
R E S E A R CH AR T I C L E

Degrees of functional connectome abnormality in disorders of
consciousness

Dmitry O. Sinitsyn | Liudmila A. Legostaeva | Elena I. Kremneva |

Sofya N. Morozova | Alexandra G. Poydasheva | Elizaveta G. Mochalova |

Oksana G. Chervyakova | Julia V. Ryabinkina | Natalia A. Suponeva |

Michael A. Piradov

Research Center of Neurology, 80

Volokolamskoe shosse, Moscow 125367,

Russia

Correspondence

Dmitry O. Sinitsyn, Research Center of

Neurology, 80 Volokolamskoe shosse,

Moscow 125367, Russia.

Email: d_sinitsyn@mail.ru

Funding information

Russian Science Foundation, Grant/Award

Number: 16-15-00274

Abstract
Understanding the neuronal basis of disorders of consciousness can help improve the accuracy of

their diagnosis, indicate potential targets for therapeutic interventions, and provide insights into

the organization of normal conscious information processing. Measurements of brain activity have

been used to find associations of the levels of consciousness with brain complexity, topological

features of functional connectomes, and disruption of resting-state networks. However, obtain-

ment of a detailed picture of activity patterns underlying the vegetative state/unresponsive

wakefulness syndrome and the minimally conscious state remains a work in progress. We here

aimed at finding the aspects of fMRI-based functional connectivity that differentiate these states

from each other and from the normal condition. A group of 22 patients was studied (9 minimally

conscious state and 13 vegetative state/unresponsive wakefulness syndrome). Patients were

shown to have reduced connectivity in most resting-state networks and disrupted patterns of rela-

tive connection strengths as compared to healthy subjects. Differences between the unresponsive

wakefulness syndrome and the minimally conscious state were found in the patterns formed by a

relatively small number of strongest positive correlations selected by thresholding. These differen-

ces were captured by measures of functional connectivity disruption that integrate area-specific

abnormalities over the whole brain. The results suggest that the strong positive correlations

between the functional activities of specific brain areas observed in healthy individuals may be crit-

ical for consciousness and be an important target of disruption in disorders of consciousness.
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1 | INTRODUCTION

Disorders of consciousness (DOC) constitute some of the most devas-

tating neurological conditions. The extremely challenging task of

improving the patients’ state is further complicated by problems of

diagnosis. The two aspects of normal consciousness—wakefulness and

awareness—may become dissociated, which leads to the distinction

between the state of preserved wakefulness without awareness,

termed vegetative state (VS) or unresponsive wakefulness syndrome

(UWS), and the state of wakefulness with minimal reproducible signs of

awareness, known as the minimally conscious state (MCS) (Demertzi,

Soddu, & Laureys, 2013). Practical differentiation between these states

is challenging because subjective awareness of the environment cannot

be measured directly but is instead evaluated by behavioral tests (Gia-

cino, Fins, Laureys, & Schiff, 2014), which may underestimate the level

of consciousness due to sensory, motor, or executive function impair-

ments (Casarotto et al., 2016).

Problems of behavioral assessment of consciousness and the

importance of correct diagnosis in rehabilitation and patient care deci-

sions have led to an extensive search for objective methods of
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evaluating the level of consciousness based on different modalities of

brain activity measurement. The latter include positron emission

tomography (PET) (Stender et al., 2014), functional magnetic resonance

imaging (fMRI) (Demertzi et al., 2015; Wu et al., 2015), diffusion tensor

imaging (DTI) (Zheng et al., 2017), and recording of electroencephalo-

graphic responses to transcranial magnetic stimulation (TMS-EEG)

(Casali et al., 2013). These studies produced a number of important

advances. The application of the TMS-EEG method resulted in the

development of the perturbational complexity index (PCI), which was

shown to successfully distinguish the states of consciousness in healthy

individuals and to differentiate the UWS from higher levels of con-

sciousness (Casarotto et al., 2016). PET measurements differentiated

UWS and MSC patients with considerable accuracy (Stender et al.,

2014). At the same time, there remains a significant proportion of bor-

derline or anomalous cases where objective measurements diverge

from each other or from clinical assessments (Bodart et al., 2017). Inter-

pretation of such situations and understanding the difference in the

aspects of consciousness measured by each method require further

investigation.

Although the analysis of resting-state fMRI (rs-fMRI) data has ini-

tially shown a lower accuracy than PET in distinguishing UWS from

MCS patients (Rosazza et al., 2016; Stender et al., 2014), this noninva-

sive and relatively fast method is a promising approach to provide

information complementary to other measurements and could help dis-

ambiguate borderline cases. In addition, its lower cost and higher acces-

sibility make it relevant for clinical application. Recently resting-state

fMRI was applied for the discrimination between UWS and MCS, and

the results coincided with the behavioral diagnosis using the Coma

Recovery Scale-Revised in 20 of 22 patients (Demertzi et al., 2015).

Much of the research on functional connectivity in DOC has

focused on the disruption of specific resting-state networks, especially

the default mode network (DMN) (Heine et al., 2012; Rosazza et al.,

2016; Vanhaudenhuyse et al., 2010). Within the DMN, the posterior

cingulate cortex/precuneus (PCC/PCU) regions were identified as par-

ticularly important. Thus, in Wu et al. (2015), functional connectivity

strength patterns predicted whether patients with unresponsive wake-

fulness syndrome/vegetative state and coma would regain conscious-

ness with an accuracy of 81.25%, and the most discriminative region

was the PCC/PCU. Along the same lines, Silva et al. (2015) showed

that the correlation between posterior cingulate cortex and medial pre-

frontal cortex (also part of the DMN) in comatose patients predicted

the Coma Recovery Scale-Revised (CRS-R) score 3 month after the

scanning. More recent studies have also found disrupted connectivity

in resting-state networks other than the DMN (Demertzi et al., 2014).

