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Asymmetric pendulum effect and transparency change of PT -symmetric photonic crystals
under dynamical Bragg diffraction beyond the paraxial approximation
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Light propagating inPT -symmetric photonic crystals (PhCs) under Bragg diffraction in the Laue geometry has
been studied theoretically using the spectral method. The PT -symmetric solutions describing propagating modes
have been found in the PhCs with gain and loss beyond paraxial approximation. We described the pendulum
effect—the periodical spatial localization of the total field intensity in a PhC—near the PT -symmetry-breaking
point. It is shown that, due to PT -symmetric properties of the medium, an asymmetric change in the amplitudes
of the diffracted waves in PhCs is observed when the sign of the Bragg incidence angle is changed from positive
to negative. Thus, the intensity of a spatially periodic field in a medium radically alters under the pendulum
effect. Moreover, when the sign of the Bragg incidence angle changes, a PhC of a certain thickness is turned from
an absorbing structure into an amplifying one, also a PhC of any thickness evolves from completely transparent
into amplifying in the vicinity of the PT -symmetry-breaking point. Under a small change of the imaginary part
of permittivity, the light switching from a transmitted wave into a gain or loss diffracted wave is possible in a
diffraction-thick PhC.
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I. INTRODUCTION

Photonic crystals have been studied actively for quite
a long period in order to detect novel optical phenomena
[1–3] as well as to be able to use them for effectively
managing light beams and pulses [4,5] and transformation
of light parameters [6,7]. When analyzing dynamical light
diffraction in the Laue geometry “on transmission” [8,9],
the diffraction-induced splitting of femtosecond laser pulses
[10–12], selective compression [13,14], as well as the pendu-
lum effect have been revealed [15–18]. The pendulum effect is
associated with a beating of eigenmodes in PhCs. This involves
a periodical energy exchange between the transmitted and
the diffracted waves and, as a consequence, an opportunity
to switch the output radiation from the transmitted wave to
the diffracted one when changing medium parameters or light
parameters. These effects were examined in detail theoretically
and experimentally in conservative [15–18] and absorbing
media (the Borrmann effect) [19].

In recent years a novel direction of optical research
is being developed—optics of parity-time-symmetric (PT -
symmetric) media [20,21]. The similarity between the
quantum-mechanical Schrödinger equation for the complex
potential and the wave equation for the electric field in
the medium possessing complex permittivity, i.e., in the
medium with absorption and amplification, enabled ex-
trapolating results, obtained from resolving the quantum-
mechanical problems with the pseudo-Hermitian operator, to
the optical problems of light propagation and scattering in
nonconservative media. When the complex potential is PT
symmetric, i.e., it is invariant under transformation by parity
and time-reversal operators, the pseudo-Hermitian operator
of the Schrödinger equation has real eigenvalues of energy
[22,23]. In the case of the wave equation in optical problems
this is equivalent to the existence of real wave numbers
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and the propagating mode in the medium possessing PT -
symmetric permittivity ε(x) = ε∗(−x) [24,25]. The function
of permittivity ε(x) = ε′(x) + iε′′(x), where ε′(x) and ε′′(x)
are even and odd periodical functions, respectively, is a
PT -symmetric one. An example of these nonconservative
media is periodical structures with light absorption ε′′(x) > 0
and light amplification ε′′(x) < 0 or PT -symmetric photonic
crystals [24–28]. Propagating PT -symmetric modes [29],
asymmetry of transmission in the case when the input and
output surfaces are swapped [30,31], and spontaneous decay of
PT -symmetric modes [29] were observed in these structures.
Recently, the asymmetric diffraction based on a passive PT -
symmetric diffraction grating was considered theoretically
[32]. The possibility of light propagation in PT -symmetric
PhCs under Bragg diffraction in the Laue geometry has
been considered previously in paraxial approximation [26,27]
where the Bragg incidence angle is so small θB � 1 that effects
derived from spatial divergence of transmitted and diffracted
waves are negligible. It was shown that PT -symmetric PhCs
are not transparent because the waves evolving inside them do
not explore the gain and loss regions equally.

