	0.78	10.6	0.11	2104	46.3	1.23	7201	61.5	160	0.39	0.11	45.0	1278	27.6	1238	12697	13.4	274	749
	Moderate	10.1	0.06	30.6	0.08	0.86	2.79	0.27	21.0	123	351	757	127	1.28	475	0.74	5.38	0.69	1794	50.7	1.35	1780	132	397	0.33	0.11	112	1413	31.5	1378	1351	48.9	77.8	691
e deposit	ркон / 1	9.1).28	17.7	.90	10.7	15.4	.95	t5.1	199	430	721	107	22.9	154	28.9	10.3	66.(403	50.4	2.07	0847 1	201	598).29).22	3.51	549	59.6	502	676 2	19.2	38.1	745
nemskoe	евый ци	8.1) 60.	.72	.34 (<u> </u>	.02	.33	2.2	28	23	57	1.4	.04	3,3	.78	2.4	.37 (287 2	8.7	2 62.	602 1(7.8	6.3 (.57 (.21	.58	333 1	1.1	811	597 3	1.8	61 8	\$20
rom Pizł	эидтти с	.1 8	.03 0	.01 4	.03 0	.12 5	.14 9	.04 1	.81 4	.63	2.8	3.5 3.	1.8 6	1.7 0	6.9 9	.06 0	98 2	24 0	9.2	7.8 1	0 69.	350 6	9.6 3	23 6	0 60.	.34 0	9.6 6	8 6.7	19 1	2.6 8	032 6	18 1	.71 1	68 8
Zircon f	меренна	1 7	14 0.	.9 5.	0 0	.4	.4	.0	53 0	3.	9	00	.6 1	.0 3	33 10	9	i. U	70 0.	31 6	.5 2	.1	517 10	38	57 3	40 0.	58 0.	<u> </u>	81 7	14 5.	51 7.	30 4(31 1	6.)6 6
дения /	V	1 6.	8 2.	.5 59	.7 - 68	80 74	.5 69	17 17	.3 12	1 22	9 31	9 59	.6 95	31 55	2 88	30 30	.1 49	15 2.3	35 18	.9 30	35 12	91 105	.3 18	5 46	25 0.4	0.1	.4 3.(5 15	.8 14	2 13.	23 43	.6 6.	4 51	8 90
сторож;		1 5.	0 0.0	3 14	9 0.3	1 6.8	10 10	4 0.4	0 40	7 12	6 20	8 32	7 52.	0 5.8	4 23	8 1.3	.0 18	8 0.4	7 118	5 45.	1 0.8	90 819	7 51	7 20	12 0.2	i6 0.0	4 20.	6 78	0 21	1 75	45 672	8 10	2 22	8 79
кого ме		1 3.	0 0.1	.9 41	3 0.3	37 5.2	34 6.8	5 1.5	.1 25.	6 63.	4 10	5 17	.2 28.	.1 1.1	5 19	32 0.6	.7 18	9 0.1	29 65	.2 41	0 1.2	88 769	7 45.	7 44	54 1.0	27 0.3	.6 51	20 45	.2 47	7 40	30 282	.5 9.2	7 11	1 79
Пижемс		1 2.	8 0.1	0 29	6 0.3	6 3.8	8 6.8	0 1.3	2 34	5 12	6 26	9 47	9 78	9 16	4 40	9 0.8	0 22	2 0.3	30 152	4 59	7 0.5	31 898	8 15	6 24	6 0.6	6 0.2	2 39	9 102	8 34	6 97	6 733	3 18	3 10	0 82
[иркон]	-	1.	0.0	30.	3.1	28.	30.	7 10.	97.	19	29	45	68.	7 36.	47	10	60.	9.4	3 163	1 67.	9.8	5 928	14	41	0.3	0.5	4.1	7 121	62.	5 111	5 67	5 5.7	50.	93
Τ	un zircoi	35.1	0.12	21.]	0.72	11.(18.(0.27	81.8	300	575	899	136	0.17	331	5.9]	16.9	0.92	319.	15.4	3.33	918	305	884	0.35	0.0	17.(204	33.(199	1060	13.5	232	791
	gh-yttriu	33.1	21.2	738	133	1363	1159	273	1792	2148	1698	2675	409	7.9.7	8014	4473	599	61.0	14741	54.7	407	20918	2133	3237	0.66	0.58	3.37	12409	2254	8723	186	1.85	87.7	1304
	кон / Ні	31.1	7.71	125	26.8	210	114	31.6	215	391	450	673	106	15.0	1661	573	97.8	6.95	3010	13.6	19.2	11204	96.5	730	0.13	0.61	2.11	2352	370	1836	132	3.98	23.8	994
	зый цир	30.1	0.18	112	0.70	10.9	17.1	5.36	80.4	323	632	1113	189	0.05	437	2.78	13.7	0.59	3654	15.6	1.62	9271	372	318	1.17	0.44	77.0	2484	124	2337	10248	19.0	154	771
	иттриен	25.1	33.0	243	49.9	464	461	108	681	902	916	1465	231	83.9	3501	1430	181	24.3	6252	31.4	134	12306	394	1335	0.30	0.58	1.45	5553	789	4195	67.3	2.74	22.4	1084
	Высокс	4.1	42.9	880	213	1830	1115	245	1603	2183	1987	2879	429	21.5	8629	5168	776	58.3	14044	49.0	484	9064	2177	2224	0.98	0.56	2.23	13408	2967	9081	96.4	2.16	41.7	1360
Компо-	нент	Component	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Li	Р	Ca	Ξ	Sr	Y	Nb	Ba	Hf	Th	n	Th/U	Eu/Eu*	Ce/Ce*	ZREE	ZLREE	THREE	Lu _N /La _N	Lu _N /Gd _N	Sm _N /La _N	T(Ti), °C