Indeed, in the study (Demertzi et al., 2015), the highest accuracy of

MCS/UWS classification was obtained using the auditory network,

with the visual network and DMN rated second and third.

The findings of the studies attempting to distinguish between

MCS and UWS suggest that this problem is more challenging than that

of differentiating DOC patients from healthy controls, and the result is

very sensitive to the type of analysis applied. Thus, the comparison

of functional connectivity strength in Wu et al. (2015) revealed signifi-

cant differences between DOC patients and controls, primarily in the

default mode, salience and executive control networks; however, no

significant difference between MCS and UWS was found. In Demertzi

et al. (2014), the DMN and auditory network had the highest accuracy

(85.3%) in discriminating patients from healthy subjects. At the same

time, a significant difference between MCS and UWS was found only

for the left executive control network when comparing the percentage

of patients having the corresponding independent components of neu-

ronal activity. Other networks did not show significant differences, and

for the DMN this parameter was the same in MCS and UWS. Thus, fur-

ther research is needed to identify methods of connectivity analysis

that are most effective for solving this clinically important classification

problem.

In addition to their clinical applications, studies of brain activity in

DOC patients can provide important insights for the fundamental

understanding of the neural basis of conscious information processing.

In this regard, the complexity of normal neural signals, as revealed in

the TMS-EEG responses by the PCI, highlighted the importance of inte-

gration and differentiation in the neuronal dynamics underlying con-

sciousness (Casali et al., 2013). At the same time, many global network

properties of functional connectomes of coma patients measured by

fMRI showed no significant differences from those of healthy controls,

whereas the connectivity of specific brain areas was substantially dis-

rupted (Achard et al., 2012). These findings suggest that in addition to

measures of overall brain dynamics, fine-grained location-specific anal-

yses may be essential for the description of consciousness-supporting

networks.

In this respect, recent advances in the evaluation of functional con-

nectivity based on detailed brain parcellations into functionally homo-

geneous areas may prove helpful. The small size and special choice of

the areas’ locations increase the signal coherence of their voxels, which

leads to more meaningful connectivity measures (Shen, Tokoglu, Papa-

demetris, & Constable, 2013). Combining these atlases with the analy-

sis that compares the individuals’ connectomes in a node-specific way,

but without restriction to a particular area or resting-state network,

provides a tool sensitive to even small differences in the connectivity.

This approach was successfully applied to several challenging problems,

such as identification of an individual by their functional connectome

(Finn et al., 2015) and prediction of performance in a sustained atten-

tion task based on fMRI data (Rosenberg et al., 2016). In the context of

DOC research, the connectivity assessed by this method served as a

basis for the recently developed ConnICA procedure providing a data-

driven characterization of subjects at different levels of consciousness

by the typical patterns in their connectomes (Amico et al., 2017).

In this study, we compared functional connectivity inferred from

fMRI data in healthy individuals and in DOC patients in the MCS and

UWS states. The goal was to determine the connectome features and

the brain areas or networks in which the differences between the lev-

els of consciousness were most prominent. We based our analysis on

ROI-to-ROI connectivity matrices computed using a detailed fMRI-

based atlas of brain areas (Shen et al., 2013). The resulting individual

connectivity matrices were compared with the mean connectome of a

reference group of healthy volunteers using the Pearson correlation.

A similar analysis was applied to the strongest positive connections
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obtained by thresholding the connectivity matrices. The results were

compared with the description at the level of nodal degrees using a

variant of the hub disruption index introduced in Achard et al. (2012)

and with the analysis of the total numbers of above-threshold connec-

tions. We also examined differences between subject groups in the mean

connectivity within the commonly described resting-state networks.

2 | METHODS

2.1 | Subjects

Twenty-two patients (9 women, mean age 37 years, age range 21–61

years) admitted to the Research Center of Neurology, Moscow, Russia

between 2014 and 2016 met the study inclusion criteria: chronic disor-

der of consciousness in permanent terms (at least 12 months since

traumatic brain injury incident or at least 3 months since the episode of

anoxia), no contraindications to MRI scanning, stable vital functions. Of

them, 13 patients (59%) were diagnosed as being in a vegetative/unre-

sponsive wakefulness state (VS/UWS), 9 patients (41%) in a minimally

conscious state (MCS). Mean time since the incident was 13.0 months

in traumatic brain injury patients (n56) and 6.8 months in DOC of

anoxic etiology (n516). Table 1 summarizes the clinical characteristics

of the enrolled patients.

Clinical assessment of consciousness was performed using the JFK

Coma Recovery Scale-Revised (CRS-R), which comprises 23 hierarchi-

cally arranged items associated with brainstem, subcortical, and cortical

processes (Giacino, Kalmar, & Whyte, 2004). The lowest item on each

subscale represents reflexive activity, while the highest item represents

cognitively mediated behaviors by addressing to auditory, visual, motor,

oromotor, communication, and arousal functions. CRS-R is established

as the most reliable tool for chronic DOC assessment (Seel et al.,

2010). Validation of the Russian adaptation of the Coma Recovery

Scale–Revised was conducted in Research Center of Neurology (Mos-

cow) from October 2016 until April 2017, registered at clinicaltrials.gov

(Identifier IDNCT03060317) (Mochalova et al., 2018). The CRS-R

assessment was performed three times: on the day of fMRI, the day

before, and the day after. The CRS-R scores and the MCS/UWS diag-

noses were identical in the three evaluations.

