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Gravitation and Unified Picture of Matter.

D. IVANENKO

[Tniversity of Moseow

1. - Imtroduction.

The great Galilean Jubilee offers an opportunity of discussing some
new possibilities of the unified picture of the world. It is well known
that impossibility of the universal classical mechanical picture became
clear under some dramatic circumstances at the beginning of 20th century.
The programmes of universal electromagnetic or later of unified geome-
trieal picture proved also to be too narrow in view of quantum treatment
of multitude of elementary particles. In these days new interest arose
in the building of unified theory of « ordinary » matter, including elemen-
tary particles and their excited states: « resonons», but usually gravi-
tation is as vet left aside.

We may point here some possibilities of inecluding gravitation in
unified picture of matter and also suggest the necessity of taking into
acecount cosmological phenomena when trying to construct not merely
« local » but « natural » picture of the world. J. A. Wheeler in his geo-
metrodynamics aims also at the construction of some « natural » unified
picture; in some points ¢.g. in emphasizing importance of mutual transmu-
tations of ordinary matter and gravitational field, this programme is
not far from ours.

2. - Nonlinear theory.

Starting from ordinary matter we may draw attention once more
to non-linear spinor theory, being a generalization of de Broglie’s fusion
hypothesis. It is especially important for applications to gravidynamics
as in both cases nonlinearity is of genuine, primordial character and
not solely induced by vacuum effects. There are many other attempts
aiming at unified theory e.g. Sakata model, octets, rotator model of de
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Broglie-\’igiex-'.[‘akabaysi and others, developed recently by Yukawa and
his collaborators (which partly makes use of our idea of fusing minkowskian
and isotopic spin spaces), further also dynamical eompensa.tional
approach (in gpirit of Y ang-Mills, Sakurai and others), reggesized disper-
gional treatment, more formal but powerful group approach. Of course
there are many links between all them, e.g. between compensation and
so suceesful SU, group-

Not entering here into discussion we present a simple derivation of
the mass which is one of chief problems of the whole theory. Suppose
the vacuum is degenerate in spirality, due for instance to pairing of
particles of opposite gpirvality. This leads to an energy gap in excitation
spectrum, which is considered to correspond to the nucleonic mass. To
remove degeneracy add to Lagrangian a mass term

(2.1) = Ly+mPY; Poy= Po—mPY -

Leaving spirality conservation and introduce anomalous greenians 85
alongside with normal SEF, 8% using perturbation calculation and re-
quiring compensation of diagrams, corresponding to P With an ingoing
p-line and outgoing y line, one gets

(2.2) 3 1 Sp SRLL(0) 1% () gl@): = m: (@) (@)

or in impulse space
g _ iam d*p
(.33) m = {23)4."?—-—-——'—'% Tt —:1_.;,‘ .

Non-trivial solution of this equation happens to coincide up to numerical
factor with the result of Nambu and Jona-Lasinio who started from

different considerations:

' : L 1672
(2.4) m?1n (1 Tt ?:;) = L -

Supplementary conditions 2 <0 (effective attraction), — Z*A> 167[3
were taken into aecount. Cutting at 92— m, we get ml =13, 03 at
@2 —3m?, ml="5.75. These results obtained in very simple manner are
practically coinciding with conclusions of Heisenberg and collaborators,
who used complicated new Tamm-Dancoff method and indefinite Hilbert
space metrics. Although we are emphasizing the necessity of introducing
new type of propagator for nonlinear equation, one can see that even
a simplified quantization leads to qualitatively gatisfactory mass spectrum
of barions. The gravitons can be constructed like photons and a preli-
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minary evaluation in analogy with derivation of fine structure constant
leads to reasonable value of gravitational constant. Of course for clas-
sification of particles a non-linear generalization accounting also inva-
riance under SU, would seem to be promising.

In view of success of SU;group one may prefer now to start not from

Y1

iso-spinors (Heisenberg) but from an unitary spinor (wg =y, whose
3 components may be considered as « quarks» of Zweigfée]l-l\-la,nn and
which possess further as components ordinary Weyl or Dirac spinors.
We prefer however to take massless quarks and to arrive at masses by
the above sketched procedure. Using some relations between bilinear in-
variants e.g.

(¢p)* = 5(¢Ai @)?

(Z¢-infinitesimal generators of SU,), we get for nonlinear supplementary
Lagrangian

L= (pp)— (Pysv)?.