End of table 2

45.5 0.12 1.64 5.46 25.9 95.4 73.5 4.63 6.17 5.74 1.26 1129 11.8 3.06 8038 169 250 0.6822.9 0.09 443 0.54 904 47.4 43.1 167 601 849 8161 2.11 211 696 101 Zircon of lamprophyres of Chetlassky Kamen 9010 25.1 95.5 54.8 0.401113 1.90 74.2 256 4659 2.79 4.67 0.290.15 Циркон лампрофиров Четласского Камня 0.244.82 0.53 13.4 17.7 12.3 199 343 0.77228 22.4 739 15.4 718 820 [8.] 58. 42. 0.1 12474 401 1735 5623 38.9 26.9 1646 5959 4243 1653 3.68 1307 28.3 0.280.07 2.12 3698 8.19 20.5 4.18 238 610 956 415 113 9.85 203 26.1 166 126 241 567 12.0 11239 5165 3519 10.690.4 12.2 80.9 57.4 1466 96.4 10.5 17.1 831 0.240.05 3420 3167 12.7 8.66 1.401.92 840 229 194 208 486 3.67 1311 992 146 184 40.] 82.5 28.4 0.29 4.17 87.9 3.13 0.62 1984 11.2 2.85 9191 0.33 0.17 35.0 33.0 0.13 6.85 0.8434.3 16.6 1523 1482 9151 29.8 384 782 126 605 112 343 156 790 39.1 51.9 42.6 42.8 1048 13.6 6.69 9131 98.0 28.6 52.6 18.5 0.25 0.40555 15.3 38.1 17.4 10.0 0.6 27.5 94.2 178 328 249 7.66 679 0.32 0.942.24 1.01 394 721 800 37.1 0.17 185 352 58.6 0.243.47 0.4613.8 60.9 32.9 686 5862 31.6 0.10 12.3 0.092.73 15.0 75.2 8.84 954 4.34 8511 0.280.08 1.55 212 216 703 14.1 45.4 732 33.4 0.20 2.79 0.32 22.1 70.2 133 256 46.048.7 96.2 6.57 12.7 0.37 14.8 5.58 7517 133 696 0.190.09 35.6 750 4.91 36.7 6.8 787 570 528 31.1 0.25 765 36.1 53.0 25.5 27.0 1452 2.38 8802 0.39 13.0 44.0 1.03 0.540.28 3.36 755 303 l.16 11.8 206 321 559 13.1 219 406 22.7 9.74 53.3 9.34 2.21 793 131 97.1 839 34.1 1.23 8186 11.5 46.5 111 227 39.4 0.91 12.2 0.18 619 44.0 17.9 27.8 41.0 0.08 5.63 0.07 0.862.17 0.50 11.7 5.860.306.64 4473 145 444 435 113 0.31 761 32. 9569 21,6 23.6 0.13 1.803.79 85.5 316 54.0 40.4 4.44 11.9 17.3 1.10 36.0 2765 20.3 0.11 179 0.21 998 146 494 0.290.04686 25.7 656 32.2 190 29.1 759 Циркон Пижемского месторождения / Zircon from Pizhemskoe deposit 30.2 10.9 0.79 8930 60.9 0.100.37 65.2 67.3 0.07 0.36 14.7 0.590.20 31.5 447 40.8 25.2 0.15 1.13 13.3 174 376 223 15.7 918 123 208 730 695 750 28.] Умеренно иттриевый циркон / Moderate yttrium zircon 6966 32.3 482 4.15 35.0 23.2 5.68 59.8 41.6 89.0 1.16 18.2 12.8 27.1 42.2 118 267 1.33 1101 4.81 335 601 0.560.46 4.64 780 32.5 669 345 5.63 32.0 182 799 0995 1755 1012 20.8 1.1016.8 17.9 49.9 0.0215.3 0.540.2618.422.5 26.1 0.040.11 1.460.11 82.3 179 319 1881.33 112 428 0.0460.1 670 648 129 782 3.31 50.2 13.0 73.6 37.4 42.4 0.78 2472 14.3 2.89 7245 0.49 23.7 1594 64.5 1503 4176 13.0 24.1 0.96 20.4 6.25 415 0.870.27 402 688 118 103 118 120 5.71 889 221 53.7 2.62 351 618 33.9 550 250 19.1 1.15 1975 20.0 1.408369 0.560.33 4.19 273 16,3 5.96 23.1 2.90 397 77.4 303 17.5 13.7 51.7 179 104 144 260 3.67 804 0578 1743 8174 39.8 1136 33.4 0601 26.6 0.366.89 0.6825.6 0.52 15.2 0.98 12.8 22.1 0.07 6.37 0.85 0.23 0.5 1.70 50,1 163 301 497 79.2 251 115 135 232 833 6838 0.12 1.85 4.25 288 39.5 1.69 4.77 0.401144 33.9 43.1 0.0821.1 16.2 55.3 1.20 18.3 657 3.3 0.70 50.1 669 0.05 24,1 214 56.1 556 0.21 675 137 682 111 8387 131 223 36.9 56.9 99.4 14.7 0.25 700 17.6 1.18 14.5 58.1 0.87 38.3 0.18 7786 0.05 8.92 0.08 1.122.230.05208 0.02 36.4 10.2 20.5 78.1 476 463 778 20.1 2.27 10584 17.6 14.01264 26.03815 29.9 0.425.261.26 28.2 103 416 66.6 19.7 0.77 205 0.28 27.2 35.8 64.9 0.17 557 0.37 877 220 302 833 6.81 19.1 806 19. 19.5 180 0.70 35.9 35.9 964 964 1.53 1.53 1.53 2550 2550 2556 2556 2556 0.121400.678,2610.210.22.0533.890.3156 277 46.3 0.93 0.34 119 604 3680 765 149 135 870 11.1 18. 126.9 1446 $1.60 \\ 40.5$ 0.67 2088 17.2 2.26 8753 226 123 68.7 1302 4078 12.2 2.37 61.0 206 364 578 1.83 0.22 0.22 11,8 92.1 1.70 337 124 17.1 0,71 884 111 Component Lu_N/Gd_N *ZHREE* T(Ti), °C *<u>2LREE</u>* Sm_N/La_N un/Lan Компо-Eu/Eu* Ce/Ce* **ZREE** нент Th/U Eu Er Dy Eu Th Ba La Pr Nd Sm ≺Sr I; Ca P Ľ Π