Here we present the solution of a boundary problem of
dynamical Bragg diffraction in PT -symmetric PhCs in the
Laue geometry for the incident plane monochromatic wave
and beam beyond paraxial approximation, i.e., at an arbitrary
value of the Bragg incidence angle θ = θB (Fig. 1). In this case
dependence of the field spatial structure on medium parameters
has been investigated.

The case of weak reflection from the PhC surfaces is
considered to demonstrate general bulk effects most clearly.
The present investigation shows that in PT -symmetric PhC
spatial distribution of total field intensity under the pendulum
effect depends not only on a value of the gain-loss parameter,
but also on the chosen sign of the Bragg incidence angles
θB > 0 and θB < 0 (Fig. 1). Unlike the conservative PhC,
the field intensity in the PT -symmetric PhC under the
pendulum effect varies by orders of magnitude when the
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FIG. 1. Schematic of two cases of wave incidence onto the PhC:
(a) θ > 0 and (b) θ < 0; T and D are the transmitted and diffracted
waves, respectively.

sign of the incidence angle θB is changed from positive to
negative. The PT -symmetric PhC of a certain thickness turns
from the weakly absorbing structure to the amplifying one
when the angle θB is changed symmetrically. Such drastic
changes of PhC optical properties particularly appear under
dynamical diffraction near the PT -symmetry-breaking point.
If the gain-loss parameter is greater than a critical value,
thenPT -symmetric eigenmodes becomePT asymmetric, and
their spatial localizations in a PhC change so that one mode is
absorbed and another one grows when they propagate within
the PhC.

II. DYNAMICAL DIFFRACTION IN THE LAUE SCHEME
IN PT -SYMMETRIC PHOTONIC CRYSTALS BEYOND

THE PARAXIAL APPROXIMATION

Let us consider a PT -symmetric one-dimensional PhC
with harmonic modulation of permittivity,

ε(x) = ε′
0 + εr cos(hx) + iεi sin(hx), (1)

where h = 2π/d is the module of a reciprocal lattice vector,
d is the lattice period, and ε′

0, εr , and εi are real values
ε′

0 − |εr | > 1. Suppose the plane monochromatic ТЕ-wave
Ein(r,t) = Ain exp(ik · r − iωt) is incident onto the surface
of a PhC z = 0 at an angle θ to the normal to its surface. Here
k = (kx,kz) is the wave vector in a vacuum, k = ω/c = 2π/λ,
ω is the frequency of the wave, c is the speed of light in a
vacuum, λ is the wavelength, and kx = k sin θ , kz = k cos θ .

The complex field E(r,t) = E(r) exp(−iωt) in the PhC is
defined by the equation,

�E(r,t) − ε(x)

c2

∂2E(r,t)
∂t2

= 0, (2)

where � = ∂2/∂x2 + ∂2/∂z2 is the Laplacian. Near the Bragg
condition 2k sin θB = h, it is possible to use the two-wave
approximation and to represent the field in the structure as
a superposition of two strong diffraction-connected waves
(Fig. 1) [13],

E(r) = A0 exp(iq0 · r) + Ah exp(iqh · r), (3)

where A0,h are amplitudes of the transmitted (T) and diffracted
(D) waves, respectively; q = (q0x,q0z), qh = (qhx,qhz) are
wave vectors of the transmitted and diffracted waves in the
PhC; qhx = q0x − h, q0z = qhz. By substituting into Eq. (2)
the expression (3) and the Fourier series expansion in the

reciprocal lattice vectors of the function,

ε(x) =
∞∑

m=−∞
εm exp(−imhx),

where the Fourier coefficients are

εm = 1

d

∫ d

0
ε(x) exp(imhx)dx, (4)

we obtain the following equations for the field amplitudes:

(
ε0k

2 − q2
0x − q2

0z

)
A0 + ε−1k

2Ah = 0, (5a)

ε1k
2A0 + [

ε0k
2 − (q0x − h)2 − q2

0z

]
Ah = 0, (5b)

where q0x = kx , which follows from the boundary conditions.
The existence condition of nontrivial solutions of the system
of Eqs. (5) allows us to write down dispersion relations for
z projections of the wave vectors of the transmitted and
diffracted waves of two eigenmodes, called the Borrmann q

(1)
0z

and anti-Borrmann q
(2)
0z modes,

(
q

(1,2)
0z

)2 = ε0k
2 − q2

0x + α0h ∓ (
α2

0h
2 + ε1ε−1k

4)1/2
, (6)

where α0 = q0x − h/2 defines the degree of detuning from
the exact Bragg condition q0x = h/2. Dispersion relations for
the diffracted waves are obtained by the replacement q0x =
qhx + h, q

(1,2)
0z = q

(1,2)
hz in Eq. (6). Equation (5a) provides the

following relations for the field amplitudes:

Ahj = RjA0j ,

R1,2 = [
α0h ∓ (

α2
0h

2 + ε1ε−1k
4
)1/2]/

ε−1k
2, (7)

where Rj ’s are the partial amplitude coefficients of the
diffraction reflection of the waves and A0j , Ahj are amplitudes
of the Borrmann (j = 1) and anti-Borrmann (j = 2) modes.

Exact expressions for amplitudes of the reflected waves
A1 and A2 with x projections of the wave-vectors k1x = kx

and k2x = kx − h in a vacuum (z < 0) and A0j ,Ahj (z > 0)
in the PhC are obtained from continuity conditions for the
electric and magnetic fields at the boundaries of the PhC.
The calculations show that these amplitudes are negligibly
small with the PhC parameters used below: A1 � 0.07Ain,
A2 � 0.02Ain. Besides, in the case of a semi-infinite PhC we
will neglect backward waves with q

(1,2)
0z < 0. Therefore for

simplicity and clarity let us consider the case of weak mirror
light reflection from the PhC boundaries. Then, supposing
Ain = 1 and neglecting amplitudes of the reflected fields, the
following expressions for amplitudes of the transmitted waves
A01 and A02 are obtained easily from the boundary conditions
A01 + A02 = 1 and Ah1 + Ah2 = 0:

A01 = −R2/(R1 − R2), A02 = R1/(R1 − R2). (8)

In the exact Bragg condition α0 = 0 the coefficients of
diffraction reflection in Eqs. (7) and (8) are

R1,2 = ∓√
ε1ε−1/ε−1. (9)

In a general case of the complex function ε(x), the
Fourier coefficients ε±1 are complex as well, and there are
no propagating (undamped) modes due to the complex z

projections q
(1,2)
0z in Eq. (6). But in the case of PT -symmetric
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media, the values of ε±1 are real. This causes the formation of
propagating modes. Indeed, it appears from Eqs. (1) and (4)
that

ε0 = ε′
0, ε1 = (εr − εi)/2, ε−1 = (εr + εi)/2, (10)

so
√

ε1ε−1 =
√
ε2
r − ε2

i /2. Hence, propagating modes Eq. (6)
exist when |εi | < |εr |, and they are PT symmetric. In the
singular point |εi | = |εr |, so-called PT -symmetry breaking
takes place, and above the singular point |εi | > |εr |, there
exist gain and loss PT -asymmetric modes in the structure.