TABLE 1 Clinical characteristics of the enrolled patients

ID Sex Age Etiology
DOC duration,
months

CRS-R
total score Diagnosis

Dexmedetomidine-induced
sedation

1 M 23 TBI 13 20 MCS 1

2 M 50 Anoxia 8 10 MCS 1

3 M 21 Anoxia 18 4 UWS 2

4 F 31 Anoxia 4 7 UWS 2

5 F 61 Anoxia 17 5 UWS 2

6 F 31 Anoxia 15 18 MCS 1

7 M 22 Anoxia 4 6 UWS 2

8 M 41 Anoxia 3 5 UWS 1

9 F 23 TBI 13 8 UWS 2

10 M 50 Anoxia 3 6 UWS 2

11 F 24 TBI 12 21 MCS 1

12 M 55 Anoxia 3 15 MCS 1

13 M 55 Anoxia 3 4 UWS 2

14 F 56 Anoxia 15 18 MCS 2

15 M 22 TBI 13 3 UWS 2

16 F 22 TBI 13 8 UWS 2

17 M 33 TBI 14 18 MCS 1

18 F 28 Anoxia 3 4 UWS 2

19 M 55 Anoxia 3 5 UWS 2

20 F 24 Anoxia 4 4 UWS 2

21 M 33 Anoxia 3 12 MCS 1

22 M 53 Anoxia 3 12 MCS 2

Note. Abbreviations: CRS-R5Coma Recovery Scale-Revised; F5 female; M5male; MCS5minimally conscious state; TBI5 traumatic brain injury;
UWS5 unresponsive wakefulness syndrome.
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Whenever possible, MRI acquisition was performed without seda-

tion. However, to avoid motor artifacts during scanning in 8 patients

(36%), an anesthesiologist induced light sedation by dexmedetomidine

administration via intravenous infusion at a constant rate of 1 lg/kg/h.

During the infusion period, the anesthesiologist monitored cuff blood

pressure, electrocardiogram, and pulse oximetry.

In addition to DOC patients, we analyzed rest-fMRI data from two

groups of healthy volunteers. The first group, referred to as the refer-

ence group, consisted of 14 healthy volunteers (6 women, mean age 40

years, age range 24–67 years) studied under the same protocol as the

patients. The data for the second group, referred to as the control

group, were taken from a publicly available dataset1 from 20 healthy

individuals (14 women, mean age 21 years, age range 18–26 years).

The analysis of two groups of healthy subjects was necessary for

the following reasons. The main approach used here for the assessment

of connectomes of patients was to compare them to the mean healthy

connectome. The latter was obtained by averaging the connectomes of

the first group of healthy volunteers, referred to as the reference group.

The similarity of an individual’s connectome to this mean connectome

serves as a measure of its intactness. However, to establish a criterion

of normality for this measure, we must estimate its distribution in the

healthy population. An important caveat is that subjects from the refer-

ence group cannot be used for this estimation in an unbiased way

because they are likely to be closer to the average of their group than

any independent healthy individual. With this in mind, we used a data-

set from a separate, independent group of healthy volunteers, referred

to as the control group, to obtain unbiased estimates of the connectome

intactness measures in the healthy population. The situation bears

some analogy to that in supervised machine learning, where a training

set (analogous to our reference group) is used to estimate the model

parameters and a test set (similar to the control group here) provides an

unbiased estimate of the model’s accuracy.

The study was approved by the local ethical committee. Informed

consent was obtained from the legal representatives of patients and

from healthy volunteers before any study-related procedures.

2.2 | Data acquisition

The imaging protocol for the patient group and the reference group

consisted of structural MRI acquisition (duration 9 min) and resting

state fMRI (duration 7 min 36 s), so that the total time spent by the

subjects in the scanner was 16 min 36 s. The scanning was performed

in the afternoon to avoid confounds due to natural sleep rhythms.

Imaging data were acquired using a Siemens MAGNETOM Verio 3 T

clinical scanner with a standard 32-channel matrix head coil. Resting-

state scans were acquired using a T2*-weighted echo planar (EPI)

sequence (TE/TR530/2,400 ms, flip angle 908, matrix 64 3 64; FoV

192 3 192 mm2, 36 axial slices to cover the whole brain) with a voxel

resolution of 3.0 3 3.0 3 3.0 mm3. One fMRI scanning session was

performed for each patient and control subject and consisted of 190

continuous resting state volumes. For spatial normalization and

localization, a T1-weighted anatomical image was acquired (TE/

TR52.47/1,900 ms, TI5900 ms, flip angle 98, matrix 256 3 256, FoV

250 3 250 mm2, 176 sagittal slices to cover the whole brain) with an

isotropic voxel resolution of 1.0 3 1.0 3 1.0 mm3.

The acquisition parameters for the control dataset were TR 5

3,000 ms, 47 contiguous slices, 119 volumes (total fMRI duration 5 min

57 s), matrix size 72 3 72, voxel size53.0 3 3.0 3 3.0 mm3.

2.3 | Preprocessing

The data were processed using the CONN functional connectivity tool-

box (Whitfield-Gabrieli and Nieto-Castanon, 2012), version 17b2 and

SPM12.3 The preprocessing pipeline consisted of the following steps:

realignment of functional images (motion correction), slice timing cor-

rection, coregistration, segmentation of structural data, normalization

into standard stereotactic Montreal Neurological Institute (MNI) space,

outlier detection/scrubbing using the artifact detection tool (ART4), and

spatial smoothing with a Gaussian kernel of 8 mm. The number of out-

lier scans was checked to be less than half of all scans for every subject.

