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1 Introduction

There are two classical problems related to integrable systems, appeared and studied already
in the works of I. Schur, J. Burchnall, T. Chaundy in the beginning of 20th century: how to
construct explicitly a pair of commuting differential operators and how to classify all commu-
tative subalgebras of differential operators. Both problems have broad connections with many
branches of modern mathematics, first of all with integrable systems, since explicit examples of
commuting operators provide explicit solutions of many non-linear partial differential equations.
The theory of commuting differential operators is far to be complete, but it is well developed
for commuting ordinary differential operators.

This course involves an explanation of basic ideas and constructions from the theory of
commuting ordinary differential operators as well as an overview of related open problems from
algebra, algebraic geometry and complex analysis.

We meet ordinary differential operators every time when we want to solve a linear differential
equation:

(an∂
n + . . .+ a0)ψ = 0,

where ai, ψ are (usually) smooth functions, and even non-linear equations.
Consider a ring R = C∞(R) of smooth (or analytic) functions on the line (or on a open

neighbourhood of zero), denote ∂ := ∂/∂x . For any function f ∈ R denote by f̂ the operator
of multiplication on f in R : f̂(g) := f · g . Then the Leibniz rule

d

dx
(fg) =

df

dx
g + f

dg

dx

is equivalent to the equality of operators: ∂f̂ = f̂ ′+ f̂∂ . Later we will omit the sign ˆ to simplify
the notation.

Example 1.1. Consider two operators:

L = ∂2 + û, P = 4∂3 + 6û∂ + 3û′.

Then [P,L] = 6ûu′ + û′′′ (check it! Hint: in order to check it, apply P ◦L and L ◦ P to a test
function ϕ ∈ R . Then the following equation must hold: (P ◦ L − L ◦ P )ϕ = (u′′′ + 6uu′)ϕ ).
Now if we take u = u(x, t) , where t is a new variable, and set ∂

∂t(∂) = 0 , we obtain a famous
non-linear equation of mathematical physics, the Korteweg de Vries equation: ut = 6uux+uxxx .
Namely, the equation

∂L

∂t
= [P,L]

is equivalent to it.

∗These lecture notes were partially supported by the grant NSh-6399.2018.1. For any questions please write
to: azheglov@math.msu.su
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First explicit examples appeared already in 1903 in the work of Wallenberg [30]:

Example 1.2. Let Λ ' Z2 ⊂ C be a lattice and

℘(x) =
∑

λ∈Λ\{0,0}

(
1

(x+ λ)2
− 1

λ2

)
be the corresponding Weierstrass function (a meromorphic function on a torus, we’ll return to
special functions later). Wallenberg observed that the ordinary differential operators L,P from
previous example with u(x) = −2℘(x + α) , α ∈ C , or with u(x) = −2/(x + α)2 or with
u(x) = −2/ sin2(x+ α) (degenerations of ℘(x) ), commute.

I. Schur in 1905 and Burchnall, Chaundy in 1920-th got more examples of operators of
relatively prime orders (Burchnall and Chaundy even classified such pairs).

In 1968 Dixmier discovered another interesting example [10]: for any λ ∈ C put Q =
∂2 + x3 + λ and consider operators

L = Q2 + 2x, P = 2Q3 + 3(Qx+ xQ).

Then L and P commute and satisfy the relation Q2 = P 3 − λ .
Two problems mentioned in the beginning appear to be connected with many problems from

different branches of mathematics (search for them in internet), e.g.:

• Complex analysis (the Schottky problem, solved)

• Non-linear partial differential equations (find new exact solutions)

• Deformation quantisation

• Algebra (the Dixmier or Jacobian or Poisson conjectures, highly non-trivial and still open)

Acknowledgements. I am grateful to Georgy Chernykh for stimulating questions and care-
ful reading the preliminary version of these lectures.

2 Lectures guide and List of notations

The lectures consist of Theorems, Propositions, Lemmas, Remarks, Exercises and Comments.
The comments are not necessary for the first reading, but they contains useful information for
curious or advanced readers. We tried to keep the exposition of our lectures as self-contained as
it is possible. The material is based upon various texts from references.

Calligraphic letters denote generic algebras and rings. Usual capital letters denote commuta-
tive algebras and rings. Almost always the letter D (combined together with various indices) is
reserved to denote rings of ordinary differential operators. Recall the following commonly used
definitions.

Definition 2.1. Let K be a field. An algebra over K or K -algebra is a vector space over
K equipped with a bilinear product · . A K -linear map ϕ : A1 → A2 is a homomorphism of
algebras if ϕ(x · y) = ϕ(x) · ϕ(y) ∀x, y ∈ A1 .

A Lie algebra over K is an algebra with a product usually denoted by [, ] that satisfies the
axioms of alternativity, i.e. [y, y] = 0 ∀y , and the Jacoby identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

A ring over K is an associative K -algebra with the multiplicative unity 1 . In particular,
the ring over K contains a copy of K . A K -linear map ϕ : R1 → R2 is a homomorphism of
rings if it is a homomorphism of algebras and ϕ(1) = 1 .
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A left (right) R -module M , where R is a ring, is an additive group with the left (right)
action of R : R×M →M (M ×R →M ) with usual axioms. Homomorphisms of R -modules
are defined as linear maps compatible with the action of the ring.

A left (right) ideal I in R is an abelian subgroup such that ry ∈ I ( yr ∈ I ) ∀r ∈ R ,
∀y ∈ I . A (two-sided) ideal is a left and right ideal.

A ring R is an integral domain is it contains no non-zero zero divisors, i.e. xy 6= 0 for all
non-zero x, y ∈ R .

If M is a R -module (left or right), then 1 ∈ R acts trivially on M . An R -module M is
of finite type if it is generated by finitely many elements, that is, if there exist a1, . . . , an ∈ M
such that any y ∈ M can be written as y = r1a1 + . . . + rnan for some ri ∈ R . If a module
A over a ring R also has a ring structure (compatible with that of R in the sense that the
map R→ A given by r 7→ r · 1A is a ring homomorphism), then A is called an R -algebra. An
R -algebra A is of finite type (or finitely generated) if there exist a1, . . . , an ∈ A such that any
y ∈ A can be written as a polynomial in a1, . . . , an with coefficients in R .

An ideal I is called principal if it is generated by one element: I = (y) .

Definition 2.2. Let R be a ring. By a discrete valuation on R we will understand a function
v on R with values in Z∪∞ (Z∪∞ form a monoid with the operation y+∞ =∞+ y =∞
for all y ∈ Z ∪∞ ) subject to the conditions:

1. v(y) ∈ Z ∪∞ and v assumes at least two values,

2. v(xy) = v(x) + v(y) ,

3. v(x+ y) ≥ min{v(x), v(y)}

The set
ker v = {y ∈ R|v(y) =∞}

is easily verified to be an ideal of R , which is proper by (3). If ker v = 0 , v is said to be proper;
e.g. on a field every valuation is proper, because 0 is the only proper ideal. If R is a ring over
K we will consider discrete K -valuations, i.e. discrete valuations trivial on K : v(K) = 0 . In
our lectures we’ll meet only proper discrete K -valuations. In general it follows easily from the
conditions above that v(1) = v(−1) = 0 and that v(−y) = v(y) ∀y ∈ R .