III. ASYMMETRY OF THE PENDULUM EFFECT IN
PT -SYMMETRIC PHOTONIC CRYSTALS UNDER A

CHANGING SIGN OF THE BRAGG INCIDENCE ANGLE

Consider magnitudes and spatial distribution of the field
amplitudes in the PhCs in these three cases: |εi | < |εr |,
|εi | = |εr |, and |εi | > |εr |. The wave amplitudes Eqs. (7) and
(8) in the exact Bragg condition are defined by the reflection
coefficients Eq. (9),

R1,2 = ∓
√

(εr − εi)/(εr + εi). (11)

Since Eq. (11) provides R1 − R2=−2[(εr−εi)/(εr+εi)]1/2,
then amplitudes of the transmitted waves Eq. (8) under the
exact Bragg condition are equal to each other: A01 = A02 =
1/2 and do not depend on magnitudes εr and εi . On the
contrary, amplitudes of the diffracted waves in Eq. (7) depend
on the relation between εr and εi in Eq. (11): Ah1 = −Ah2 =
R1/2. To be specific we assume εr > 0 and εi > 0. The total
fields of the transmitted E0 and diffracted Eh waves below the
singularity εi < εr ,

E0(x,z) = [
A01 exp

(
iq

(1)
0z z

) + A02 exp
(
iq

(2)
0z z

)]
exp(iq0xx),

(12a)

Eh(x,z) = [
Ah1 exp

(
iq

(1)
0z z

) + Ah2 exp
(
iq

(2)
0z z

)]
× exp[i(q0x − h)x] (12b)

oscillate along the z axis in the PhC with the period 2
ex

due to the superposition of the Borrmann and anti-Borrmann
modes with the difference of z projections of the wave-vectors
q

(2)
0z − q

(1)
0z = π/
ex. Here 
ex is the extinction depth, i.e., the

distance in the PhC where the transmitted wave vanishes due
to the total energy transfer into the diffracted wave and vice
versa (Fig. 2). If modulation is weak, i.e., when εr,i � 1,


ex = λ
√

ε0 − sin2θ/2
√

ε1ε−1 = λ
√

ε0 − sin2θ/

√
ε2
r − ε2

i .

(13)

Figure 2 represents dependencies of intensities of the
transmitted I0(z) = |E0|2 (12a) and diffracted Ih(z) = |Eh|2
(12b) waves on the depth z in the PhC for two different values
of the imaginary part of dielectric permittivity εi .

Curves 1 and 2 in Fig. 2(a) indicate the typical picture of the
pendulum oscillations under traditional diffraction in the Laue
geometry in the conservative PhC, i.e., with εi = 0. In this case
R1,2 = ∓1 [see Eq. (11)] and 
ex0 ≡ 
ex(εi = 0) = 7.8 μm.
Intensities of the transmitted and diffracted waves vary from
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FIG. 2. (a) The dependence of intensities of the transmitted
I0(z) (curve 1) and diffracted Ih(z) (dashed curve 2) waves on the
depth z in a conservative PhC when εi = 0 and θ = θB . (b) The
intensities of transmitted I0(z) (curve 1) and diffracted Ih(z) (curve
2) waves when θB > 0 and Ih(z) when θB < 0 (dashed curve 3) in
the case of a PT -symmetric PhC with εi = 0.07. The parameters are
d = 800 nm, λ = 800 nm, θB = ±30◦, ε0 = 1.2, and εr = 0.1.

0 to 1. When θB > 0, in the PT -symmetric photonic crystal
with εi = 0.07, the intensity of the transmitted wave I0(z) does
not change [curves 1, Figs. 2(a) and 2(b)], and the intensity of
the diffracted wave Ih(z) sharply decreases [curve 2, Fig. 2(b)]
because |R1,2| < 1 and the extinction depth 
ex = 10.9 μm
increases. Thereby at θ = θB the PT -symmetric PhC with the
thickness L = 2m
ex, where m is an integer, is completely
transparent, i.e., I0(L) = 1, and the PhC with L = (2m +
1)
ex absorbs and scatters radiation into the direction of the
diffracted wave [Ih(L) < 1, I0(L) = 0].