Denoising was performed by removing the following confounders by

linear regression: (a) the blood-oxygen-level dependent (BOLD) signal

from the white matter and CSF masks (5 principal components of each

signal); (b) scrubbing (as many regressors as identified invalid scans); (c)

motion regression (12 regressors: 6 motion parameters16 first-order

temporal derivatives). The resulting signals were band-pass filtered in

the range 0.008–0.09 Hz.

2.4 | Connectivity analysis

2.4.1 | Index of connectome intactness

ROI-to-ROI connectivity analysis was performed using a detailed atlas

of 278 brain areas constructed in Shen et al. (2013) as a result of opti-

mization for functional homogeneity within the areas in healthy sub-

jects.5 The BOLD signal time course of every ROI was calculated. It

consisted of 190 measurements repeated every 2.4 s (total duration 7

min 36 s) for the patients and the healthy reference group and of 119

measurements repeated every 3 s (total duration 5 min 57 s) for the

healthy control group. The Fisher-transformed correlation coefficients

between all pairs of these signals were computed, comprising a sym-

metric connectivity matrix (Figure 1). Its upper triangle (not including

the diagonal elements) forms a connectivity vector.

The analysis of the disruption of functional connectomes was per-

formed as follows. The connectivity vectors of the reference group of

healthy volunteers were averaged to obtain the mean normal connec-

tivity vector (Figure 1). The intactness of an individual connectome was

assessed by computing the Pearson correlation coefficient of the indi-

vidual connectivity vector with the mean normal connectivity vector.

The Pearson correlation was used because it had previously been

shown to be a useful measure of connectome similarity (Finn et al.,

1http://fcon_1000.projects.nitrc.org, Cambridge dataset (first 20 subjects)

2http://www.nitrc.org/projects/conn
3http://www.fil.ion.ucl.ac.uk/spm/
4http://www.nitrc.org/projects/artifact_detect
5https://www.nitrc.org/frs/?group_id551
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2015). The resulting correlation coefficient is referred to below as the

index of connectome intactness (ICI).

2.4.2 | Index of thresholded connectome intactness

A similar analysis was performed taking into account only the strongest

connections. All the connectivity vectors were thresholded at a given

level, so that in the resulting vectors 0 corresponded to the correlations

below the threshold and 1 to those above it. The average of the

thresholded connectivity vectors from the reference group was com-

puted. A component in this vector corresponding to a particular con-

nection is equal to the frequency with which this connection passes

the threshold in the connectomes of the reference group. This fre-

quency serves as a measure of how typical it is of this connection to

have a high positive value in a healthy individual. The correlation coeffi-

cient of the resulting vector with an individual thresholded connectivity

vector was used as a measure of preservation of the strongest func-

tional connections, termed index of thresholded connectome intactness

(ITCI).

2.4.3 | Hub disruption index

The above connectome analysis at the level of specific graph edges

(connections) was compared with two other descriptions, based on

nodal degrees and the total number of edges respectively. The first

analysis employed a modification of the hub disruption index (HDI) intro-

duced in Achard et al. (2012), computed as follows. The degrees of all

nodes (i.e., numbers of connections of all brain areas; Wang, 2010) in

the thresholded connectomes were found. For each subject in every

group, a plot was produced with one point for each graph node. The X

coordinate of a point was the mean degree of the node in the connec-

tomes of the healthy subjects from the reference group, and the Y

coordinate was the difference of the individual degree of the node in

the current subject’s connectome and its mean degree in the reference

group. The hub disruption index was defined as the gradient of a

straight line fitted to these points. If the hubs of healthy connectomes

become nonhubs in a patient’s connectome, then the HDI for this

patient will have a negative value. For healthy subjects, the index

should be relatively close to zero because the nodal degrees in healthy

subjects’ connectomes are expected to have considerable similarity. It

should be noted that the above procedure of constructing the HDI has

some deviations from the one defined in Achard et al. (2012). Thus, the

Pearson correlation was used instead of wavelet correlation as a mea-

sure of connectivity to put the index in the same general framework

with the other metrics considered, which are based on the Pearson cor-

relation between BOLD signals. We also used a fixed threshold rather

than a subject-specific threshold for choosing the strongest connec-

tions (in HDI as well as other thresholding-based characteristics), to

extract correlations of similar statistical significance (see also the dis-

cussion in the Section 4.3).

The analysis at the level of nodal degrees can be viewed as a

coarser description of connectomes than the previous edge-level analy-

sis because there may exist a number of different graphs with the

same set of nodal degrees (solutions to the so-called degree realization

problem; Cloteaux, 2016), which would be discriminated by the ITCI

but not the HDI.

2.4.4 | Number of suprathreshold connections

In the final (coarsest) type of analysis, the total numbers of suprathres-

hold connections were computed for every subject and compared

between the groups.

2.4.5 | Connectivity within resting-state networks

The specificity of connectivity disruption to particular resting-state net-

works (RSNs) was studied as follows. The cortical parcellation into 7

networks from Yeo et al. (2011) was used.6 Each of the 278 areas from

the atlas was assigned to the resting-state network having the largest

overlap volume with the area (or to no network if the largest overlap

FIGURE 1 Scheme of computation of the ICI index measuring the similarity of a patient’s connectome to the mean connectome of the
reference group of healthy subjects [Color figure can be viewed at wileyonlinelibrary.com]

6https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011

SINITSYN ET AL. | 5

http://wileyonlinelibrary.com


was with the space outside the RSNs). For each subject, we computed

the average connectivity strength within each network defined as the

mean correlation coefficient of all pairs of areas within the network.

The distributions of the resulting numbers were compared between

the control, MCS, and UWS groups.