In this way one may hope to obtain by nonlinear « excitation » (or fusion)
all real strongly interacting particles with their old spin ete. and new
strange ete. properties.

3. - Tetrad theory of gravitation.

The interaction of fermions with gravitation requires introduction of
tetrads, moreover introducing of @ instead of g,, as potentials means not
a mere refranslation of equations of general relativity as some new sup-
plementary conditions are needed and there can arise new invariants.
Compensational treatment of gravitation is based also on tetrads. So one
is inclined rather to speak about a kind of tetrad generalization of
Einsteinian general relativity.

Let us introduce at each point an affine repere (latin indices). Then
for Lamé’s coefficients

(3.1) by = h, he; Duy = Pt Ray; A=det |he |=+v—g.
One considers two groups of transformations: A) arbitrary transfor-

mations of co-ordinates, B) local orthogonal transformations of tetrads
which conneet nonholonomie co-ordinate systems. Combined covariant
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derivative reads
(3'2) *Vudfl‘u]:' ’gr(xa),n't‘ ijl .5&';“)-— Aa(ﬁb} ‘d“w) x
(hristoffel symbols, Ricei eoefficients are equal

(3-3) A = Cav,p:__ Ovu.aﬁ Gm“-'

a v

(3.4) G = }hm(htp'_ h:,v} = hub’?v.pl -

a,uy
variation of scalar curvature
(3.5) AR = Z(A.Aa‘_nf}lu 4 A(Aape Absea — Aq p® Ac.w) =
i ;L(AC“-‘-’?) a A(‘lca,bﬂ Qo — Aa pe (a:be)
over % yields Einstein equations in tetrad form

(3.6) Ry — bR = — =L

As a possible supplementary condition we choose with V. L. Rodicev
the « quasi-harmonic » one

1
(3.7) Apg = 7 (AN, =0

with garantees the continuity of nonholonomic orthogonal system of
co-ordinates and goes over in known harmonic de Donder condition for
holonomic reperes. With this quasi-harmonic condition we get

(3-8] =i Aabccm

which is scalar both for groups A and B satisfying our quasi-harmonicity.
Then field equations read

(3.9) A, =nt+*Tn

where ¢, characterizes energy of the gravitational field. .
In contrast to general relativity which locally does not distinguish
1) fictious field, due to nonstationary co-ordinates, 2) inertial field due
to noninertial reference system, 3) gmvitatioual field caused by distribution
of masses, now the tetrad formalism suggests a new possible interpretation
of inertia.
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Let us consider now the problem of energy, which as well known
up to now could not find any satisfactory generally recognized solution.
Applying Noether’s theorem to complete or abridged Lagrangians one
got either Moller-Mitskevié or Einstein expressions for the energy com-
plex; Lorentz complex obtained by variation over g, yielded vanishing
result. Now one clearly must apply Noether formalism not to g, but
to hj and gets

Z,= 146,
(3. ! ”) {I' = _/Ig’bg Ab’m —— Aa,'ab /_'Ic'bc
2 = — § GhE, 4 249 O om~+-405 7 0% — 40 15 0%,

On the other hand from complete Lagrangian
(3.11) Z,=} AR

we get another covariant quantity

(3_.1 2} tmﬂ N 1 Il)';'” =0 Aa.,bar Oa,bm 4 2(}6,&& na,bm .

—40%5 (-y(a.b)m + 2g° (-'?‘-‘am.g — 2% hey Ca;ﬂ!:g .

We may remark that both energy complexes can be obtained also
by usual procedure of separating a divergence in field equations and
shifting remaining terms on the right hand side.

Both energy expressions can be obtained by means of superpotentials

. ¢
Al - #Th) = a%ﬁ (‘hjm,‘m 244,°h%y,)
(3.13)

At + T%) ACw™) .

= e |

Using from beginning the quasi-harmonic condition we get by means
of field equations an expression

(3.14) 12, = § Aape CO0ehs, + 24902 Cp pm

which results also from i by applying this condition.
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The total energy-impulse
= - 1 o 7 1 2 2]
(05)  Pam o [(@0A6+ ATR) = L @t

is an affine vector in respect to Lorentz transformations but a sealar in
respect to arbitrary trasformations of co-ordinates.