When εi approaches εr (εi → εr ) the reflection coefficients
Eq. (11) decrease. The coefficients R1,2 and the intensity of
the diffracted wave Ih(z), respectively, decrease and vanish
when εi = εr [Fig. 3(a), curve 2]. Radiation in the PhC
becomes one mode because q

(1)
0z = q

(2)
0z = k(ε0 − sin2θB)1/2 in

Eq. (12). At the same time the intensity of the transmitted
wave I0(z) tends to 1 at any finite value of the depth z

[Fig. 3(a), curve 1], and the extinction depth 
ex Eq. (13)
formally approaches infinity. Accordingly, the PT -symmetric
PC becomes completely transparent at θB > 0, i.e., I0(L) = 1
and Ih(z) = 0, irrespective of its thickness.

The symmetric sign change of the Bragg incidence angle
θB > 0 → θB < 0 causes a radical change of the dynamical
diffraction pattern in the PT -symmetric PhC. Indeed, chang-
ing projection of the wave vector at the boundary of the PhC
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FIG. 3. The dependence of intensities of the transmitted I0

(curve 1) and diffracted Ih (curve 2) waves on the relation εi/εr

at incidence angles (a) θB > 0 and (b) θB < 0. The PhC thickness is
L = 4
ex 0 = 31.2 μm, and the other parameters are the same as in
the caption for Fig. 2.
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FIG. 4. Two-dimensional cards of spatial distribution of the modulus of total field |E′(x,z)| = |E′
0(x,z) + E′

h(x,z)| for input (z < 0) and
output (z > L) beams as well as in a PhC (0 < z < L) under the exact Bragg condition. The straight arrows indicate the direction of input and
output beams. (a) A conservative PhC with ε0 = 1.3, εr = 0.2, εi = 0, and L = 5.5
ex. The field maximum within the PhC is |E′|max = 1.4.
(b) A PT -symmetric PhC, εi = 0.19, L = 8
ex, θB > 0, and |E′|max = 0.9. (c) A PT -symmetric PhC, εi = 0.19, L = 7
ex, θB < 0, and
|E′|max = 6. The insets: The fields’ distribution in the selected areas.

from qhx = q0x − h to qhx = q0x + h leads to the exchange of
the Fourier coefficients ε1 ↔ ε−1 in Eqs. (5). This is equivalent
to the sign change of the value εi . The reflection coefficients
Eqs. (9) and (11) now may be written as follows:

R1,2 = ∓√
ε1ε−1/ε1 = ∓

√
(εr + εi)/(εr − εi). (14)

Amplitudes of the diffracted waves now will increase when
the magnitude εi approaches the singularity. The sign change
of the incidence angle to the opposite sign can be obtained
using a simple 180° turn of the PhC around the normal to the
PhC surface.

Figure 2(b) shows that the intensity of the transmitted
radiation I0(z) still oscillates between 0 and 1 (curve 1) and
the intensity Ih(z) significantly increases (curve 3). The PhC
with the thickness L = 2m
ex still stays transparent, but
the PhC with the thickness L = (2m + 1)
ex significantly
enhances radiation in the direction of the diffracted wave. In
the limited PhC this increase is not infinite because 
ex → ∞
and L < 
ex in the singularity. Thus, the symmetric change
of the Bragg incidence angle θB > 0 → θB < 0 leads to the
asymmetric amplitude change of the diffracted waves. As a
consequence, it leads to the change of transparency of the
PhC under the pendulum effect, i.e., when L = (2m + 1)
ex,
a weak absorbing PhC begins to amplify radiation strongly
in the direction of diffracted wave. In the vicinity of the
singularity εi → εr a completely transparent PhC begins to
amplify radiation in accordance with the quadratic law Ih(z) =
[k2ε2

r /4(ε0 − sin2θB)]z2 when the sign of the incidence angle
is changed. This phenomenon happens independently on the
structure thickness [Fig. 3(b)]. As is seen from Fig. 3(a), for
a fixed thickness of structure L, the incident wave can be
switched from the forward direction (εi = 0.87εr , curve 1) into
the direction of the diffracted wave (εi = 0.95εr , curve 2) by a
change in the gain-loss parameter. The diffracted wave either
will be weakened [curve 2 in Fig. 3(a)] or will be enhanced
[curve 2 in Fig. 3(b)], depending on the sign of incidence angle.