2.5 | Statistical analysis

The above metrics of connectome disruption were compared between

the subject groups using the Mann–Whitney test, which is robust to

outliers. In addition to the probability value, we report the effect size

computed as the Mann–Whitney statistic divided by the product of

the sample sizes. This measure is known under several names: probabil-

ity of superiority, common language effect size, and area under receiver

operating characteristic curve (AUC). It estimates the probability with

which a random value from the first population will be greater than a

random value from the second one. Confidence intervals for ES were

computed using the R package pROC (Robin et al., 2011).

The possible effects of the covariates (age, gender, etiology, seda-

tion and DOC duration) along with the effect of interest (diagnosis of

MCS or UWS) on the ITCI and HDI within the patient group were

approximately tested using robust rank-based estimation and inference

for an additive general linear model as described in Hettmansperger

and McKean (2011) and Hollander and Wolfe (1999) and implemented

in the package Rfit7 (Kloke and Mckean, 2012).

It is important to note that the metrics based on the mean healthy

connectome (ICI, ITCI, HDI) were compared between the patient group

and the independent healthy control group, which was not used in the

averaging (see also the rationale for using two healthy groups in Sec-

tion 2.1). Thus, a significant effect found in such a comparison does not

merely say that there is some difference between the patients and the

subjects by which the average was computed (i.e., the reference group).

Instead, it shows that this difference is significantly greater than that

expected for a randomly taken healthy individual, presumably indicat-

ing an abnormality in the patients’ connectomes. We also used other

metrics that characterize an individual connectome on its own, without

reference to any averaged data (total number of suprathreshold con-

nections, mean connection strengths within resting-state networks).

Unlike the previously mentioned measures, these parameters are not

tied to the reference group, and we expect them to have no bias in this

group compared to the general healthy population. Thus, we compared

such metrics between the patient group and the healthy reference

group, as this group was studied under an identical protocol and thus

provided the most accurate benchmark for these parameters.

The choice of the connection threshold value is an important

aspect in all the connectome characteristics that involve thresholding

(ITCI, HDI, number of total suprathreshold connections). This value

determines the minimal value of correlations that are analyzed, and can

be chosen to provide better sensitivity to the relevant connectome fea-

tures. However, if a result depends on the threshold being confined to

a narrow range of values, such a result is more likely to be a false

positive and not generalize to the whole population. For this reason,

we conducted sensitivity analyses checking if the results are robust to the

change of the threshold within an interval of a reasonable size. To avoid

overfitting, we did not optimize the threshold value for the best separa-

tion of the studied groups of individuals. Rather, we report the results of

statistical tests for an arbitrary threshold value in the range where there is

a significant effect. It should be kept in mind that the specific reported

empirical probability values and effect size estimates are subject to vari-

ability. The latter is due to variations of connection strengths in the popu-

lations and their relationship to the correlation threshold chosen.

3 | RESULTS

A summary of the results is given in Table 2.

3.1 | Index of connectome intactness

The distributions of the index of connectome intactness (ICI) in healthy

controls and DOC patients were significantly different (Figure 2). How-

ever, the ICI did not differ significantly between the UWS and MCS

patient groups (data not shown).

3.2 | Index of thresholded connectome intactness

A significant difference between MCS and UWS patients, as well as

between patients and controls, was found in the index of thresholded

connectome intactness (ITCI, Figure 3a,b), with patients in MCS having

higher (closer to normal) ITCI values than in UWS. The distributions for

MCS and UWS were significantly different (p< .05, Mann–Whitney

test) for all threshold values between 0.4 and 1.1. An arbitrary thresh-

old value in this range (1.0) was chosen for illustrating the effect in Fig-

ure 3a. The estimated effect size (probability of superiority, or AUC) is

0.88 (95% CI: 0.74, 1). Choosing a reasonable critical value of

ITCI*50.089 and classifying patients with ITCI> ITCI* as MCS and as

UWS otherwise, one obtains a specificity of 0.77 (95% CI8: 0.46–0.94)

and a sensitivity of 0.89 (95% CI: 0.51–0.99) for detecting MCS.

3.3 | Hub disruption index

The hub disruption index (HDI) measures the deviation of the nodal

degrees in a subject’ connectome from their mean values in the refer-

ence group. Similar to the ITCI, the HDI showed a significant difference

between MCS and UWS (Figure 4a, Mann–Whitney test, p< .05 for all

thresholds above 0.8), with MCS having larger (closer to normal) HDI

values. In healthy controls, the HDI was higher than in both patient

groups.

3.4 | Number of suprathreshold connections

The comparison of the total numbers of suprathreshold connections

demonstrated that these numbers were similar in the MCS and UWS

7https://cran.r-project.org/package5Rfit

8Confidence interval calculated according to the efficient score method

(Newcombe, 1998), http://vassarstats.net/clin1.html
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groups (Figure 4b). At the same time, healthy controls had a larger

number of strong positive connections than patients did (Mann–Whit-

ney test, p< .001 for all threshold values in Figure 4b).

3.5 | Connectivity within resting-state networks

The distributions of mean connection strengths (Fisher-transformed

correlation coefficients) between areas in each resting-state network

for healthy volunteers and DOC patients are shown in Figure 5. They

were significantly different (after the Holm–Bonferroni correction) for

all the networks except the Limbic one. A similar comparison between

MCS and UWS showed no significant difference in the mean connec-

tion strengths within resting-state networks (data not shown).