If we have a discrete valuation v , we can define a metric on R/ ker v by choosing a real
constant c between 0 and 1 and defining

d(x, y) = cv(x−y).

It is easily verified, using the conditions above, that the usual axioms of a metric hold, and
moreover d(x + a, y + a) = d(x, y) (check it). Thus, if v is proper, R becomes a topological
ring with a Hausdorff topology. As with every metric space, one can form the completion of R ,
which plays an important role in commutative ring theory.

Exercise 2.1. 1) Prove that in fact d(x, z) ≤ max{d(x, y), d(y, z)} , i.e. every triangle is isosce-
les. In terms of the original valuation this states that if v(x + y) > min{v(x), v(y)} , then
v(x) = v(y) .

2) An easiest example of a complete discrete valuated ring is the ring K[[z]] of formal power
series with a proper valuation defined as v(u) = n , if u =

∑∞
i=n ciz

i . Recall the multiplication
of two series:

(

∞∑
i=0

aiz
i)(

∞∑
j=0

bjz
j) =

∞∑
k=0

(
∑
i+j=k

aibj)z
k

Show that K[[z]] is complete. In particular, if u ∈ K[[z]] is such that u = c− ũ with 0 6= c ∈ K
and ũ(0) = 0 , then the inverse element u−1 = c−1(1 +

∑∞
i=1 c

−iũi) is well defined.
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Comment 2.1. For further reading about the theory of valuations for non-commutative rings
see e.g. books [25], [8].

List of notations.

• DerK(A) denotes the space of K -derivation of the algebra A

• Cin = n(n−1)...(n−i+1)
i!

• For any ring R we denote by R[[z]] = {
∑∞

i=0 uiz
i, ui ∈ R} the ring of formal power series

with usual multiplication (i.e. z is a formal variable which commutes with all elements
from R )

• R((z)) = {
∑∞

i=N∈Z uiz
i, ui ∈ R} denotes the ring of formal Laurent series

• End(A) = Hom(A,A) denotes the space of all endomorphisms of an algebra (ring) A

• Aut(A) denotes the group of automorphisms, i.e. invertible endomorphisms

• R∗ denotes the group of units

• D(R) = R[∂] denotes the ring of ordinary differential operators with coefficients in R

• E(R) = R((∂−1)) denotes the ring of pseudo-differential operators with coefficients in R

• Spectral curve: see definition 4.6

• Spectral module: see definition 4.7

• Rank of a ring, rkB : see definition 4.8

• Rank of the spectral module (sheaf): see definition 5.1

• Spectral sheaf: see definition 5.3

• Projective spectral data: see section 6.2

3 Basic algebraic properties of the ring of ordinary differential
operators

3.1 Basic definitions

Let K be an algebraically closed field of characteristic zero. Almost always we can assume that
K = C , but many algebraic results we will use in our lectures hold also for arbitrary K .

First recall the most important for us basic definitions.

Definition 3.1. Let A be an algebra over K . A K -derivation of A is a K -linear map
∂ : A → A such that the Leibniz rule hold:

∂(a · b) = ∂(a) · b+ a · ∂(b), for any a, b ∈ A ,

where · means the multiplication in the algebra A . For shortness we’ll write a(k) instead
of ∂k(a) , and we’ll omit · in formulas with multiplication of elements. The collection of all
K -derivations of A is denoted by DerK(A) .

Remark 3.1. If A has a unit 1, then ∂(1) = ∂(12) = 2∂(1) , so that ∂(1) = 0 . Thus by
K -linearity, ∂(k) = 0 for all k ∈ K .
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Comment 3.1. DerK(A) is a Lie algebra with Lie bracket defined by the commutator:

[∂1, ∂2] = ∂1 ◦ ∂2 − ∂2 ◦ ∂1

(here ◦ means the composition; check it!).

If we have a K -algebra A with a K -derivation ∂ , we can consider formal symbols of the
form

∑n
i=0 ui∂

i and think of these symbols as acting on elements of A by multiplication and
differentiation: (u∂)(f) = u · ∂(f) . Thus we obtain a big space of K -linear operators acting on
A . The Leibniz rule can be considered as an equality of operators:

∂f = f ′ + f∂,

what motivates the following definition

Definition 3.2. Let R be a ring over K and let ∂ be a K -derivation. We define the ring of
ordinary differential operators with coefficients in R as the set

D(R) := R[∂] = {
n∑
i=0

ui∂
i, ui ∈ R}

(which is obviously a linear space over K ) with the composition rule

∂nu =

n∑
i=0

Cinu
(i)∂n−i,

where Cin = n(n−1)...(n−i+1)
i! , and u(0) = u .

Exercise 3.1. Extending the composition rule by linearity we can write down its general form:
if P =

∑n
k=0 ak∂

k , Q =
∑m

l=0 bl∂
l , then

PQ =
n∑
k=0

m∑
l=0

∑
0≤i≤k

Cikakb
(i)
l ∂

k+l−i. (1)

Proposition 3.1. The space R[∂] with the composition rule (1) is a ring over K .

Proof. The distributivity of the multiplication can be easily checked directly. Obviously, the
multiplicative identity of R is the multiplicative identity of R[∂] . So, we need to check only
the associativity of the multiplication. We use the following trick (cf. [20, Ch.III,§11]). Let’s
extend the derivation ∂ on R[∂] by setting ∂(∂) = 0 . Introduce a new derivation δ on R[∂]
by setting δ(a∂n) = na∂n−1 (check that ∂, δ are derivations). Then for any P,Q ∈ R[∂] we
have

PQ =

∞∑
k=0

1

k!
δk(P ) ∗ ∂k(Q), (2)

where ∗ means the multiplication of series from the ring of formal power series R[[z]] , where
z is just replaced by ∂ , and ∗ has the effect of bringing all elements from R to the left and
powers of ∂ to the right, e.g. (a∂n) ∗ (b∂m) = (ab)∂n+m (in fact, the sum is finite, since P,Q
are polynomials in ∂ ). Indeed, note that it is enough to check this equality for monomials of
the form f∂n , g∂m . We have

f∂ng∂m =

n∑
k=0

Cknfg
(k)∂n−k+m =

n∑
k=0

1

k!

(
n!

(n− k)!
f∂n−k

)
∗ g(k)∂m =

∞∑
k=0

1

k!
δk(f∂n) ∗ ∂k(g∂m).
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Then,
δ(P ∗Q) = δ(P ) ∗Q+ P ∗ δ(Q), ∂(P ∗Q) = ∂(P ) ∗Q+ P ∗ ∂(Q)

and δ ◦ ∂ = ∂ ◦ δ . Therefore,

δk(P ∗Q) =
k∑
i=0

Cikδ
i(P ) ∗ δk−i(Q), ∂l(P ∗Q) =

l∑
i=0

Cil∂
i(P ) ∗ ∂l−i(Q)

and

(PQ)T =
∑
k,l≥0

1

l!k!
δl(δk(P ) ∗ ∂k(Q)) ∗ ∂l(T ) =

∑
k,l,p≥0

1

l!k!
Cpl δ

p+k(P ) ∗ δl−p∂k(Q) ∗ ∂l(T )

and

P (QT ) =
∑
l′,k′≥0

1

k′!l′!
δk
′
(P )∗∂k′(δl′(Q)∗∂l′(T )) =

∑
l′,k′,p′≥0

1

k′!l′!
Cp
′

k′δ
k′(P )∗∂k′−p′δl′(Q)∗∂p′+l′(T ).