Окончание таблицы 2

Рис. 5. Соотношение Y-P (a), Y-REE (б), Y-Nb (в), LREE-HREE (г), Th-U (д), Ti-Ca (е) для циркона Пижемского месторождения (1 — высокоиттриевый циркон; 2 — умеренно иттриевый циркон) и лампрофиров Четласского Камня (3) Fig. 5. Ratio of Y-P (a), Y-REE (б), Y-Nb (в), LREE-HREE (г), Th-U (д), Ti-Ca (е) for zircon of the Pizhemskoe deposit (1 — high-Y zircon; 2 — moderately Y-zircon) and lamprophyres of the ridge Chetlassky Kamen (3)

Легкие и тяжелые REE коррелируют между собой, при этом высокоиттриевый циркон содержит большее количество LREE и HREE (рис. 5, г). Умеренноиттриевый циркон Пижемского месторождения образует довольно компактную группу на графике, с которой совпадают фигуративные точки циркона из лампрофиров.

Умеренно- и высокоиттриевый циркон Пижемского месторождения также отличаются друг от друга по содержанию Th и U (рис. 5, д). Высокоиттриевый циркон, как правило, содержит больше Th и U. Соотношение Th и U

в изученном цирконе достаточно выдержанное: Th/U отношение в среднем составляет 0.48 по данным геохимического исследования (табл. 2) и 0.68 по данным SHRIMP (табл. 1). Обе величины относятся к диапазону значений циркона магматического генезиса [23].

Неформульные для циркона элементы — Са и Ті — положительно коррелируют (рис. 5, е), при этом высокоиттриевый циркон содержит больше и Са, и Ті. При уровне содержания Са менее 10 ррт его корреляция с Ті пропадает. Температура кристаллизации умеренноиттриевого

Рис. 6. Соотношение Sm/La-Ce/Ce* (a), La-Sm/La (б) и Ce/Ce*-Eu/Eu* (в) для циркона. Показаны поля составов магматического (1) и гидротермально-метасоматического циркона (2) по [22, 26]. Условные обозначения для фигуративных точек циркона совпадают с рис. 5

Fig. 6. Sm/La-Ce/Ce* ratio (a), La-Sm/La (b) and Se/Ce*-Eu/Eu* (c) for zircon. Fields of structures magmatic (1) and hydrothermalmetasomatic zircon (2) are shown [22, 26]. Symbols for figurative points of zircon coincide with Fig. 5

циркона по титановому термометру [27] попадает в диапазон 670–930 °С при среднем значении 800 °С (табл. 2). В целом содержание Ті не превышает эмпирический лимит в 50–70 ррт, позволяющий использовать титановый термометр [25]. В высокоиттриевом цирконе содержание Ті достигает 600 и даже 776 ррт, что исключает его использование в качестве геотермометра (табл. 2).