3.6 | Effects of covariates

The effects of the covariates (age, gender, etiology, sedation and DOC

duration) and the parameter of interest (diagnosis of MCS or UWS) on

the ITCI and HDI within the patient group were approximately tested

using rank-based estimation and inference for an additive general linear

model. There were two pairs of significantly correlated covariates: (a)

etiology and DOC duration (on average, longer for TBI), (b) sedation and

diagnosis (MCS patients showed a tendency for greater motion and

thus received sedation more often than those in UWS). This circum-

stance, known as multicollinearity (€Ozt€urk and Akdeniz, 2000), makes

regression unstable, and thus we included only one regressor from each

pair, the whole set of factors consisting of age, gender, etiology, and

diagnosis. For both the ITCI and the HDI (computed at the threshold

level 1.0), the only significant predictor was the diagnosis (p55 3 1024

and 0.03, respectively). The fraction of rank-based dispersion explained

by the model (robust R2; Kloke and Mckean, 2012) was 0.5 and 0.24,

respectively, for the ITCI and the HDI. Distinguishing the effects of the

correlated predictors requires further study (discussed below).

4 | DISCUSSION

4.1 | Differences between the states of consciousness
in the whole-brain connectivity metrics

In this study, we have analyzed the functional connectomes of patients

in chronic MCS and UWS as a result of trauma or anoxia in comparison

with healthy individuals. The goal was to capture the patterns of abnor-

mal connectivity, starting at a relatively high level of topographical

detail, with minimal a priori assumptions, and checking whether the

abnormalities would also be manifest at coarser levels of description

and would be specific to certain locations and resting-state networks.

This allowed us to find several connectome characteristics that distin-

guish the levels of consciousness and may thus be important for

TABLE 2 Group comparisons of connectome characteristics

# Measure
Healthy versus DOC; sample sizes: 20,
22 (rows 1–3), 14, 22 (rows 4,5)

MCS versus UWS;
sample sizes: 9, 13

1 Index of connectome intactness (ICI),
Figure 2

Greater for healthy
p57 3 10211

ES5 0.99 (95% CI: 0.97, 1)

No significant difference
p> .05

2 Index of thresholded connectome
intactness (ITCI) (threshold5 1),
Figure 3

Greater for healthy
p52 3 10211

ES5 0.99 (95% CI: 0.98, 1)

Greater for MCS
p5 .002
ES50.88 (95% CI: 0.74, 1)

3 Hub disruption index (HDI)
(threshold5 1), Figure 4a

Greater for healthy
p51028

ES5 0.95 (95% CI: 0.9, 1)

Greater for MCS
p5 .04
ES50.77 (95% CI: 0.53, 1)

4 Total number of suprathreshold
connections (threshold51), Figure 4b

Greater for healthy
p56 3 1024

ES5 0.85 (95% CI: 0.71, 0.99)

No significant difference
p> .05

5 Mean connection strengths in
resting-state networks, Figure 5

Greater for healthy
p< .05 (Holm–Bonferroni corrected) for
all networks except Limbic

No significant difference
p> .05

Two-tailed p values of the Mann–Whitney test are indicated. ES: effect size defined as the Mann–Whitney statistic divided by the product of the sample
sizes. This measure is known under several names: probability of superiority, common language effect size, area under receiver operating characteristic curve
(ES5AUC). It estimates the probability with which a random value from the first population will be greater than a random value from the second one.

FIGURE 2 Distributions of the index of connectome intactness in
healthy controls and DOC patients. Here and below two-tailed p
values are indicated. Effect size is given in Table 2. Note that here
and in Figures 3a,b and 4a, an independent healthy control group
is used to obtain an unbiased estimate of a healthy individual’s con-
nectome similarity to the mean connectome of the reference group
[Color figure can be viewed at wileyonlinelibrary.com]
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conscious information processing, including the features presumably

underlying the limited conscious experiences distinguishing MCS

patients from those in UWS.

First, we evaluated the connectivity using the index of connectome

intactness (ICI) that was introduced to capture the similarity of an indi-

vidual connectome to the mean connectivity pattern of the reference

group of healthy volunteers. An advantageous property of this measure

is that it is not constrained by any a priori hypotheses regarding either

the locations or the specific character of the differences expected.

Thus, compared to a systematic search over a range of features, the ICI

does not suffer from loss of power due to multiple comparisons. How-

ever, the application of the index is based on the assumption that the

reference group’s connectomes, represented as points in the multidi-

mensional connectome space, are concentrated around their mean

point, and the groups compared by the ICI differ in their mean distance

from this point. This turned out to be true for the healthy control and

patient groups, where a highly significant difference in the index

was found, with only a small overlap of the distributions (Figure 2).

The same did not hold for the UWS and MCS groups. A tentative

explanation of this is that the differences between the two patient

groups are more subtle, and may be limited to a subset of connectivity

dimensions and thus concealed by the majority of connections that are

similar in their abnormality.

A similar analysis was performed after limiting the comparison to

the set of the strongest positive correlations obtained by thresholding.

The motivation for this is partly that large correlation coefficients can

be estimated with a greater relative accuracy from the limited number

of fMRI scans, and partly that strong correlations may be more likely to

indicate genuine functional relatedness of the areas and thus be more

physiologically meaningful. The resulting measure of similarity of an

individual thresholded connectome to the mean one for the reference

group, termed the index of thresholded connectome intactness (ITCI),

was found to successfully differentiate the MCS and UWS patients at

the group level (Figure 3). It also showed a highly significant difference

between healthy controls and patients as a whole. The significance of

the difference between the MCS and UWS groups was moderate, but

robust to the choice of the threshold value in the range from 0.4 to

1.1. This result indicates that the patterns of strong positive connec-

tions in MCS patients are moderately, but significantly closer to their

normal counterparts than those in the UWS group.