Replacing p′ + l′ by l , k′ − p′ by k and p′ by p in the second formula, we obtain the first
one, since

1

k′!l′!
Cp
′

k′ =
1

l′!p′!(k′ − p′)!
=

1

(l − p)!p!k!
=

1

l!k!
Cpl

for p′ ≤ k′ and p ≤ l . Thus, the multiplication is associative and R[∂] is a ring.

On each ring of ordinary differential operators (ring of ODO’s for short) there is a natural
order function, which defines a discrete valuation and the corresponding metric topology on this
ring.

Definition 3.3. For any non-zero operator P =
∑n

i=0 ui∂
i of the ring R[∂] we define its order

to be
ord(P ) = n = max{k| uk 6= 0}.

The non-zero coefficient un ∈ R is called the highest coefficient HT (P ) of the operator P ,
and the term un∂

n is called the highest symbol σ(P ) of the operator P .
The operator P is called monic if HT (P ) = 1 . It is called normalized if it has the form

P = ∂n + un−2∂
n−2 + . . .+ u0.

From the composition rule (1) immediately follows

Lemma 3.1. Let R[∂] be a ring of ODOs. For any non-zero elements P,Q ∈ R[∂] we have

• ord(PQ) ≤ ord(P ) + ord(Q) , and the equality holds iff HT (P )HT (Q) 6= 0 ;

• HT (PQ) = HT (P )HT (Q) , provided HT (P )HT (Q) 6= 0 .

Exercise 3.2. Let R be an integral domain. Show that R[∂] is an integral domain and that
− ord is a proper discrete valuation.
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3.2 Basic algebraic properties of the ring D = K[[x]][∂]

Ordinary differential operators appears naturally every time when we study linear differential
equations P (ψ) = 0 . In this case coefficients of P and the function ψ are usually assumed to be
smooth or analytic in some open neighborhood of 0 . Since analytic functions admit the Taylor
series expansion in appropriate neighborhoods, it is reasonable to study rings of ODO’s with
coefficients in the commutative ring R = K[[x]] or in its field of fractions Quot(R) = K((x)) ,
with the derivation ∂ = ∂/∂x . Let’s collect basic algebraic facts about these rings.

Theorem 3.1. Let D = K[[x]][∂] be the ring of ODOs with coefficients in the commutative ring
R = K[[x]] ; let D̃ = K((x))[∂] be the ring of ODOs with coefficients in the field of fractions
Quot(R) . Then we have:

1. The rings D , D̃ are integral domains; their units (i.e. invertible elements) are the units of
R or Quot(R) correspondingly (the units R∗ are just elements w ∈ R with w(0) 6= 0 ).

2. The rings D , D̃ are simple, i.e. there are no non-zero two-sided ideals.

3. The ring D̃ is a domain with a Euclidean algorithm: that is, given operators M and
L with (say) ordM ≥ ordL , there are operators Qi, Ri such that M = Q1L + R1 ,
ordR1 < ordL , L = Q2R1 + R2 , ordR2 < ordR1 , and so on. If Ri 6= 0 , Ri+1 = 0 ,
then Ri is called the right GCD of L and M (the left GCD is analogously defined).1

In particular, all left and right ideals in D̃ are principal (i.e. generated by one element).

4. Let ϕ be a non-zero ring endomorphism of D . Then this is an automorphism, i.e.
End(D)\{0} = Aut(D) . More precisely, there exist u ∈ K[[x]] satisfying u(0) = 0 and
u′(0) 6= 0 , and v ∈ K[[x]] such that x

ϕ7→ u

∂
ϕ7→ 1

u′
∂ + v.

(3)

5. Let P = un∂
n+un−1∂

n−1+· · ·+u0 ∈ D , where un(0) 6= 0 . Then there exists ϕ ∈ Aut(D)
such that ϕ(P ) is normalized. Moreover, if Q ∈ D is a normalized differential operator of
positive order and ψ is an inner automorphism of D (i.e. is of the form ψ : y 7→ w−1yw ,
w ∈ R∗ ) such that ψ(Q) = Q , then ψ = id .

Remark 3.2. Let w ∈ K[[x]] be a unit. Then for the inner automorphism Adw : D → D, P 7→
w−1Pw , we have:  x 7→ x

∂ 7→ ∂ +
w′

w
.

Note that for any K[[x]] 3 v =
∞∑
i=0

βix
i = β0 + ṽ , the formal power series w := exp(v) =

eβ0 exp(ṽ) is a unit in K[[x]] . Therefore, any automorphism ϕ ∈ Aut(D) satisfying ϕ(x) = x
is inner, see (3)

Proof. 1) follows from exercise 3.2. The description of units then follows from lemma 3.1. Indeed,
the order of a unit must be zero, i.e. any unit is an element of R or Quot(R) . The description
of units in R follows from the observation that elements u ∈ R with u(0) = 0 form the

1Thus, M = M ′Ri , L = L′Ri for some operators M ′, L′ . Note that the GCD is well defined up to left
(right) multiplication by a unit in the ring D̃ .
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(unique) maximal ideal in R , i.e. such elements are not invertible. Other elements are invertible
by exercise 2.1.

2) Let I be a non-zero proper ideal. First note that I must contain an element of order zero.
Indeed, if P ∈ I and ord(P ) > 0 , consider the element [P, x] = Px − xP ∈ I . By lemma 3.1
ord(Px−xP ) < ord(P ) . From (1) or (2) it follows that [P, x] = δ(P ) , thus if ord(P ) > 0 , then
[P, x] 6= 0 . Repeating this procedure, we obtain an element of order zero in I , i.e. I contains
an element u from R . Taking commutators of u with ∂ , we obtain that u(k) ∈ I for all k by
the same arguments. Thus I contains a unit, a contradiction.

3) The proof is straightforward: since K((x)) is a field, we can always find an element
u ∈ K((x)) such that HT (M) = uHT (L) . Therefore, ord(M − u∂ord(M)−ord(L)L) < ord(M) .
Repeating this procedure, we obtain Q1 and R1 , then Q2 and R2 and so on.

4) Let u := ϕ(x) ∈ D . First note that ord(u) = 0 . For, if ord(u) > 0 , the image of
any infinite series from K[[x]] will not belong to D . By the same reason u(0) = 0 . Let
P := ϕ(∂) = an∂

n + an−1∂
n−1 + · · · + a0 ∈ D for some n ∈ N , where an 6= 0 . Clearly,

[P, u] = nu′an∂
n−1 + l.o.t , hence [∂, x] = 1 = [P, u] if and only if n = 1 and a1 =

1

u′
.

5) By assumption, an is a unit in K[[x]] . Therefore, there exists a ∈ K[[x]] such that
an = un . It implies that P =

(
a∂
)n

+ l.o.t . Hence, there exists a change of variables as in (3)

transforming P into an operator of the form P̃ := ∂n + cn−1∂
n−1 + · · ·+ c0 . Applying now to

P̃ an automorphism (3) with u = x and v = −cn−1

n
, we get a normalized operator Q . This

proves the first statement. The proof of the second statement is straightforward.