В большинстве проанализированного циркона спектры распределения REE (рис. 4) отвечают характерному для магматического циркона типу с высоким значением Lu_N/La_N -отношения, четко проявленной положительной Се-аномалией (Се/Се^{*} достигает 137) и менее контрастной отрицательной Еu-аномалией [23]. Содержание неформульных для циркона элементов (Са, Sr, Ba, Nb, Ti) сравнительно невелико и в сумме составляет 20–428 ppm.

Высокоиттриевый циркон характеризуется резко повышенным уровнем суммарного содержания REE, варьирующим в одном порядке — от 3400–4200 в лампрофирах до 5500–13400 ppm в Пижемском месторождении (табл. 2). Необходимо отметить, что в высокоиттриевом цирконе аномально увеличивается содержание не только неформульных элементов (Ca, Sr, Ba, Nb, Ti), но также более свободно, изоморфно входящих в его решетку Hf, Th, U и P. Суммарное содержание в цирконе всех этих элементов, без учета REE, варьирует от 22300 до 54700 ppm (табл. 2).

На дискриминационных диаграммах (рис. 6), используемых для разделения составов циркона магматического и гидротермально-метасоматического генезиса [22, 26], изученный циркон попадает либо в поле магматического генезиса, либо занимает промежуточное положение в направлении поля составов гидротермально-метасоматического циркона. Высокоиттриевый циркон Пижемского месторождения и лампрофиров Четласского Камня максимально тяготеет к полю гидротермально-метасоматического циркона, но формально в него не попадает.

По известным критериям соотношения Yb-U, Hf-U/Yb (рис. 7, а, б) весь изученный циркон попадает в поле циркона из континентальных пород [20]. На диаграмме Y-U/Yb (рис. 7, в) обособляются точки состава высокоиттриевого циркона Пижемского месторождения и лампрофиров. При этом они расположены вдоль линии, разграничивающей цирконы однозначно океанического генезиса (нижняя часть диаграммы) от цирконов континентальных пород и поля неопределенности. Очевидно, что данная диаграмма, построенная на ограниченной выборке аналитических данных, не в полной мере может служить для идентификации генезиса циркона с аномально высоким содержанием Y.

В целом результаты впервые проведенного датирования циркона Пижемского месторождения согласуются с результатами исследования возраста циркона, выделенного из вышележащего конглобрекчиевого пласта проявления Ичетью [6, 7]. Геохимическая специализация циркона двух объектов во многом совпадает — все это может свидетельствовать о едином источнике циркона для них. Доказательством того, что источник циркона глубинный, а не латеральный, является отсутствие на современной эрозионной поверхности Тимана пород древнее 1 млрд лет. Кроме того, Y-P-REE-геохимическая специализация циркона Тимана отсутствует в магматических и осадочных породах Урала и Балтийского щита.

Для установления меры генетических связей и возможного источника вещества циркона проведен факторный анализ (метод главных компонент), в котором использованы 26 признаков, характеризующих состав циркона (54 анализа в 47 зернах: 35 зерен циркона Пижемского титанового месторождения, 8 зерен циркона из лампрофиров Четласского Камня и 11 анализов 4 зерен высокоиттриевого циркона проявления Ичетью). В качестве признаков при обработке данных методом факторного анализа были выбраны: химический состав циркона (22 элемента — La, Ce, Pr, Nd, Sm, Eu, Gd, Dy,

Рис. 7. Соотношение Yb-U (а), Hf-U/Yb (б) и Y-U/Yb (в) для циркона. Серым цветом показано поле циркона континентальных пород, ниже наклонной линии находится поле циркона однозначно океанического происхождения [20]. Условные обозначения для фигуративных точек циркона см. на рис. 5

Fig. 7. A ratio of Yb-U (a), Hf-U/Yb (b) and Y-U/Yb (c) for zircon. The field of zircon of continental rocks is shown by gray color, below the inclined line there is a field of zircon of unambiguously oceanic origin [20]. Symbols for figurative points of zircon coincide with Fig. 5

Er, Yb, Lu, Li, P, Ca, Ti, Sr, Y, Nb, Ba, Hf, Th, U), U-Pbвозраст зерен циркона и морфологические признаки (коэффициент удлинения, зональность и яркость катодолюминесцентного свечения, оцененные в баллах).