Similar ratios of the values of transmitted and diffracted
waves’ intensities also occur in the case of propagation of
a monochromatic wave packet, or light beam, into a PhC.
The boundary problem of the diffraction of the light beam
near the Bragg condition has been solved by the spectral

method [13]. The incident pulse is represented as a Fourier
decomposition into plane monochromatic waves with different
wave vectors. Subsequently, once the Fourier amplitudes of
each of the plane waves inside the PhC and in free space have
been determined in the two-wave approximation, we perform a
Fourier synthesis and find the field strengths of the transmitted
[E′

0(x,z)] and diffracted [E′
h(x,z)] beams at different points in

space.
In Fig. 4, the input Gaussian beam of a unit amplitude falls

on the PhC, which is localized in the region 0 < z < L. The
oscillations of the input beam field near the left boundary
are caused by the interference of the incident and weak
reflected waves. Obviously, if amplitudes of the diffracted
field in the PT -symmetric PhCs are changed nearby the
PT -symmetry-breaking point, this leads to an efficient change
of the spatial localization of total field in the crystal |E′(x,z)| =
|E′

0(x,z) + E′
h(x,z)| (see Fig. 4), i.e., to the change of the field

structure under the pendulum effect compared with the case
of the conservative PhC [Fig. 4(a)]. In the first case reviewed
above (θB > 0) the condition |E′

0| � |E′
h| is fulfilled, thus

the field structure is defined mainly by the superposition of
the transmitted waves and |E′|max ≈ 1 in Fig. 4(b). In the
second case (θB < 0) the PhC is an amplifying structure
|E′

0| � |E′
h|, and the spatial structure of the total field in the

medium is defined by the diffracted waves. The field maxima
in the interference pattern increase significantly |E′|max ≈ 6
[Fig. 4(c)]. The fields of output beams for the conservative
PhC [Fig. 4(a)] and for the PT -symmetric crystal at θB > 0
[Fig. 4(b)] have the values commensurate with the field of
the input beam. When the sign of the incidence angle θB is
changed from positive to negative, the diffracted output beam
is amplified significantly [Fig. 4(c)].

Above we have considered an incident wave at the exact
Bragg angle. It is interesting to analyze angular dependencies
of the intensities I0(�θ ) and Ih(�θ ) as the functions of
detuning from the Bragg angle �θ = θ − θB when PhC
thickness is fixed. From the expressions (6) and (7) it follows
that the region of strong diffraction reflection is defined by
the condition |α0| � k2√ε1ε−1/h. Hence, we obtain that the
total effective width of the Bragg reflection is defined by the
expression �θB = (ε2

r − ε2
i )

1/2
/sin 2θB .
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FIG. 5. The dependence of intensities of the transmitted I0(�θ )
(curves 1) and diffracted Ih(�θ ) (curves 2) waves on the detuning
�θ = θ − θB from the Bragg angle at the PhC thickness L = 5
ex =
56.6 μm and εi = 0.07 if (a) θ > 0 and (b) θ < 0; the angular width
is �θB = 4.7◦. The parameters are the same as in Fig. 2.

When εi → εr , the width �θB decreases and vanishes in
the singularity. Figure 5 illustrates curves of diffraction trans-
mission and reflection [angular dependencies of the intensities
I0(�θ ) and Ih(�θ )] at positive and negative incidence angle θ .
It is seen that the transmission curve I0(�θ ) does not depend
on a sign of angle θ [curves 1 in panels (a) and (b)]. The
diffraction reflection curve Ih(�θ ) significantly increases at
the sign change of θ [curve 2 in Fig. 5(b)]. When the thickness
of the PhC increases, the period of inner oscillations at the
curves’ edges decreases.