Remark 3.3. The ring D contains another well known ring, called the first Weyl algebra:
A1 = K[x][∂] . Amazingly the fourth property from theorem 3.1 is still unknown for it. This
problem is called the Dixmier conjecture: is it true that End(A1)\{0} = Aut(A1) ? It was the
first problem (among six) posed by J. Dixmier in [10].

The same conjecture exists for many variables: the n -th Weyl algebra is defined as An =
K[x1, . . . , xn][∂1, . . . ∂n] , where ∂i = ∂/∂xi . The conjecture says that every non-zero endomor-
phism of An is an automorphism. The Dixmier conjecture is equivalent to other famous open
conjectures: the Jacobian conjecture and the Poisson conjecture. This relation can serve as an
illustration of unity in mathematics.

The simple and attractive problem we want to study in our lectures dates back to works of
Wallenberg ([30]), Schur ([26]) and Burchnall-Chaundy ([5], [6], [7], [2]). The problem asks to
find and classify all non-trivial commutative subrings of D = K[[x]][∂] in the sense that we are
looking for subrings not isomorphic to K[P ] . Originally this problem was considered for ODOs
with analytic coefficients. In this case for each operator P there is a shift of variables x 7→ x+ε ,
∂ 7→ ∂ making the highest coefficient of P not vanishing at zero (note that such a shift is not
an endomorphism of D , but is an endomorphism of some smaller rings, e.g. of the first Weyl
algebra). Therefore, due to theorem 3.1, item 5) the problem reduces to the classification of
commutative subrings containing monic operators (we’ll return to this point in section 3).

Definition 3.4. A differential operator P = un∂
n + un−1∂

n−1 + · · ·+ u0 ∈ D of positive order
n is called formally elliptic if un ∈ K∗ .

Exercise 3.3. Let B be a commutative subring of D containing a formally elliptic element
P . Show that all elements of B are formally elliptic.

According to theorem 3.1, item (5), we can transform P into a normalized formally elliptic
differential operator. Therefore, in the sequel all commutative subrings of D are assumed

• to contain an elliptic operator of positive order (i.e. being elliptic)

• to be normalized, meaning that all elements of B of minimal positive order are normalized.
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The last assumption eliminates redundant degrees of freedom in the problem of classification of
commutative subalgebras of differential operators: if B ⊂ D is a normalized elliptic subalgebra
and ϕ is an inner automorphism of D such that ϕ(B) = B , then ϕ = id .

To study basic algebraic properties of commutative subrings of differential operators, we need
to explain the Schur theory of pseudo-differential operators.

3.3 Schur’s theory

Definition 3.5. Let R be a ring over K and let ∂ be a K -derivation. We define the ring of
pseudo-differential operators with coefficients in R as the set

E(R) := R((∂−1)) = {
N∑

i=−∞
ui∂

i, ui ∈ R , N ∈ Z }

(which is obviously a linear space over K ) with the composition rule

∂nu =

∞∑
i=0

Cinu
(i)∂n−i

for all n ∈ Z .

Exercise 3.4. Extending the composition rule by linearity we can write down its general form:
if P =

∑n
k=−∞ ak∂

k , Q =
∑m

l=−∞ bl∂
l , then

PQ =
n∑

k=−∞

m∑
l=−∞

∞∑
i=0

Cikakb
(i)
l ∂

k+l−i. (4)

Note that for each n ∈ Z the number of terms with k + l − i = n is finite, so the sum is well
defined.

Proposition 3.2. The space R((∂−1)) with the composition rule (4) is a ring over K .

Exercise 3.5. Check that the proof of proposition 3.1 works also for this proposition.

Obviously, D(R) ⊂ E(R) and the order function can be extended to the ring E(R) just in
the same way (see definition 3.3). I particular, the function (− ord) is a proper discrete valuation
on E(R) if R is an integral domain. The notions of monic and normalized pseudo-differential
operators are defined in the same way.

Lemma 3.2. Let R be an integral domain. Then E(R) is a complete ring with respect to the
valuation topology defined by the valuation v = − ord .

Proof. Let {Pn ∈ E(R)} , n ∈ N be a Cauchy sequence. By definition of the Cauchy sequence
for each N there exists n(N) ∈ N such that for all m, k > n(N) v(Pm − Pk) > N . Consider
the sequence {− ord(Pn)} . Then we have two possibilities: either it stabilizes (i.e. there exists
n0 ∈ N such that − ord(Pn) = const for all n ≥ n0 ), or not.

In the second case we claim that the limit of the sequence {Pn} is zero. Indeed, if 0 is not
the limit, there exists N such that for all n ∈ N there is m(n) > n such that v(Pm(n)) < N .
But then for all k > n(N) we must have v(Pm(n(N))) = v(Pk) , i.e. the sequence {− ord(Pn)}
stabilizes, a contradiction.

If the sequence {− ord(Pn)} stabilizes, then we can built the limit recursively, by finding
the sequence of its coefficients. The order of the limit must be, obviously, equal to −n0 . For
N = n0 we must have v(Pm − Pk) > n0 for all k,m > n(N) and therefore the operators Pm
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and Pk must have equal highest coefficients. Thus we take this highest coefficient as the first
coefficient of the limit. Taking N = n0 +1 we obtain by analogous arguments that the operators
Pm and Pk have equal coefficients at ∂−n0 and at ∂−n0−1 for all m, k > n(N) . The coefficient
at ∂−n0−1 is the second coefficient of the limit. Continuing this line of reasoning we’ll find all
coefficients of the limit operator (we leave to the reader to check that it is indeed the limit).

Theorem 3.2. The following results are true.

1. The spaces E(R)≤i = {P ∈ E(R)| ord(P ) ≤ i} define a structure of filtered ring on
E(R) : E(R)≤iE(R)≤j ⊂ E(R)≤i+j .

2. E(R) is a graded Lie algebra with respect to the commutator bracket, besides
[E(R)≤i, E(R)≤j ] ⊂ E(R)≤i+j−1 .

3. There is a decomposition of the vector space E(R) into direct sum of subalgebras E(R) =
E(R)≤−1 ⊕D(R) . The projections of an operator P onto these subrings are denoted by
P− and P+ correspondingly.

4. For any monic operator P = ∂d + ad−1∂
d−1 + . . . there exists the inverse operator P−1 =

∂−d + b−d−1∂
−d−1 + . . . .

5. For any monic operator P = ∂d + ad−1∂
d−1 + . . . there exists a unique monic d -th root,

i.e. a monic operator P 1/d = ∂ + u0 + u−1∂
−1 + . . . such that (P 1/d)d = P .

6. Assume that the derivation ∂ : R → R is surjective. Assume also that the equation
dLog(y) = c has a solution in R for any c ∈ R (these properties hold e.g. for R =
K[[x]] ).

Then for every first order operator L = ∂ + u0 + u−1∂
−1 + . . . there exists an invertible

zero-th order operator
S = s0 + s1∂

−1 + s2∂
−2 + . . .

(the Schur operator) such that S−1LS = ∂ . If S̄ is another operator such that S̄−1LS̄ =
∂ , then there is an invertible zero-th order operator Sc with constant coefficients such that
S̄ = S · Sc .