Два главных фактора удовлетворительно описывают изменчивость всей выборки данных со следующими весами: F1 = 71.63 %; F2 = 8.04 %. Другие факторы не принимаются в расчет ввиду своего незначительного вклада в общую дисперсию. Графическое изображение результата факторного анализа показано на рис. 8. Все проанализированные химические элементы разделились на четыре группы на диаграмме факторных нагрузок (рис. 8, а). Отмечены высокие корреляционные связи между всеми REE, Th, Y и P, эти элементы-примеси образовали единое компактное поле. Высокая корреляция на уровне (r = 0.92–1.00) для большой группы элементов убе-

Рис. 8. Диаграммы в координатах главных факторов (F1 и F2) для изученного циркона: а — факторных нагрузок; б — значений факторов. Условные обозначения: a) t — U-Pb-возраст, Куд — коэффициент удлинения, CL — яркость катодолюминесценции, зон. — зональность; б) 1 — умеренноиттриевый циркон Пижемского месторождения, 2 — циркон лампрофиров Четласского Камня, 3 — высокоиттриевый циркон проявления Ичетью [14], 4 — высокоиттриевый циркон Пижемского месторождения

Fig. 8. Charts in coordinates of main factors (F1 and F2) for the studied zircon: A – factorial loadings; B – values of factors. Symbols: a) t – U-Pb age, Ky π – lengthening coefficient, CL – brightness of a cathodoluminescense, zon. – zonality; b) 1 – moderately Y zircon of the Pizhemskoe deposit, 2 – zircon from lamprophyres of the Chetlassky Kamen ridge, 3 – high-Y zircon of Ichetyu occurrence [14], 4 – high-Y zircon of the Pizhemskoe deposit

дительно свидетельствует о существовании гетеровалентного изоморфизма между Zr и Si с одной стороны и Y, REE, P с другой в ряду циркон — ксенотим. Тяжелые REE имеют более сильные корреляционные связи с Y, чем легкие. Другая группа сильно коррелирующих между собой элементов (r = 0.90–0.95) объединяет Ca, Sr, Ba, Hf, U – литофильные элементы, близкие между собой по геохимическим свойствам. Сильная корреляция (r = 0.99) между Ti и Nb свидетельствует о том, что источником циркона могли быть щелочно-ультраосновные породы, для которых эти элементы-примеси весьма характерны. Литий не коррелируется с другими элементами. Отрицательные

49

корреляционные связи выявлены между содержанием большинства химических элементов с одной стороны и возрастом и морфологическими признаками (зональностью, яркостью CL, коэффициентом удлинения зерен циркона) с другой стороны. Это означает, что более древний циркон содержит меньше элементов-примесей по сравнению с цирконом относительно молодого возраста, а также имеет морфологические признаки циркона магматического генезиса (удлиненную форму и осцилляционную зональность в контрастных тонах).

Результат факторного анализа для 54 точек циркона показывает, что фигуративные поля всех совокупностей циркона (Пижемское месторождение, проявление Ичетью и лампрофиры Четласского Камня) в значительной степени пересекаются (рис. 8, б), в особенности это характерно для циркона Пижемского месторождения и лампрофиров. От основной группы в правую часть графика значений факторов отклоняются высокоиттриевые разности циркона всех трех объектов. Вышесказанное подтверждает вывод о едином геохимическом типе рассмотренного циркона и о возможном едином глубинном источнике для них.

Выводы

1. Впервые получены данные по геохимии и U-Pbвозрасту циркона Пижемского титанового месторождения. Проведен сравнительный анализ этих данных с таковыми для циркона из полиминерального проявления Ичетью и лампрофиров Четласского Камня Среднего Тимана, предполагаемого источника рудного вещества для Пижемского месторождения. Установлено, что в титаноносной руде присутствуют зерна циркона широкого временного интервала. Материалом и коренным источником рудного вещества были не только лампрофиры вероятно, флюидизаты дренировали тиманский фундамент с большой глубины. Результаты определения возраста циркона показали, что в изученной выборке присутствуют зерна с самыми «молодыми» датировками — 591—572 млн лет. Отсутствие фанерозойского циркона свидетельствует о том, что сама титаноносная толща более древняя, чем предполагалась ранее (средний девон), ее возраст следует считать докембрийским.

2. Установлен единый геохимический тип для циркона из всех трех объектов, для которого характерен одинаковый тренд гетеровалентного изоморфизма ксенотимового типа $(Zr+Si)^{4+} \rightarrow (Y+REE)^{3+}+P^{5+}$. В каждом из трех объектов для большинства зерен характерно относительно низкое содержание Y + REE в интервале от 150 до 3000 ppm, однако в каждом из них присутствует более 10 % зерен циркона с аномально высоким суммарным содержанием этих элементов — до 1–3.5 мас. %, коррелирующим с содержанием Р. Источник собственно Y-HREE-циркона в настоящее время доподлинно не известен. Но тем не менее этот «маркер» заметно проявился во всех рассмотренных в статье объектах. Сейчас можно говорить об особом «тиманском» типе иттрий-фосфор-редкоземельного циркона.