Applying Noether formalism to local 4-rotations we get angular
momentum of the field, which with quasi-harmonic condition reads

o

(3.16) va =5 ;:—0 C“mn

which explains the meaning of C,. We see that tetrad formalism led
already to some interesting conclusions in gravidynamics and its develop-
ment seems rather promising removing in particular serious difficulties
in definition of energy, well known from all previous investigations.

4. - Non-linearity and torsion.

At this stage one can say that the physical reality seems to manifest
itgelf in dualistic manner, being described by means of a some nonlinear
spinor (ordinary matter) and on the other side by a tetrad gravitational
potential which also can be put in spinor form (which suggests introdu-
cing of a kind of combined universal spinor).

On the other side geometrodynamics prefers to operate with bosonic
geometrical fields and in this connection J. A. Wheeler, recognizing the
interest of nonlinear spinor theory, pointed the absence of geometrical
meaning of nonlinear term, which moreover possessed in his opinion only
local character.

But an attention must be paid to Rodicev’s theorem which just
tries to endow the nonlinearity with geometrical meaning. Let us use @
general affine connection *I'/s which is nonsymmetrical in lower indices.
In simplest case when torsion tensor is fully antisymmetric (Galilean
metrics, geodesics are straight lines) we have

('.t.]) *F = Kap,vz qj(u‘pr‘l

op Ly

and curvature sealar

(4'2} Eh= (pmm @roﬁal *



GRAVITATION AND UNIFIED PICTURE OF MATTER 9
For spinors in spaces endowed with torsion we get

(-l-.fi} 5”.:: B !{/:U_*Bagl

(4.4) *B,=1*4, 57" +ilg,
generalizing well known coefficient of curved space. In our simple case

(4.5) *A

a, v == Qldpu] »

Using spinor Lagrangian and passing to pseudo-vectors we get for action

(4.6) T :f{_‘f — b*R}(dr)

(& 1 =’ ‘,_—f(%y“*fﬂ,—t({‘l%‘f’}—('P+yu‘1’)qa~

— (P et g3 ) ().

Putting for simplicity electromagnetic potential ¢, =0 one gets after
variation over ¢, and ¥~

VoW ut APy, ys P )pays ¥ =0,

i.e., the fundamental nonlinear spinor equation (but as yet without
eventual S0, or other analogous refinements) moreover just with pseudo-
vectorial term chosen by Heisenberg from the point of view of group
properties among various nonlinearities pointed by us. Anyhow a more
systematic study of torsion is suggested by this result even for the better
analysis of the ordinary curved space, where Riemannian connection can
be divided in two mutually compensanting parts both endowed with torsion.

5. - Gravitational transmutations of elementary particles.

Gravidynamies in tetrad form can be quantized along the same lines
as ordinary form based on g,, and leads to canonical and covariant com-
mutation relations between A% and Ricei’s coefficients plying the role
of momenta e.g.

(5.1) (h(e) A%(e) — A(e)*N,(e)) = b .
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One can establish also relations of the type of «individual» errors discussing
some « Gedankenexperimenten » in the spirit of previous considerations
(Bronstein, Regge, Treder, de Witt).

Without entering into these developments, we may apply the results
of quantization in linear approximation to some important Processes
above all to caleulation of probability of transmutation of a pair of
fermions in 2 gravitons. The possibility of such transmutations suggested
by us was discussed later by many authors (A. A. Sokolov, 1. Piir,
J. A. Wheeler, D. Brill, M. Korkina, J. 8. Vladimirov, J. Feynmarn,
J. Weber). There arise in gravidynamics some supplementary diagrams
due to nonlinearity, when comparing with electrodynamics.

In nonrelativistic limit B2 ~m? > p*

= [ '?nsxz C
(5:2) do = gigap 7 39

Applying qualitatively such caleulations also to high energies Wwe
obtain

Y o

p— Lt L I 5 9 ai 4
'da-—- To8(87) (3 sin? 20 + 2 s H)de .

(5.3)

We remark that cross-section of photon-graviton annihilation tends to
constant limit (ab guch extrapolation)

(5.4) o ~10-% sm?*

at the energies of the order

B~ e e
g

the cross-section of photon graviton, two-graviton and two-photon anni-
hilation of a pair of particles are of the same order.