Proof. 1) follows from the multiplication law 4. 2) follows from 1). 3) is obvious. 4) If we rewrite
the operator P as P = (1 + ad−1∂

−1 + . . .)∂d = (1 − P0)∂d (note that ord(P0) < 0 ), then
P−1 = ∂−d(1 + P0 + P 2

0 + . . .) .
5) We will find the operator Y = P 1/d as the limit of a Cauchy sequence. Set Y1 = ∂ . Then

Y d
1 = P +O(d− 1) (here we denote by O(k) elements from E(R)≤k ). Now let’s construct the

sequence by induction. Let Yk be such that Y d
k = P +O(d− k) and Yk − Yk−1 = O(−k + 2) .

Consider the operator Yk+1 = Yk + b∂−k+1 (here b is unknown coefficient). Then

Y d
k+1 = Y d

k + dbY d−1
k ∂−k+1 +O(d− k − 1) = Y d

k + db∂d−k +O(d− k − 1).

On the other hand, Y d
k = P + a∂d−k +O(d− k− 1) for some a ∈ R . Thus, setting b = −a/d ,

we define Yk+1 , after that we proceed by induction. Clearly, {Yk} is a Cauchy sequence. So,
there is the limit Y by lemma 3.2, and Y d = P .

6) As in 5) we will find the operator S as the limit of a Cauchy sequence, which can be
found by induction. Set S0 = w , where w is a solution of the equation dLog(w) = u0 (cf.
remark 3.2). Then S−1

0 LS0 is a normalized operator. Assume we have found the operator Sk ,
k > 0 such that S−1

k LSk = ∂+a∂−k−1 +O(−k−2) . It is enough to find S̄k+1 = 1 + sk+1∂
−k−1

such that
S̄−1
k+1(∂ + a∂−k−1 +O(−k − 2))S̄k+1 = ∂ +O(−k − 2).

10



Then the (k + 1) -th operator from the Cauchy sequence is Sk+1 = SkS̄k+1 . It is easy to check
that this sequence is indeed a Cauchy sequence.

Now direct calculations show that

S̄−1
k+1(∂ + a∂−k−1 +O(−k − 2))S̄k+1 = ∂ + s′k+1∂

−k−1 + a∂−k−1 +O(−k − 2).

Since ∂ gives a surjective map, the equation s′k+1 = −a has a solution, and we are done.
If S̄ is another operator with these properties, then S−1S̄∂ = ∂S−1S̄ = S−1S̄∂+ ∂(S−1S̄) .

Hence, ∂(S−1S̄) = 0 , i.e. the operator Sc = S−1S̄ is a zero-th order operator with constant
coefficients.

Corollary 3.1. Let P ∈ K[[x]][∂] be a monic operator. Denote by BP the set of operators
commuting with P . Then BP is a commutative ring over K .

Moreover, there is an embedding BP ↪→ K[[z]] of the ring BP into the ring of formal power
series K((z)) .

Proof. Let S be a Schur operator for the operator P from theorem 3.2, item (6). Then S−1BPS
is a set of pseudo-differential operators commuting with ∂ . As we have seen above, each such
operator has constant coefficients. But all operators with constant coefficients commute. Thus
they form a commutative subring. At last, S−1BPS ⊂ K((∂−1)) ' K((z)) .

As we will see, commutative subrings of ODOs can be classified in terms of algebro-geometric
spectral data, which in particular consist of an algebraic curve and a spectral sheaf (or spectral
bundle). These objects are very well known in algebraic geometry.

4 Basic facts about commutative subrings of ODOs and con-
structions from Commutative Algebra and Algebraic Geom-
etry

In this section we collect basic facts about commutative subrings of ODOs and basic construc-
tions from Commutative Algebra and Algebraic Geometry which will be used in further lectures.
Main references for this section are the books [1], [15], [12, Ch.1], and short course [28]. We will
focus mostly on ”algebraic” side of Algebraic geometry. We recommend to read also lectures
by Professor Wei-Ping Li, where the algebraic geometry is considered from the ”complex geom-
etry” side. Since we will be interested mostly in algebraic curves, students who will read this
lecture can try to ”test” the results on them during the reading. All rings in this chapter are
commutative and K denotes a field of characteristic zero.

Definition 4.1. The elements r1, . . . , rn of a ring R over K are algebraically independent
(over K ) if the only irreducible polynomial f(x1, . . . , xn) with coefficients in K such that
f(r1, . . . , rn) = 0 , is the zero polynomial (here we assume that f depends on all variables
x1, . . . , xn ).

Notation 4.1. Let’s denote the filtration on D induced by the filtration E(K[[x]])≤n by

D(n) := D ∩ E(K[[x]])≤n

and for any subring B ⊂ D
B(n) := B ∩D(n).

Proposition 4.1. Let B ⊂ D be a commutative subring over K (not necessarily elliptic or
normal), containing an operator of positive order. Then B is finitely generated over K .
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Proof. We’ll need the following claim.
Claim. Let NB = {ordP | P ∈ B} ⊂ N∪ {0} . Then there exists a finite subset FB ⊂ N such
that NB = r(N\FB) ∪ {0} , where r = GCD{ordP | P ∈ B} .

Proof. Since r is a GCD there exist operators P,Q ∈ B such that ord(P )i+ ord(Q)j = r for
some i, j ∈ Z (prove this!). Since r > 0 , i or j > 0 . Without loss of generality let i > 0 .
Since r| ord(P ) and r| ord(Q) we must have j ≤ 0 . Note that if j = 0 then ord(P ) = r , so
B = K[P ] and we are done.

So let j < 0 , α = ordP , β = ordQ , α = α′r , β = β′r . Obviously, NB ⊂ rN ∪ {0} . Now
it suffices to show that NB ⊃ rn for any n� 0 .

We claim that rn ∈ NB for any n ≥ −jα′β′ . Indeed, let n > −jα′β′ . Applying the
Euclidean algorithm to n + jα′β′ , we find unique numbers m ≥ 0 , 0 ≤ l < α′ such that
n = −jα′β′ +mα′ + l . Therefore,

rn = −rjα′β′ +mα+ l(iα+ jβ) = (m+ il)α− (α′ − l)jβ = ord(Pm+ilQ−(α′−l)j) ∈ NB

Now FB = {n ∈ N| rn /∈ NB} , therefore FB is finite.

Let’s prove that B is finitely generated. Let’s denote by F̃B = {ord(P )| P ∈ B(−rjα′β′−r)} .
Then F̃B ∪ {nr| n ≥ −jα′β′} = NB . Let s = ]F̃B . Choose operators T1, . . . , Ts ∈ B such
that {ord(T1), . . . ord(Ts)} = F̃B . Then we claim that B = K[P,Q, T1, . . . , Ts] .

Indeed, let L ∈ B , ord(L) = t ∈ NB . Then there is an operator L′ ∈ K[P,Q, T1, . . . , Ts]
such that ordL′ = t . Let L = a∂t + l.o.t. , L′ = b∂t + l.o.t. . Then

0 = [L,L′] = tab′∂2s−1 − tba′∂2s−1 + l.o.t.

Hence ab′ = ba′ , where from b = ac , c ∈ K . Then ord(L− c−1L′) < t and (L− c−1L′) ∈ B .
Repeating the same arguments with this new operator and so on, we will come to an operator
of order < 0 , i.e. to the zero operator. Hence L ∈ K[P,Q, T1, . . . , Ts] , and we are done.