3. В цирконе отмечается повышенное содержание титана, которое дает высокую расчетную температуру кристаллизации — от 668 до 994 °С (среднее значение 806 °С). Такая температура характерна для коровых магматических пород. В аномальном по содержанию Y, REE и Са (индикатор степени метамиктности) цирконе отмечается повышенное содержание Ti, которое дает нереально высокие температуры кристаллизации, не использованные при расчете средних значений. Установленная высокая корреляция (r = 0.99) содержания Ті и Nb в цирконе подтверждает вероятность того, что источником циркона Пижемского месторождения могли служить щелочно-ультраосновные породы (лампрофиры), широко распространенные на Среднем Тимане.

Авторы благодарят С. Г. Симакина, Е. В. Потапова (ЯФ ФТИАН) и сотрудников ЦИИ ВСЕГЕИ за аналитические исследования циркона.

Работа выполнена при финансовой поддержке РФФИ (грант 16-05-00125), Минобрнауки России в рамках проектной части государственного задания в сфере научной деятельности № 5.2115.2014/К на 2014-2016 гг. и НИР ИГЕМ РАН № 72-8 «Эволюция россыпеобразующих систем в процессе литогенеза: от мобилизации вещества до россыпей дальнего сноса».

Литература

1. *Игнатьев В. Д., Бурцев И. Н.* Лейкоксен Тимана: Минералогия и проблемы технологии. СПб.: Наука, 1997. 215 с.

2. Калюжный В. А. Некоторые черты ильменито-лейкоксеноносных осадочно-метаморфических фаций сланцев и связанные с ними россыпи на Тимане // Геология и полезные ископаемые северо-востока европейской части СССР и севера Урала. Сыктывкар, 1965. С. 467–473.

3. *Калюжный В. А.* Геология новых рассыпеобразующих метаморфических формаций. М.: Наука, 1982. 264 с.

4. *Макеев А. Б.* Пижемское титановое месторождение – флюидизатная кальдера в Пижемской депрессии (Средний Тиман) // Геохимия литогенеза: Материалы Российского совещания с международным участием (Сыктывкар, 17– 19 марта 2014 г.). Сыктывкар: Геопринт, 2014. С. 86–89.

5. *Макеев А. Б.* Типоморфные особенности минералов титановых руд Пижемского месторождения // Минералогия. 2016. № 1. С. 24–49.

6. Макеев А. Б., Баянова Т. Б., Борисовский С. Е., Жиличева О. М. Состав, изотопный U-Pb-возраст и источник циркона полиминерального проявления Ичетью (Средний Тиман) // Записки РМО. 2015. № 6. С. 9–18.

7. Макеев А. Б., Борисовский С. Е., Баянова Т. Б., Жиличева О. М., Скублов С. Г. Уникальные иттриевые цирконы полиминерального проявления Ичетью // Минералогия. 2015. № 4. С. 29–46.

8. *Макеев А. Б., Брянчанинова Н. И.* Лампрофиры Тимана // Региональная геология и металлогения. 2009. Т. 37. С. 51–73.

9. Макеев А. Б., Дубинчук В. Т., Быховский Л. З., Лаломов А. В., Макеев Б. А. Пижемское титановое месторождение: проблемы генезиса // Матер. XIV Межд. совещания по геологии россыпей и месторождений кор выветривания (РКВ-2010). Новосибирск, 2010. С. 417–422.

10. *Макеев А. Б., Дудар В. А.* Минералогия алмазов Тимана. СПб.: Наука, 2001. 336 с.

11. Макеев А. Б. Дудар В.А., Самарова Г. С., Быховский Л. З., Тигунов Л. П. Пижемское титановое месторождение (Средний Тиман): аспекты геологического строения и освоения // Рудник будущего. 2012. № 1(9). С. 16–24.

12. Макеев А. Б., Иванух В., Обыден С. К., Брянчанинова Н. И., Иванников П. В., Сапарин Г. В. Взаимоотношение алмаза и карбонадо (по материалам исследования бразильской и среднетиманской коллекций) // Доклады АН. 2003. Т. 393. № 3. С. 393–397.

13. Макеев А. Б., Носик Л. П. Химический и изотопный состав сидерита Пижемского месторождения (Средний Тиман) // Геология и минеральные ресурсы Европейского Северо-Востока России: Материалы XV Геологического съезда Республики Коми. Т. II. Сыктывкар: ИГ Коми НЦ УрО РАН, 2009. С. 277–279.

14. *Макеев А. Б., Скублов С. Г.* Иттриево-редкоземельные цирконы Тимана: геохимия и промышленное значение // Геохимия. 2016. № 9. С. 821–828.

15. Скублов С. Г., Марин Ю. Б., Галанкина О. Л., Симакин С. Г., Мыскова Т. А., Астафьев Б. Ю. Первая находка аномально (Y+REE)-обогащенных цирконов в породах Балтийского щита // Доклады АН. 2011. Т. 441. № 6. С. 792–799.

16. Федотова А. А., Бибикова Е. В., Симакин С. Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях // Геохимия. 2008. № 7. С. 1–18.