Tn view of the some renewed interest in torsion we have quantized
this field, putting the torsion tensor in the form:

y 1 (Cpa c Offya
(b.D) Sagy = 'j( a?;ﬂﬁ i aiﬂ“y i 'a%)

getting the corresponding quanta: « torsions » and investigating their
interaction with spinor and other fields.
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6. - Compensational treatment of gravitation.

We draw attention to the fact that gravitational field can be naturally
connected with other fields allowing « compensational » treatment and
realizing dynamically some conservation laws. Requiring invariance
under some group ¢.¢., of isotopic rotations, but with parameters depending
from co-ordinates, one must introduce a compensating field to restore
invariance (Yang-Mills, Sakurai and others). In the same sense inva-
riance under localized gange group

(6.1) ¥ — W exp [ien(x)]
required introduction of electromagnetic vector potential

Swlr
(6.2) oA y— Ay + %(,:_) ;
It seems that some predicted in this manner particles were recently
discovered as « resonons ». The whole method seems to bring new argu-
ments in favour of more narrow connection of Minkowskian and isotopie
spin spaces (external and internal degrees of freedom) (suggestion of
Pais, Brodski, Sokolik and curselves, Yukawa developed by de Broglie-
Vigier et al.).

Without entering into instructive history of compensational treat-
ment of gravitation (Utiyama, Brodski-Ivanenko-Sokolik-Frolov, Kibble,
Schwinger) we may consider the full inhomogeneous Poincaré-Lorentz
group. TFor an arbitrary group /I connected with co-ordinate transfor-
mations. the compensating derivative has the form

(6-3) Q}gﬁ T h?&Q'?f_n i I}?;n dngB
1,7 -generator of that representation of I' under which is transformed

the field ¢“. In general case one needs for compensation two independent
compensation fields =™ and hj which will be connected by means of
equations of motion.

A, compensates terms arising at local transformations of Q“ and the
field 4% compensates term due to local transformations of coordinates
under I

One constructs locally invariant Lagrangian by multiplying with
A= det|n",| and extending the ordinary derivative by compensating one

(6.4) Ll =AL (0%, 0%,) -
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For Lagrangian of the compensating field itself we have

(6.5) Py = AL Fa™)

with

(6.6) Far"= ne, g™, — o .dam_,-{-.pfcm(h;.,h;hﬁ-— by, G hS) + Ol A Ay -

h, d

One gets the field equations by variation over potentials he and o

- b gﬂ _ 3 ym)
(ﬁ°‘ ] 8 ,.am —7 # '8— —;’i
3Ly 3% )

with our well known coefficients I': [Fock-Ivanenko).

Hence
3. o0& 1 02, #0%
69 gas= A AT ctston =550 3 5‘7?5) '
R 1 o
(6.10) . a'—ﬁa;,—, =% WG Lg=— ® AT, =— he Ly + .._._-—aQ::': 7

In the case of inhomogeneous Lorentz group ha’ are Lame’s 1eperes;
o V-Ricei’s coefficients. Putting in (6.3) the generators of corresponding
representations of the Lorentz-group we get covariant (compansating)
derivatives for vectors ete. For gpinor one gets in this manner a new
derivation

(6.11) = Wa¥,—Ta¥

with our well known coefficients I'q (Fock-Ivanenko).
For Lagrangian

one arrives with (6.10) abt tetradic form of Binstein equations, and ('6.9)
gives an expression of torsion tensor by means of the spin of the external

field

(6.13) Kty = — = (S + MaiS0) -
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For longitudinal part of the ecompensating field we have
(6.14) LI — — (1 ) G TTTU,

z-some number depending from a given representation of #7. In the
case of Lorentz group one naturally takes tetrads A?, for #.

Although the development of compensational treatment of gravitation
is by no means finished and raises many problems, for instance of eventual
generalization for torsion, we see that the basie theory is powerful enough
to give an important reinterpretation of ordinary General Relativity and
to contribute to its present day tetradic generalization.

7. - Cosmological remarks.

Aiming at a construction of some kind of « natural » unified picture
of the world and not only of local theory one must carefully take into
consideration all possible links between cosmology and elementary
particles.

In this connection starting from well known empirical fact that

m My
7.1 — = =g rs1,4-10"%
(7.1) % % ~ 1, £

(1. my-masses of electron and nucleon, x corresponding fine structure con-
stants) one may try to proceed further and build with D. Kurdgelaidze
corresponding masses for the case of Fermi interaction (m,= axy~ 10-% g)
and for the gravitation

(7.2) my= ax, ~ 6-10~* g .