Exercise 4.1 (*). Let P,Q ∈ D and P be a monic operator. Let F ∈ K[X,Y ] , F (X,Y ) =∑
i+j≤N cijX

iY j be a polynomial. Assume that F (P,Q) =
∑
cijP

iQj = 0 . Is it true that
[P,Q] = 0 ?

Comment 4.1. This exercise is connected with the following interesting conjecture of Y. Berest,
cf. [16].

The group of automorphisms of the first Weyl algebra A1 acts on the set of solutions
of the equation F (X,Y ) = 0 , i.e. if X,Y ∈ A1 satisfy the equation and ϕ ∈ Aut(A1) ,
then ϕ(X), ϕ(Y ) also satisfy the equation. The group Aut(A1) is generated by the following
automorphisms

ϕ1(x) = αx+ β∂x, ϕ1(∂x) = γx+ δ∂x, α, β, γ, δ ∈ K, αδ − βγ = 1,

ϕ2(x) = x+ P1(∂x), ϕ2(∂x) = ∂x,

ϕ3(x) = x, ϕ2(∂x) = ∂x + P2(x),

where P1, P2 are arbitrary polynomials (see [10]). So, Aut(A1) consists of tame automorphisms.
A natural and important problem is to describe the orbit space of the group action of Aut(A1)
in the set of solutions. If one describes the orbit space it gives a chance to compare End(A1) and
Aut(A1) (End(A1) consists of endomorphisms ϕ : A1 → A1 , i.e. [ϕ(∂x), ϕ(x)] = 1 ). Berest
has proposed the following interesting conjecture:

If the Riemann surface corresponding to the equation F = 0 with generic cij ∈ C has genus
g = 1 then the orbit space is infinite, and if g > 1 then there are only finite number of orbits.

One can prove that if there are finite number of orbits for some equation F then
End(A1)\{0} = Aut(A1) .
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Definition 4.2. Let A ⊂ R be an extension of integral domains. An element x ∈ R is called
integral over A if there exists a monic polynomial f ∈ A[T ] such that f(x) = 0 .

Let K̃/k be a field extension. An element x ∈ K̃ is algebraic over k if it is integral over
k . K̃/k is an algebraic extension if any x ∈ K̃ is algebraic over k .

Recall the following facts from algebra:

Theorem 4.1. [15, Ch. V §6] The ring k[T1, . . . Tn] is a unique factorisation domain (UFD for
short), i.e. any polynomial f ∈ k[T1, . . . Tn] has a unique decomposition (up to multiplication
on a unit)

f = fk11 . . . f
kq
q ,

where fi are irreducible polynomials (i.e. they are not divisible by any other non-constant poly-
nomials).

Theorem 4.2. [15, Ch. V, §10] Two polynomials F,G ∈ A[T ] , where A is an integral domain,
F = a0 + . . .+ant

n , G = b0 + . . .+ bmt
m have a common zero (in some extension of Quot(A) )

if and only if their resultant

Res(F,G) = det



a0 a1 . . . an 0 0 . . . 0
0 a0 . . . an−1 an 0 . . . 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . 0 a0 . . . . . . . . . an
b0 b1 . . . . . . bm 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . b0 . . . . . . . . . . . . bm


is equal to zero. Moreover, Res(F,G) = 0 if and only if r1F , r2G have a common divisor of
positive degree for some non-zero r1, r2 ∈ A .

To prove the second algebraic property of a commutative ring of ODOs we need some pre-
liminary results. Consider first one special case: assume a (or c ) is algebraic over K .

Lemma 4.1. Let R be an integral domain over K . If a ∈ R is algebraic over K and a, b ∈ R
are algebraically dependent over K then b is algebraic over K .

Proof. First note that a is algebraic over K if and only if there exists an irreducible homo-
geneous polynomial F (T1, T2) such that F (1, a) = 0 (just take the homogenisation of the
corresponding irreducible monic polynomial). Let G(T2, T3) be an irreducible polynomial such
that G(a, b) = 0 . Let n = degF , m = degG , F = a0T

n
1 + . . .+ anT

n
2 , G = b0 + . . .+ bmT

m
2 ,

where ai ∈ K , bi ∈ K[T3] . Then the polynomial H(T1, T3) := Res(F (T2), G(T2)) ∈ K[T1, T3]
is not zero. For, if H = 0 , then F and G must have a common divisor of positive degree in
K[T1, T2, T3] by theorem 4.2 (since K[T1, T2, T3] is a UFD), a contradiction.

Note that H depend on T1 non-trivially. For, the determinant of the Sylvester matrix
contains the unique monomial of degree n ·m with respect to T1 , namely, (a0T

n
1 )m · bnm (all

other monomials have smaller degree, and a0, bm 6= 0 since F,G are irreducible). Also note
that H(1, T3) 6= 0 . For, if it is zero, then again F (1, T2) and G(T2, T3) must have a common
divisor of positive degree in K[T2, T3] by theorem 4.2, a contradiction with irreducibility of G .

Note that H(1, b) = Res(F (1, T2), G(T2, b) = 0 in the ring K(b) ⊂ R , since a ∈ R is a
common zero. Hence, any irreducible factor of H(T1, T3) that vanishes at (1, b) depend either
on T1, T3 or on T3 . In both cases we are done: b is algebraic over K .

Corollary 4.1. Let R be an integral domain over K . If a, b ∈ R are algebraic over K , then
a and b are algebraically dependent over K . Moreover, a · b is algebraic over K .
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Proof. Let F (T1, T2) , G(T2, T3) be irreducible homogeneous polynomials such that F (a, 1) =
G(1, b) = 0 . Then H(T1, T3) from the proof of previous lemma is a homogeneous polyno-
mial. Indeed, the determinant of the Sylvester matrix is a sum of monomials of the form
±a1,j1 · · · am,jm ·b1,k1 · · · bn,kn , where ai,ji denotes the element at i -th row and ji -th column and
bi,ki denotes the element at (i + m) -th row and ki -th column, and {j1, . . . , jm, k1, . . . , kn} =

{1, . . . n+m} . Note that ai,ji = ci,jiT
n−(ji−i)
1 for some ci,ji ∈ K and bi,ki = di,kiT

m−(ki−i)
1 for

some di,ki ∈ K . So,

deg(a1,j1 · · · am,jm · b1,k1 · · · bn,kn) = 2mn− (m+ n)(m+ n+ 1)

2
+
m(m+ 1)

2
+
n(n+ 1)

2
= mn.

Since any factor of a homogeneous polynomial H is again homogeneous, there exists an irre-
ducible homogeneous polynomial H̃ in two variables which vanishes at (a, b) .

Let H̃ =
∑n

i=0 ci,n−iT
i
1T

n−i
2 . Consider the polynomial Hn(T1, T2) =

∑n
i=0 ci,n−iT

i
1T

2(n−i)
2 .

Then Hn(ab, b) = bnH̃(a, b) = 0 . Note that Hn has no irreducible factors depending on T2 and
vanishing at b , since otherwise H̃(T1, b) = 0 , a contradiction. Therefore, there is an irreducible
factor vanishing at (ab, b) and depending on T1 . Thus, ab is algebraic over K by lemma
4.1.