17. Цаплин А. Е., Тополюк В. В., Бакулина Л. П., Довжикова Е. Г. Строение титаноносной малоручейской свиты Среднего Тимана // Изв. вузов. Геология и разведка. 1988. № 9. С. 57–62.

18. Чернышев И. В., Макеев А. Б., Гольцман Ю. В., Брянчанинова Н. И. Возраст титановых месторождений северо-востока Восточно-Европейской платформы: Rb-Sr-данные // Доклады АН. 2010. Т. 435. № 3. С. 378–383.

19. Finch R. J., Hanchar J. M., Hoskin P. W. O., Burns P. C. Rareearth elements in synthetic zircon: Part 2. A singlecrystal X-ray study of xenotime substitution. Amer. Mineral. 2001. Vol. 86. P. 681–689.

20. Grimes C. B., John B. E., Kelemen P. B., Mazdab F., Wooden J. L., Cheadle M. J., Hanghuj K., Schwartz J. J. The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology. 2007. Vol. 35. P. 643–646.

21. *Hinton R. W., Upton B. G. J.* The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta. 1991. Vol. 55. P. 3287–3302.

22. *Hoskin P. W. O.* Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta. 2005. Vol. 69. P. 637–648.

23. *Hoskin P. W. O., Schaltegger U.* The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003. Vol. 53. P. 27–62.

24. *McDonough W. F., Sun S.-S.* The composition of the Earth. Chem. Geol. 1995. Vol. 120. P. 223–253.

25. Page F. Z., Fu B., Kita N. T., Fournelle J., Spicuzza M. J., Schulze D. J., Viljoen F., Basei M. A. S., Valley J. W. Zircons from kimberlite: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim. Cosmochim. Acta. 2007. Vol. 71. P. 3887–3903.

26. Pelleter E., Cheilletz A., Gasquet D., Moutlaqi A., Annich M., El Hakour A., Deloule E., Feraud G. Hidrothermal zircons: A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit — Morocco). Chem. Geol. 2007. Vol. 245. P. 135–161.

27. *Watson E. B., Wark D. A., Thomas J. B.* Crystallization thermometers for zircon and rutile. Contrib. Miner. Petrol. 2006. Vol. 151. P. 413–433.

References

1. Ignatiev D. V., Burtsev I. N. *Leikoksen Timana: Mineralogiya i problemy tehnologii* (The leucoxene of Timan: Mineralogy and problems of technology). St. Petersburg, Nauka, 1997, 215 pp.

2. Kalyuzhny V. A. Nekotorye cherty ilmenito-leikoksenonosnyh osadochno-metamorficheskih fatsii slantsev i svyazannye s nimi rossypi na Timane (Some features of ilmenite-leucoxene sedimentary-metamorphic facies of shales and associated deposits on the Timan). In: Geology and minerals of the North-East of the European part of the USSR and the North of the Urals. Syktyvkar, 1965, pp. 467–473.

3. Kalyuzhny V. A. *Geologiya novyh rassypeobrazuyuschih metamorficheskih formatsii* (Geology of new placer-bearing metamorphic formations). Moscow, Nauka, 1982, 264 pp.

4. Makeyev A. B. *Pizhemskoe titanovoe mestorozhdenie* — *flyuidizatnaya kaldera v Pizhemskoi depressii (Srednii Timan)* (Pizhemsky titanium deposit – fluidizated caldera in Pizhemsky depression (Middle Timan)). In: Geochemistry of lithogenesis: Mater. Russian Symposium with international participation (Syktyvkar, 17–19 March 2014). Syktyvkar: Geoprint, 2014. P. 86-89. (in Russian).

5. Makeyev A. B. *Tipomorfnye osobennosti mineralov titanovyh rud Pizhemskogo mestorozhdeniya* (Typomorphic features of minerals of titanium ores from the Pizhemskoe deposit). Mineralogija (Mineralogy). 2016, N 1, pp. 24–49.

6. Makeyev A. B., Bayanova T. B., Borisovskiy S. E., Zhilicheva O. M. Sostav, izotopnyi U-Pb vozrast i istochnik tsirkona polimineral'nogo proyavleniya Ichet'yu (Srednii Timan) (Composition, the U-Pb isotope age and source of zircon in the Ichetju polymineral occurrence (the Middle Timan)). Zapiski RMO (Proc. Russian Miner. Soc.). 2015a, No. 6, pp. 9–18.

7. Makeyev A. B., Borisovsky S. E., Zhilicheva O. M., Bayanova T. B., Skublov S. G. *Unikal'nye ittrievye tsirkony polimineral'nogo proyavleniya Ichet'yu* (The unique Y-zircon from the Ichet'yu polymineral occurrence (Central Timan)). Mineralogija (Mineralogy). 2015, No. 4, pp. 29–46.