If one supposes gravitational field in some manner endowed with such
mass one can compare the wave equation

(7.3) [EI - (’”E‘?)z] Yy =0

with linearized form of Einstein equations supplemented by cosmolo-
gical term Z,. One gets then for Hubble constant

1 mge®  xa’c
— e Pk

- = i_

4:10-18 gec !,

in good agreement with observational value (ef. also Gomide).




14 p. IVANENEKO

We may draw attention further to a tempting possibility to connect

the observed overhelming concentration of particles in our part of universe
with its expansion, guessing that for contracted model one must pass to
anti-particles. Among further as yet scarse links between cosmology
and microphysics one must keep in mind also interesting considerations
about the arrow of time (Bondi, Hoyvle, Hogarth) and Wheeler and
Hoenl-Dehnen treatment of boundary Machian conditions.

We see thatb pboth nonlinear theory, eompensational viewpoint and
mutual-transmutations all seem to be promising in establishing funda-
mental new relations between ordinary matter and gravitation, preli-
minary considerations point even on the links with cosmology.

May be an unified picture of ordinary matter will even prove to be
impossible without account of gravitation and cosmological features %

Note added in proofs.

Developping these jdeas we may suggest that T-parity and combined (P-parity
would be in general not conserved (if Tiiders theorem holds in gravidynamica), the
expansion acting, as a kind of effective Very weak cosmological fore, differently on
particles and anti-particles. This conclusion ean be contrasted with recent discovery
by Pith-Cronin and their collaborators of the apparent violation of combined parity
at K, mesons decay. We believe with D. KURDGELAIDZE that the recent interesting
hypothesis of CapieBO, LEE ot al. to explain this anomaly by introducing a new field
produced by {he hypercharge of our Galaxy, anyhow must be supplemeuted by cosmo-
logical viewpoint as otherwise the global effect of all galaxies taken as gtatic nob
expanding distribution would lead to infinity analogously to well known paradoxon
of Newtonian static cosmology.
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INTERVENTI E DISCUSSIONI

— J. TREDER:

The question « What the gravitational potentials are?—the 10 g,, or the
16 components of the tetrads?» is very important for general relativity. If
the 16 tetrad-components are going in the gravitation-theory, free rotations
of the tetrads are not possible. The relative orientation of the tetrads are
fixed by the physical conditions. Weyl has peinted out that no physical
meaningful causes existed for this fixation. But for the theory of the inter-
actions between gravitational fields and Fermi fields, the introduction of tetrads
is necessary (*). But, if we have no causes of the meaning that only the g,
have a physical meaning, the Einstein-Lagrangian is only a degenerate com-
bination of the 3 Lagrangians which are giving second-order-field-equations
for the « gravitational potential » A%. These three Lagrangian are the Lagran-
gians of Weitzenbick (Binstein and Mayer have worked with these Lagran-
gians). Generally, the Weitzenbdck Lagrangians are giving 16 field equations.
Only the Einsteinian combination is giving only 10 equations for the 10 ¢,,.

— A. LICHNEROWICZ:

Je crois que nous tombons dans le qui-pro-quo parce que deux choses
différentes ne sont pas suffisamment distinguées.

1) L'introduction de repéres orthonormés (ou tetrades) en un point est
nécessaire. Ces repires donnent linterprétation de grandeur physique, en un
point de l'espace-temps relativement aux directions d’espace et de temps
quils définissent. Les cordonnées ne servent qu'a la cartographie. (es repires
sont utiles pour une bonne définition des objects spinoriels (*).

2) L'introduction de champs privilégiés de tetrades est une chose diffé-
rente, erave et sur laquelle il convient de refléchir. Personellement, je 0’y suis
pas favorable pour beancoup de raisons. En fait la théorie correspondante est
tort éloignée de la relativité générale. Elle est trop riche; elle est une parti-
cularisation et pas une généralisation.

— H. Boxbr:
Do T correctly understand your attitude to tetrads if I say that two spaces

(*) Remark of Tvanenko: as shown by A. Fook-D. Ivaxenko and H. WeyrL.
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with the same metric, but different tetrad systems are regarded as physically
distinet by You bub are regarded as physica]ly identical by several others
who also use tetrads? And how does the difference show up?
Furthermore, does the greater fixing of the space ab infinity mean that
your theory comes closer to explaining the definition of inertial frames in terms
of boundary conditions ab infinity (Mach’s principle) than ordinary general
relativity?