Lemma 4.2. Let R be an integral domain over K . If a, b ∈ R are algebraically dependent over
K and b, c ∈ R are algebraically dependent over K , then a, c ∈ R are algebraically dependent
over K .

Proof. Let F (a, b) = 0 , G(b, c) = 0 , where F (T1, T2) , G(T2, T3) are irreducible polynomials.
As in proofs above consider F as a polynomial in the variable T2 with coefficients in

K[T1] ⊂ K[T1, T3] and G as a polynomial in T2 with coefficients in K[T3] ⊂ K[T1, T3] . Then
the polynomial H(T1, T3) := Res(F (T2), G(T2)) ∈ K[T1, T3] is not zero. For, if H = 0 , then F
and G have a common divisor in K[T1, T2, T3] by theorem 4.2, a contradiction.

Again we have H(a, c) = Res(F (a, T2), G(T2, c)) = 0 in the ring K[a, c] , since b ∈ R ⊃
K[a, c] is a common zero. Any irreducible factor of H that vanishes at (a, c) depends either on
two or one variable. If it depends on two variables, we are done. If it depends on one variable,
then a (or c ) is algebraic over K . Therefore, b is algebraic over K by lemma 4.1, and therefore
c (or a ) is algebraic over K by the same reason. Hence, a, c are algebraically dependent by
corollary 4.1.

Corollary 4.2. If any two non-algebraic over K elements in R are algebraically dependent,
then any two non-algebraic over K elements in Quot(R) are algebraically dependent.

Proof. Take any element 1
a ∈ Quot(R) , where a is not algebraic. Then ( 1

a)a = 1 , so 1
a , a

are algebraically dependent over K and therefore 1
a and b are algebraically dependent for any

non-algebraic over K element b ∈ R by lemma 4.2. In particular, 1
a is not algebraic by lemma

4.1.
Now take any element b

a ∈ Quot(R) which is not algebraic over K . If a is algebraic over K ,
then 1/a is algebraic over K by lemma 4.1 and therefore b (and 1/b ) can not be algebraic over
K by corollary 4.1. Let F (T ) be an irreducible polynomial such that F (1/a) = 0 . Then the
polynomial F̃ (T1, T2) = F (T1T2) vanishes at (b/a, 1/b) . Clearly, F̃ has no irreducible factors
depending on one variable and vanishing at (b/a, 1/b) (because b/a, 1/b are not algebraic over
K ). Thus, b/a, 1/b are algebraically dependent and therefore b/a is algebraically dependent
with any non-algebraic element from R by lemma 4.2. The same arguments work if b is algebraic
over K .

If a, b are not algebraic over K , let F (T1, T2) =
∑

i,j≥0 cijT
i
1T

j
2 be an irreducible polynomial

such that F (1/a, b) = 0 . Then there exists some N ∈ Z such that j − i − N ≥ 0 for all j, i
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from the finite sum, so that

0 =
∑
i,j≥0

cij
1

ai
bj = bN (

∑
i,j≥0

cij
bi

ai
bj−i−N ).

Therefore, the polynomial F̃ (T1, T2) =
∑

i,j≥0 ci,jT
i
1T

j−i−N
2 , where sum is taken over the same

set if indices, (note it is not identically zero) vanishes at (b/a, b) . Since b/a, b are not algebraic
over K , F̃ has no irreducible factors vanishing at (b/a, b) and depending only on one variable.
Thus, b/a, b are algebraically dependent.

Now by lemma 4.2 any two non-algebraic over K elements in Quot(R) are algebraically
dependent.

Corollary 4.3. If non-algebraic over K elements a, b ∈ R are algebraically dependent, then
any two non-algebraic over K elements from K[a, b] are algebraically dependent.

Proof. Obviously, any non-algebraic element in K[a] is algebraically dependent with a (we
can write down the polynomial explicitly). Therefore, any two non-algebraic elements are al-
gebraically dependent in K[a] . Analogously any two non-algebraic elements are algebraically
dependent in K[b] . So, by 4.2, 4.2 any two non-algebraic elements from K(a) and K(b) are
algebraically dependent.

Now take any non-algebraic over K element f ∈ K[a, b] , say f =
∑n

i=0 fib
i , fi ∈ K(a) .

We claim that f, b are algebraically dependent. Use induction on n : if n = 0 , then we already
know that f is algebraically dependent with any element from K[b] . In general situation

f = fn(bn +
fn−1

fn
bn−1 + . . .+

f0

fn
) =: fn(bn + f ′).

If (bn + f ′) is algebraic over K , then by the arguments from the proof of corollary 4.2 f, fn
are algebraically dependent, whence f, b are algebraically dependent by lemma 4.2. So, we can
assume (bn + f ′) is not algebraic over K . If f ′ is algebraic over K , then we can use the
same trick: let F (T ) be an irreducible polynomial such that F (f ′) = 0 . Then the polynomial
F (T2−Tn1 ) vanishes at (bn + f ′), b , and this leads to algebraic dependence of (bn + f ′), b . If f ′

is not algebraic over K , by induction f ′, b are algebraically dependent. Therefore, (bn + f ′), b
are algebraically dependent: if F (T1, T2) is an irreducible polynomial with F (f ′, b) = 0 , then
F (T1−Tn2 , T2) is a polynomial vanishing at (bn + f ′), b , and this leads to algebraic dependence
of (bn + f ′), b .

If fn is algebraic, the arguments above say that f, b are algebraically dependent. If not,
by lemma 4.2 (bn + f ′), fn are algebraically dependent, and we can use again the trick from
previous corollary to show that f, fn are algebraically dependent, whence f, b are algebraically
dependent and we are done.

Now let’s prove the second property of a commutative ring of ODOs.

Proposition 4.2. Let B ⊂ D be a commutative subring as in proposition 4.1. Then any two
non-algebraic over K elements are algebraically dependent.

Proof. We use notations from the proof of proposition 4.1.
Take any P ∈ B and choose Q ∈ B such that GCD(ordP, ordQ) = r (note: such Q exists,

because for any n� 0 nr ∈ NB , see proposition 4.1). Consider now the ring B̃ = K[P,Q] ⊂ B
and repeat arguments from proposition 4.1. Then NB̃ ⊃ rn , n ≥ −jα′β′ . Again note that
j < 0 , for if j = 0 then Q ∈ K[P ] (or P ∈ K[Q] ), therefore P,Q are algebraically dependent.

Let {u1, . . . , uq} be a K -linear basis for B̃(−rjα′β′−r) and let ϕn = Pm+ilQ−(α′−l)j for
n ≥ −jα′β′ . Then {u1, . . . , uq} ∪ {ϕn}n≥−jα′β′ form a K -basis for B̃ . Since any ϕn is not
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the power of P , for N � 0 PN is a linear combination of u1, . . . , uq, ϕn1 , . . . , ϕnk (and ui
include restricted powers of P , so that N can be chosen bigger than they together). Thus we
get a non-trivial polynomial relation (with the highest coefficient one in variable P ):

PN = ak1P
k1 + . . .+ a0, ki < N , aki ∈ K[Q] ,

and P,Q are algebraically dependent. Note that for any P1, P2 ∈ B there exists Q ∈ B
such that GCD(ordP1, ordQ) = r and GCD(ordP2, ordQ) = r . Then P1, Q and P2, Q are
algebraically dependent and by Lemma 4.2 P1, P2 are algebraically dependent.