Larger values m = L/2
ex � 1 are typical for
diffraction-thick PhCs [18]. Thus, the output radiation can
be switched from the forward direction with intensity I0(L)
into the diffraction one with Ih(L) through a small change
of the extinction depth 
ex [Eq. (13)] at a small variation of the
gain-loss parameter. For example, a transparent (I0=1, Ih=0)
PT -symmetric PhC can be transformed into an absorbing one
(I0 = 0, Ih � 1) by small changing �εi ∼ 10−3 at θB > 0 or
into an amplifying crystal (I0 = 0, Ih � 1) at θB < 0.

Below the singularity εi < εr the Borrmann and anti-
Borrmann eigenmodes,

E1(x,z) = {A01 exp(iq0xx) + Ah1 exp[i(q0x − h)x]}
× exp

(
iq

(1)
0z z

)
, (15a)

E2(x,z) = {A02 exp(iq0xx) + Ah2 exp[i(q0x − h)x]}
× exp

(
iq

(2)
0z z

)
(15b)

are propagating PT -symmetric modes because q
(1,2)
0z (6)

are real functions. Therefore, their intensities I1,2(x) =
|E1,2(x,z)|2 do not depend on z. In crossing the singularity
εi > εr , the complex values q

(1,2)
0z (6) in Eqs. (15) lead to

a gain or loss of these modes, and the solutions (15) become
PT asymmetric. The corresponding intensities increase or de-
crease exponentially with the depth z: I1,2(x,z) ∝ exp(±μz).
From the relations (6) and (15) it follows that the gain-loss
coefficient is

μ = π

√
ε2
i − ε2

r /λ
√

ε0 − sin2θB. (16)

In Fig. 6 it clearly is seen how spatial localization of the
Borrmann and anti-Borrmann modes changes in crossing the
PT -symmetry-breaking point.
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FIG. 6. (a) Spatial distribution of the real (curve 1) and imaginary
(curve 2) parts of the permittivity ε(x) for a PT -symmetric PhC
with εi = 0.07 < εr = 0.1. (b) Distributions of the Borrmann PT -
symmetric mode I1(x,L) (curves 1 and 2) and (c) the anti-Borrmann
PT -symmetric mode I2(x,L) (curves 3 and 4) along the x axis in
the PhC at incidence angles θB > 0 (dashed curves 1 and 3) and
θB < 0 (curves 2 and 4). (d) Spatial distribution of the real (curve
1) and imaginary (curve 2) parts of the permittivity ε(x) for a PT -
asymmetric PhC with εi = 0.13 > εr = 0.1. (e) Distributions of the
Borrmann mode I1(x,L) (curves 1 and 2) and (f) of the anti-Borrmann
mode I2(x,L) (curves 3 and 4) along the x axis in the PhC at incidence
angles θB > 0 (dashed curves 1 and 3) and θB < 0 (curves 2 and 4).
The length of the structure is L = π/μ = 9.4 μm, and the other
parameters are the same as in Fig. 2.

Figure 6(b) shows that the Borrmann intensities I1(x) are
localized, i.e., maximal, among the planes x = 0,±d,±2d,
and so on, whereas the anti-Borrmann intensities I2(x) are
localized on these planes [Fig. 6(c)]. At the same time when
the sign of the incidence angle is changed, intensities I1,2(x)
increase significantly [curves 2 in Fig. 6(b) and 4 in Fig. 6(c)].
This is caused by an increase in amplitudes Ah1,h2 in Eqs. (15)
due to an increase in reflection coefficients R1,2 Eq. (14). When
one compares curves in Figs. 6(b) and 6(c) with the distribution
of the imaginary part of the permittivity in Fig. 6(a) (curve 2),
it is clear that the PT -symmetric modes are localized in those
regions of the PhC where both light absorption [ε′′(x) > 0]
and amplification [ε′′(x) < 0] act simultaneously.