— P BERGMANN:

1) Formally, one can introduce gpinors without tetrads; bub the spinors
require the animodular group, which 18 locally isomorphic o the LorentZ
group- Hence, in the presence of Fermian fields, the introduetion of tetrads
is a matter of convenience, not of principle. Tneidentally, 1 agree with the
remarks DY Prof. Lichnerowicz-

AT should like to request further elucidation of your reasons for per”
mitting uonsymmet.ric affine connections, in view of the considerable formal
complications.

3. A. WHEELER:

The discussion of Professor Tvanenko 18 useful in reminding us of many
jmportant questions on which physics has yeb to take a final position. Among
these issues it is difficult to name any one which is more jmportant than this:
how can the existence of spin in nature be reconciled with Binstein’s long term
dream for a purely geometrical description of all of physies? We know Very
well that there ig no such thing as spin 3in Winstein’s standard theory of rela-
tivity. Gra,vitational waves have spin two. E‘lectromagnetism can be des-
cribed in Rinstein’s theory as an aspect of geometry (Rainich and Misner),
and electmmgnetic waves have spin 1. But there is no gpin - To be sure,
gne can introduce tetrads, a8 @ matter of convenience in describing the geo-
metry. Tetrads also help in describing @ spinor field when such a field is
introduced as & foreign entity moving about in the gpacetime geometry- But
the use of tetrads in formulating Einstem-Maxwell theory in no way changes
the convinction that theory deals solely with fields of integral spin. Tt is com-
pletely incapable of explaining the presence of spin & in nature whether for-
mulated with or without tetrads. Therefore S0Me fundamental ¢hange 18
required in the theory if it is to embrace spin 1. One guggestion about the
direction for guch a change is suggested by recent results of de With, kindly
comrmmicated in a letter of 19 June 1064 and 2 personal discussion of
g August 1964 In brief, he shows that the wave equation for tho state func-
tion of gravitation theory, ¥ = p(P9), has points of similarity 10 the Klein-
Gordon wave equation for the state funetion of particle, ¥ = pla). In @oth
cages the ifferential equation is of second order. In the cage of the Klein-
Gordon equation Dirace « took the square 100t ? to arrive ab & first order wave
equation.

This equation is not equivalent to the Klein-Gordon equation Hut it is com-
patible with experience. Similarly de witt suggests it will be interesting to
« take the gquare r00U? in the sense of Dirac of the functional wave equation
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to which he has arrived. So much for the idea in broad outline the details
are summarized in Table:

TapLe — Analogy between the Klein-Gordon equation and the de Wilt equation.
Klein-Gordon de Witt
System under consideration Particle Geometry
Configuration described by | @ ®g .
Key equation in classical theory ‘ Pupt -+ m*=0 (Trk—Trk*4®R=0
Quantum wave equation Ow+miy=0 See below |
« Square root » | I'vo i +myp=0 | Ta be written out by analogy

The de Witt equation has the form:
g—é(afggw}) g*g“””‘”(ﬁng”‘“}g"’rp a Ai(s:Rw(taig) =1{.

To take the square root of this equation in this sense of Dirac will lead, not
to a spinor particle of mass m, as in the case of Klein-Gordon equation, but
to a spinor field of zero rest mass. It is of great interest and importance to
know whether this spinor field has any correspondence with what we know
of neutrinos.

— (. MoLLER: .

I shounld perhaps make a few remarks about the difference between Iva-
nenko’s point of view and my present view regarding the use of tetrads in
general relativity. Up to the fall of 1963 I tried to find an expression for the
distribution of the energy in gravitational fields and for this I found it necessary
to regard the tetrads as true field variables which should be determined uniquely
up to a constant Lorentz rotation. Since Einstein’s field equations determine
the metrie, only, they had to be supplemented by six further covariant equa-
tions. In view of the arbitrariness involved in the setting up of these supple-
mentary conditions and also because it seemed so difficult to imagine how one
could measure the gravitational energy content in a small part of space T eame
to the convinetion that Einstein’s old point was right and that only the fotal
energy and momentum of an insular system can be regarded as a measurable
quantity. From this point of view we do not need to fix the tetrads com-
pletely and the problem of setting up supplementary equations does not arise.
Only in the case of a completely empty space one has to assume that the tetrads
form a stationary vector field in order to avoid the Bauer difficulty which
is the most disagreable feature of Hinstein’s energy-momentum complex.
Moreover, in the case of an insular system one has to assume certain boundary
conditions for the tetrads at spatial infinity. Apart from that we can freely
rotate the tetrads indipendently throughout space-time and it can be shown
that the resulting total four-momentum P; as well as the asymptotic expression
for the complex T” at large spatial distances are invariant under these rotations
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of the tetrads. 10 the case of the Bondi and Sachs solutions the expression for
the total energy is in gecordance with Bondi’s definition of the total mMass and
moreover, for a uonradiatiVe gystem, P, can be shown to be a free 4-vector
fime trasformations. From this point of view the petrads