FIGURE 3 (a) Distributions of the index of thresholded connectome intactness in healthy controls, MCS, and UWS patients. Boxes
correspond to interquartile ranges, whiskers to ranges, and horizontal lines to medians. The threshold value is 1.0 (applied to Fisher-
transformed correlation coefficients). Effect sizes are given in Table 2. (b) Sensitivity to the threshold value of the difference in ITCI
between MCS and UWS patients. The lines with shadings show the medians and the interquartile ranges of ITCI in each group as a function
of the threshold. Black line without shading: p values of the Mann–Whitney test between the MCS and UWS groups (secondary y-axis)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 (a) Distributions of the hub disruption index in the subject groups depending on the threshold. The lines with shadings show
the medians and the interquartile ranges. Black line without shading: p values of the Mann–Whitney test between the MCS and UWS
groups (secondary y-axis). (b) Distributions of the number of suprathreshold connections. Effect sizes are given in Table 2 [Color figure can

be viewed at wileyonlinelibrary.com]
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We also explored the differences in the coarser aspects of thresh-

olded connectome topology, specifically, the degrees of the nodes and

the total number of edges. A modification of the hub disruption index

from Achard et al. (2012) was used to test if there was a significant dif-

ference in the sets of hub nodes between MCS and UWS. Similar to

the ITCI, this analysis showed a moderately significant increase in the

HDI index in MCS compared to UWS patients, as well as substantially

higher values of the index in healthy controls than in patients (Figure

4a). These results show that the HDI, which initially was shown to dif-

ferentiate coma patients from healthy subjects (Achard et al., 2012), is

also sensitive to the presumably smaller abnormalities in the connec-

tomes of awake DOC patients and to the even more subtle differences

between the MCS and UWS subgroups. One of the implications of this

is that MCS patients have a greater number of conserved normal hub

nodes than UWS patients. The corresponding brain areas may serve as

candidate targets for noninvasive stimulation aimed at improving the

patients’ condition.

The coarsest type of whole-connectome analysis we applied was

based on the total numbers of edges in the thresholded connectomes.

These were similar for the MCS and UWS groups, but significantly

higher in healthy controls than in patients (Figure 4b). This implies that

the general level of connectivity in DOC patients is reduced, at least as

regards strong positive connections, compared to healthy volunteers.

At the same time, the two patient groups differ in the exact locations

of the connections but not in their total number. This suggests that the

general level of functional connectivity is not sufficient to explain the

differences in the individual levels of consciousness, and some aspects

of normal information processing require the presence of certain

topography-specific patterns of correlations. As the strength of con-

nectivity may be conceptually related to functional integration in brain

networks discussed in Casali et al. (2013), an interesting question for

further investigation is whether the above findings correspond to MCS

patients having similar integration, but higher differentiation than sub-

jects in UWS. It should be remembered, however, that the integration

probed in Casali et al. (2013) by TMS-EEG may be different from the

one derived from rs-fMRI. TMS-EEG captures effective connectivity

while rs-fMRI-based functional connectivity is correlational, and meas-

ured on a larger timescale, and so the relationship between them is

largely an open question (Fox et al., 2012).

Several other recent studies attempted to predict the MCS and

UWS diagnosis based on different types of biomarkers from PET, DTI,

EEG, and fMRI data and showed promising results, reviewed in Noir-

homme, Brecheisen, Lesenfants, Antonopoulos, and Laureys (2017).

Due to limited sample sizes, the confidence intervals for sensitivity and

specificity are wide and overlap considerably. Thus, to draw definite

conclusions about the relative accuracy of the different approaches,

including the one presented here, further research on larger samples is

necessary.

It is important to note that one of the most promising methods,

the perturbational complexity index (PCI) derived from TMS-EEG, has

better specificity and sensitivity for MCS/UWS (Casali et al., 2013;

Casarotto et al., 2016) than those shown here by both ITCI and HDI.

The differences reported above are group-level effects, whereas PCI

can work at the single-subject level. Further research is needed to test

whether data from these approaches can be combined to increase the

accuracy of DOC diagnosis.

4.2 | Differences in the connectivity within resting-

state networks

In addition to whole-brain characteristics, we investigated whether

there were differences between the subject groups in the connectivity

within specific resting-state networks. The more prominent contrast

between healthy controls and DOC patients as a whole was significant

in the default, ventral attention, somatomotor, dorsal attention, visual,

and frontoparietal networks. The MCS and UWS groups did not show

significant differences in this analysis. Although in previous studies

these groups were reported to be different in certain features of func-

tional connectivity in specific resting state networks (Demertzi et al.,

2014, 2015; Rosazza et al., 2016), the effects and the relative

FIGURE 5 Distributions of mean connection strengths within resting-state networks for DOC patients and healthy subjects (reference
group). Top left: connections between areas not assigned to any network. Uncorrected p values of the Mann–Whitney test are indicated.
For all the networks except the Limbic, the differences remain significant after the Holm–Bonferroni correction [Color figure can be viewed
at wileyonlinelibrary.com]
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importance of the networks are sensitive to the type of analysis

applied. The present comparison suggests that a simple measure of

connectivity equal to the mean correlation of ROIs in a network can

capture the differences between healthy subjects and DOC patients,

but not between MCS and UWS. A similar finding was reported for

functional connectivity strength (Wu et al., 2015), which measures the

total connectivity of an individual voxel with the whole brain. This sug-

gests that the subtle contrast between MCS and UWS may require

more intricate analysis methods.