8. Makeyev A. B., Bryanchaninova N. I. *Lamprofiry Timana* (*Lamprophyres of Chetlassky Kamen* (Middle Timan)). Regional Geol. Metallogeny. 2009. Vol. 37. P. 51–73.

9. Makeyev A. B., Dubinchuk V. T., Bykhovsky L. Z., Lalomov A. V., Makeev B. A. *Pizhemskoe titanovoe mestorozhdenie: problemy genezisa* (Pizhemsky titanium deposit: Genesis). In: Proceedings of the 14th Intern. meeting on Geology of placers and weathered rock deposits (PWR-2010). Novosibirsk, 2010, pp. 417–422.

10. Makeyev A. B., Dudar V. A. *Mineralogiya almazov Timana* (Diamond Mineralogy of the Timan). St. Petersburg: Nauka, 2001. 336 p.

11. Makeyev A., Dudar V., Samarova G., Byhovskij L., Tigunov L. *Pizhemskoe titanovoe mestorozhdenie* (Srednii Timan): aspekty geologicheskogo stroeniya i osvoeniya (Pizhemsky titanium deposit (Middle Timan): geological structure and development aspects). Rudnik Budushego (Mine of the Future). 2012, N 1(9), pp. 16–24.

12. Makeyev A. B., Iwanuch W., Obyden S. K., Bryanchaninova N. I., Ivannikov P. V., Saparin G. V. *Vzaimootnoshenie almaza i karbonado (po materialam issledovaniya brazil'skoi i srednetimanskoi kollektsii)* (Mutual relation between diamond and carbonado (on materials of Brazilian and Middle Timans collections). Doklady Earth Sciences. 2003, Vol. 393A, N 9, 2003, pp. 1251–1255.

13. Makeyev A. B., Nosik L. P. *Himicheskii i izotopnyi sostav siderita Pizhemskogo mestorozhdeniya (Srednii Timan)* (The chemical and isotopic composition of siderite Pizhemskoe deposit (Middle Timan)). In: Geology and mineral resources of the European North-East of Russia: Proceedings of the 15th Geology Congress of the Komi Republic. V. II, Syktyvkar, IG Komi Science Centre RAS, 2009, pp. 277–279.

14. Makeyev A. B., Skublov S. G. *Ittrievo-redkozemeľnye tsirkony Timana: geohimiya i promyshlennoe znachenie* (Yttrium-rare-earth zircons Timan: geochemistry and industrial value). Geochem. Int. 2016, Vol. 54, No. 9. P. 821–828.

15. Skublov S. G., Marin Yu.B., Galankina O. L., Simakin S. G., Myskova T. M., Astaf'ev B. Yu. *Pervaya nahodka anomal'no*

(Y+REE)-obogaschennyh tsirkonov v porodah Baltiiskogo schita (The first discovery of abnormal (Y+REE)-enriched zircons in rocks of the Baltic Shield). Doklady Earth Sciences. 2011, Vol. 441, Part 2, pp. 1724–1731.

16. Fedotova A. A., Bibikova E. V., Simakin S. G. *Geohimiya tsirkona (dannye ionnogo mikrozonda) kak indikator genezisa minerala pri geohronologicheskih issledovaniyah* (Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies). Geochem. Int. 2008. Vol. 46, No. 9, pp. 912–927.

17. Tsaplin A. E., Topolyuk V. V., Bakulina L. P., *Udovikova E. G. Stroenie titanonosnoi malorucheiskoi svity Srednego Timana* (Structure Malorucheysky titanoferous suite of Middle Timan). Proceedings of Higher Schools, Geologiya i Razvedka (Geology and Exploration). 1988, No 9, pp. 57–62.

18. Chernyshev I. V., Makeyev A. B., Goltsman Yu.V., Bryanchaninova N. I. *Vozrast titanovyh mestorozhdenii severo-vostoka Vostochno-Evropeiskoi platformy* (Age of titanium deposits of the Northeastern part of the Eastern European Platform: Rb-Sr data). Doklady Earth Sciences. 2010. Vol. 435, Part 1, pp. 1524–1528.

19. Finch R. J., Hanchar J. M., Hoskin P. W. O., Burns P. C. Rare-earth elements in synthetic zircon: Part 2. A singlecrystal

X-ray study of xenotime substitution. Amer. Mineral. 2001. Vol. 86. P. 681–689.

20. Grimes C. B., John B. E., Kelemen P. B., Mazdab F., Wooden J. L., Cheadle M. J., Hanghuij K., Schwartz J. J. The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology. 2007. Vol. 35. P. 643–646.

21. Hinton R. W., Upton B. G. J. The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta. 1991. Vol. 55. P. 3287–3302.

22. Hoskin P. W. O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta. 2005. Vol. 69. P. 637–648.

23. Hoskin P. W. O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003. Vol. 53. P. 27–62.

24. McDonough W. F., Sun S.-S. The composition of the Earth. Chem. Geol. 1995. Vol. 120. P. 223–253.