In crossing the PT -symmetry-breaking point (εi > εr )
the reflection coefficients R1,2 become purely imaginary. At
the incidence angle θB > 0 from Eq. (9) it follows that
R1,2 = ∓i[(εi − εr )/(εi + εr )]1/2, whereas |R1,2| < 1. When
the sign of the incidence angle changes to θB < 0 from
Eq. (9), we obtain that R1,2 = ±i[(εi + εr )/(εi − εr )]1/2. It
means that the absolute values of the reflection coefficients
are |R1,2| > 1. The presence of the imaginary unit in the
second terms in Eqs. (15) leads to displacement of the spatial
distributions of the PT -asymmetric Borrmann [Fig. 6(e)] and
anti-Borrmann [Fig. 6(f)] modes by the value of d/4 along the
x axis compared to curves in Figs. 6(b) and 6(c). It is worth
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FIG. 7. The dependence of the absolute values of the PT -
asymmetric (a) Borrmann fields E10 (curve 1) and E1h (dashed
curve 2) and (b) anti-Borrmann fields E20 (curve 1) and E2h (dashed
curve 2) on the depth z in the PhC at the following parameters:
εr = 0.1, εi = 0.13, θB < 0, and L = π/μ = 9.4 μm. The other
parameters are the same as in Fig. 2.

mentioning here that in these regions of the PhC the imaginary
part of the permittivity is negative [curve 2 in Fig. 6(d)],
thus the Borrmann mode I1(x,L) increases [Fig. 6(e)]. On the
contrary, in the region where the anti-Borrmann mode I2(x,L)
is localized, the imaginary part ε′′(x) is positive [curve 2 in
Fig. 6(d)]. That leads to its loss [Fig. 6(f)].

To illustrate the foregoing, let us represent the Borrmann
and anti-Borrmann modes Eq. (15) as the sum of partially
transmitted and diffracted waves, belonging to different
branches of the dispersion relation Eq. (6): E1 = E10 + E1h,
E2 = E20 + E2h. Figure 7 shows how fields of the Borrmann
mode E10,1h increase [Fig. 7(a)] and how fields of the anti-
Borrmann mode decay [Fig. 7(b)] while they are propagating
inside the PhC. For certainty we consider the case of negative
incidence angle θB < 0.

IV. CONCLUSIONS

We have described dynamical Bragg diffraction of plane
monochromatic waves and beams in the PT -symmetric PhC
in the Laue geometry beyond paraxial approximation. It is
demonstrated that optical properties of thePT -symmetric PhC
radically vary when the sign of the Bragg incidence angle is
changed. This leads to the transformation of the absorbing
PhC into a strongly amplifying one below the PT -symmetry-
breaking point εi < εr at the fixed structure thickness. In these
circumstances, the output intensity of the transmitted wave is
zero, and only the diffracted wave is absorbed or amplified. In
the vicinity of the singularity εi → εr the PhC turns from the
completely transparent structure into an amplifying one at any
thickness of the structure when the sign of the Bragg incidence
angle is changed. In a diffraction-thick PT -symmetric PhC,
input radiation can be switched from the transmitted wave
into the amplified diffracted wave by a small changing of the
loss-gain parameter �εi ∼ 10−3. Increasing intensity of the
interference maxima of the pendulum effect can also be useful
for enhancement of the efficiency of quasi-phase-matching
generation of optical harmonics. The generation efficiency is
enhanced due to an increase in electroinduced second-order
nonlinearity in the maxima of pendulum-effect grating [33].
The change of the value εi and, correspondingly, magnitudes
of the wave vectors of propagating modes can be used in the
PT -symmetric PhC to satisfy the phase-matching condition
under the generation of optical harmonics.
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