The observed effects in the Visual and Somatomotor networks are

in line with the fact that in the recently developed ConnICA method

(Amico et al., 2017), the so-called VIS-SM (visual and sensory motor)

connectome component was one of the two traits (along with the

fronto-parietal-DMN) that showed significant associations with clinical

measures of awareness. The default network has probably been the

most frequently reported system having abnormalities in DOC patients

(Rosazza et al., 2016; Soddu et al., 2012; Vanhaudenhuyse et al., 2010).

However, in accordance with recent reports (Demertzi et al., 2015), the

above findings suggest that disorders of consciousness are associated

with a massive disruption of most of the brain’s functional networks,

with only a moderate, and possibly subject-dependent, specificity to

particular systems.

4.3 | Methodological issues

The study has several limitations. The presence of substantial structural

damage and enlarged ventricles in a number of patients may have

reduced the accuracy of image normalization, which could have led to

artifacts in the connectivity analysis. Although the development of

improved methods for normalizing lesioned brains is an area of active

research (Andronache et al., 2013; Crinion et al., 2007; Ripoll�es et al.,

2012), they are still far from eliminating the problem. Exclusion of

patients with substantial anatomical distortions was not feasible due to

limited sample size. Moreover, this approach is not ideal as it is likely to

introduce bias into conclusions about the whole DOC population.

Thus, we relied on manually checking that the normalization produced

reasonable results. The remaining inaccuracies, however, may have

been one of the factors precluding precise individual prediction of clini-

cal state by functional connectivity.

The mean connectome of healthy subjects, used in the construc-

tion of the connectivity indices (ICI, ITCI, and HDI), was estimated from

the reference group. This implies the identity of the notion of the

“norm” with the average data from the subjects in this group. However,

the medical norm may be or not be equal to the statistical norm. This

problem is ubiquitous and cannot be solved as long as we do not have

a definition of the medical norm.

The regression analysis of the effects of the covariates was limited

in power by the sample size and by the presence of correlated predic-

tors: (a) etiology and DOC duration, (b) sedation and diagnosis. It has

been reported that dexmedetomidine reduces average brain connectiv-

ity strength in healthy individuals (Hashmi et al., 2017), although its

effect on some aspects of brain connectivity was found to be smaller

than that of propofol and non-rapid-eye-movement sleep (Guldenmund

et al., 2017). These results suggest that the effect of sedation may be

significant in our context. We note, however, that in this study seda-

tion was applied mostly to MCS patients (due to their higher propensity

to motion during scanning), and it is reasonable to assume that their

connectomes without sedation would be even closer to normal, and

thus the differences between the MCS and UWS groups would be

more pronounced than reported here. Comprehensive characterization

of the effects of the subject parameters on measures of functional con-

nectome abnormality requires further investigation. It is also interesting

to compare the results with (Amico et al., 2017) where age and gender

were found not to be significant predictors of the most prominent

functional connectome traits (similarly to the present analysis), whereas

sedation, etiology, disease duration, and clinical state explained some

of the variance in those traits.

The threshold for binarizing connectivity matrices can be chosen in

a number of ways, the two most common of which employ a fixed

threshold value and a subject-dependent one producing a given num-

ber of edges (or connection density) (van den Heuvel et al., 2017). For

patients with lowered overall functional connectivity the former

approach leads to sparser graphs than for healthy controls, whereas

the latter includes lower correlations that are more likely to be spuri-

ous, which can lead to artefactual topological differences between sub-

jects’ connectomes (van den Heuvel et al., 2017). We used a fixed

threshold to extract functional correlations of comparable strength and

statistical significance. At the same time, because there was a signifi-

cant difference in the overall connectivity in healthy subjects and DOC

patients (Figure 4b), the contrast between these groups in the other

thresholding-based metrics may have been a consequence of this fact.

However, the comparison using the ICI does not involve thresholding

and shows the differences in the relative connection strengths. Thus,

the abnormalities in DOC patient’s connectomes are not limited to the

overall reduction in functional correlations, but consist instead in a

reorganization of their patterns with respect to the healthy subjects’

data. Similarly, the comparison of the MCS and UWS groups showed a

difference in connection patterns, whereas the overall connectivity was

similar.

5 | CONCLUSIONS

The results of this study show that the differences in functional con-

nectomes of DOC patients and healthy subjects are substantial, and

can be observed at different levels of coarseness of description: from

the overall connectivity strength, to the numbers of connections of

particular brain areas (nodal degrees), to the disruption of specific func-

tional correlations. DOC patients were shown to have lower connectiv-

ity across most resting-state networks, with large differences in the

default, ventral attention, somatomotor, dorsal attention, visual, and

frontoparietal networks.

The contrast between the minimally conscious and unresponsive

wakefulness syndrome patients was more subtle and not observable at

the level of overall connectivity. Significant differences were found in

the patterns of strong positive connections using node-specific whole-
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brain measures of connectome disruption. One of them was the here

introduced index of thresholded connectome intactness measuring the

similarity of an individual pattern of strongest correlations to the corre-

sponding mean pattern in healthy subjects. The other metric was a

modified version of the hub disruption index (Achard et al., 2012) cap-

turing the diminished connectivity of the areas that were high-degree

hub nodes in healthy connectomes.

The results of this study suggest that the abnormalities in DOC

patients’ functional connectivity, and specifically in UWS compared to

MCS, are most prominent in the strongest positive ROI-to-ROI correla-

tions. Additionally, it is not just the absolute number of such connec-

tions that is likely to be important for consciousness, but also the

particular pattern of strong correlations between specific regions.

Further research, including theoretical models, is needed to under-

stand the possible role of the normal connectivity patterns in conscious

information processing and the connection of the here quantified

graded disruptions of these patterns to the observed functional deficits

in DOC patients.
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