lay the role of gquxiliary variables similarly as the electromagnetic pot.ent.ialﬁ
in e‘lectrodynamics and the Loventz rotations of the tetrads are somewhat
analogous to the psual gauge tmnsiormations. Maybe 1 have resigned 100
early and it is nob imposmble that the point of view of Tvanenko, which tries
to connect gmvitamional phenomena with others physiml phenomena, at the
end will turtt out to be mOTe fruitful.

__ p. IVANENKO:

On the whole W¢ had a very stimulating discussion with many interesting
pemarks, put T may concentrate here only on some few uestions. Although
different aquthors freating gpinors in general relativity vse such expressions
ast convenients helpful, nseful ete., it is important 10 stress that the deseription
of gra.vitationa.l interaction of fermions requires introduction of tetrads quite
compulsory (Fock-Ivameuko, Weyl). This Was emp‘uasized recently also by
(‘h. Moller, A. Lichnerowicz, 1. Treder, J. A. Wheeler and others. So for @
gpinor tetrad components represent grswit-at.iunal potentia,ls and may be con-
sidered as & field. It seems therefore that remarks of P. Bergmani which ruit
counter this general opinion are connected with some misunderstanding.
Above this tetrads are connected in natural way with poWeﬁm method of
compensnt'mg fields {Jang‘.Mills] and seem to be able to lead o & reasonable
energy expression (Moller, Roditev) perhaps contnbnting also to further clari-
fication of {nertia notion. Whether one prefers 10 gpeak in this connection
about a ¢ rounding » or o «revision? or a kind of tetradic ¢ generalizat&on y of
Binsteinian theory based solely on s metrical and gmvit.ational potentials,
si a matter of 'persona.l taste.

At present state of the tetrad theory of gmvit-a.t-inn many importa.nt ques-
tions need further investigation @5 was rightly pointed here DY H. Bondi,
A. Lichneroweiz, . Wataghin, M. A ponnelat. Not only the best choice of
supplementmy conditions (old Moller?, Rodicev, Schwinger-Deser"! ) is not
settled, but prof. Ch. Moller even tentatively proposes now to digpense with
such conditions (using instead some poundary conditions). we try to selec
Roditev’s quasi—harmoniu conditions, expressing the conservation of th
4-volume corresponding to some given configuration of events somewhat anale
gously to Liouville’s theorem. Then only 4 tetradic componeuts are fixed, 1l
other 2 being determined DY the nature of a given conerebe problem. In th
respect we are more inclined 10 Moller's older view point Of Schwinger-ﬂes
1.31'01303&15 where some supplementa.ry conditions were used, which 1-e§t-rict
to some extent the free rotations of tetrads at different point. Anyhow f
varions results already obtained on @ difficult road of classical and quant

coefficients, which correspond 10 torsion 1 wish 1o point that torsion or
ticularly distant parallelism really appear in tetrad theory, Ms0 in com
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sational treatment, in a natural way, though it is not necessary. Anyhow one
is led to account explicitly the absence of torsion as does e.g. Ch. Moeller in
his report. Also we may draw once more attention to Rodidev’s theorem
showing that parallel displacement of spinors in a space endowed with torsion
leads to a nonlinear term in Dirac’s equation (cf. also R. Finkelstein, A. Peres,
Sciama).

In view of importance of some kind of nonlinear spinor equation in the
unified theory of matter this result must be considered with some attention.

Perhaps one can even guess proceeding in this way some preliminary link
between unified theories of nonlinear or fusionist spinor type and geometrized
theories of J. A. Wheeler.

[Alla discussione partecipd anche G. WATAGHIN.]