The proposition 4.2 can be reformulated using the notion of a transcendence basis.

Definition 4.3. Let K̃/k be a field extension. A transcendence basis of K̃/k is a set T of
algebraically independent elements over k (here we mean that any finite number of elements
from T are algebraically independent) such that K̃ is algebraic over k(T ) .

On a set σ of algebraically independent subsets there is a partial order: T1 ≤ T2 if T1 ⊆ T2 .
For any chain T1 ⊂ T2 ⊂ . . . there is an upper bound T = ∪iTi (i.e. T ≥ Ti for any i ). Then
by Zorn’s lemma2 there are maximal elements in σ . Therefore, the transcendence basis exists.
We’ll consider only extensions with finite transcendence bases.

Theorem 4.3. Let K̃ ⊃ k be an extension of fields. Then any two transcendence bases of K̃
over k have equal cardinality.

If K̃ = k(Γ) , where Γ is a set of generators, and T ⊂ Γ is a subset of algebraically
independent elements, then there exists a transcendence basis β of K̃ over k such that T ⊂
β ⊂ Γ .

Proof. Let {x1, . . . xm} be a transcendence basis, and {w1 . . . , wn} are algebraically indepen-
dent elements. It is suffice to prove that n ≤ m , since then by symmetry m ≤ n and therefore
m = n .

Let’s prove it. There exists a non-zero polynomial f1(w1, x1, . . . , xm) = 0 (since w1 is
algebraic over k(x1, . . . , xm) ). Without loss of generality we can assume that f1 depends on x1 .
Then it means that w1, x1 are algebraically dependent over k(x2, . . . xm) and x1 is algebraic
over k(w1, x2, . . . , xm) . Therefore, K̃ is algebraic over k(w1, x2, . . . , xm) . For, for any non-
algebraic over k(x2, . . . , xm) element α ∈ K̃ the elements α, x1 are algebraically dependent
over k(x2, . . . , xm) , hence by lemma 4.2 α,w1 are algebraically dependent over k(x2, . . . , xm)
and therefore α is algebraic over k(w1, x2, . . . , xm) .

Now we use induction: if K̃ is algebraic over k(w1, . . . , wr, xr+1, . . . , xm) for r < n then
there exists a non-zero polynomial f(wr+1, w1, . . . , wr, xr+1, . . . , xm) = 0 . Without loss of gen-
erality (by renumbering the variables) we can assume that f depends on xr+1 (if f contains
no xi this would mean that w1, . . . , wr+1 are algebraically dependent, a contradiction). Then
xr+1 is algebraic over k(w1, . . . , wr+1, xr+2, . . . , xm) .

Now again for any non-algebraic over k(w1, . . . , wr, xr+2, . . . , xm) element α ∈ K̃ the ele-
ments α, xr+1 are algebraically dependent over k(w1, . . . , wr, xr+2, . . . , xm) and xr+1, wr+1 are
algebraically dependent over
k(w1, . . . , wr, xr+2, . . . , xm) . Hence by lemma 4.2 α,wr+1 are algebraically dependent over
k(w1, . . . , wr, xr+2, . . . , xm) and therefore α is algebraic over k(w1, . . . , wr+1, xr+2, . . . , xm) .
Then, if n > m we deduce that K̃ is algebraic over k(w1, . . . , wm) , a contradiction, since
w1, . . . , wn are algebraically independent.

2Zorn’s lemma says: Let S be a non-empty partially ordered set (i.e. we are given a relation x ≤ y on S
which is reflexive and transitive and such that x ≤ y and y ≤ x together imply x = y ). A subset T of S is a
chain if either x ≤ y or y ≤ x for every pair of elements x, y in T . If every chain of T has an upper bound in
S (i.e. if there exists x ∈ S such that t ≤ x for all t ∈ T ) then S has at least one maximal element.
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Notation 4.2. We denote by trdeg(K̃/k) the cardinality of a transcendence basis.

Corollary 4.4. Let B ⊂ D be a commutative subring as in proposition 4.1. Then
trdeg(Quot(B)/K) = 1 .

Proof. Indeed, by corollaries 4.2 and 4.3 any two elements in Quot(B) are algebraically depen-
dent over K . Obviously, an operator of positive order is transcendental over K .

Remark 4.1. It is useful to mention another notion of ”measure” on the commutative ring
(except the transcendence degree), the Krull dimension. Here we list important results on the
Krull dimension of rings, which we will not prove. The proofs one can find e.g. in [1, Ch.11].

Definition 4.4. Let R be a ring. The height of a prime ideal ℘ in the ring R is a supremum
of the lengths of all chains of prime ideals ℘0 ⊂ ℘1 ⊂ . . . ℘n = ℘ , and is denoted by ht(℘) .

The Krull dimension of R is a supremum of the lengths of all chains of prime ideals, and is
denoted by dim(R) .

Examples of rings with finite dimension: rings finitely generated over K , local Noetherian
rings (see below).

Proposition 4.3. [1, Ch. 11] Let B be an integral domain finitely generated over K . Then

1. dim(B) = trdegK(Quot(B)) ;

2. for any prime ideal ℘ ⊂ B we have

ht(℘) + dim(B/℘) = dimB.

In order to explain what is the spectral curve of a commutative ring of ODOs, we need more
facts from Commutative Algebra.

4.0.1 More from CA about Noetherian rings

Let R be a commutative ring. We shall always consider ideals I ⊂ R different from R itself.
Then the quotient ring R/I is also a commutative ring.

Definition 4.5. An ideal I ⊂ R is called prime if the quotient ring R/I has no zero divisors.
An ideal I is maximal if it is not contained in another ideal (different from R ). Then the

ring R/I has no non-zero ideals (otherwise its preimage in R would be an ideal containing I ),
hence every element x ∈ R/I , x 6= 0 , is invertible (since the principal ideal (x) must coincide
with R/I , and thus contain 1 ), in other words, R/I is a field. Since a field has no non-trivial
ideals, the converse is also true, so that I ⊂ R is maximal iff R/I is a field. By Zorn’s lemma,
each ring contains a maximal ideal.

An important finiteness property of rings is encoded in a notion Noetherian ring, given in
the following proposition-definition.

Proposition 4.4. A ring R satisfying any of the following equivalent properties is called Noethe-
rian:

1. any chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ . . . of R stabilizes (that is, there is an integer m such
that Im = Im+1 = Im+2 = . . . ),

2. any set of ideals of R contains a maximal element,

3. any ideal of R is generated by finitely many elements, that is, is an R -module of finite
type.

17



Proof. The equivalence of (1) and (2) is completely formal.
(3) ⇒ (1): Let I =

∑
Ij , then I is an ideal which is generated, say, by x1, . . . , xn as an

R -module. Take m such that Im contains all the xi , then the chain stabilizes at Im .
(2) ⇒ (3) is based on a trick called ”Noetherian induction” (cf. [12, Ch.2, Exer. 3.16]).

Suppose that I ⊂ R is an ideal which is not of finite type as an R -module. Consider the set
of subideals of I which are of finite type as R -modules. This set is not empty: it contains 0 .
Now it has a maximal element J 6= I . Take x ∈ I\J , then the ideal J + (x) ⊂ I is strictly
bigger than J , but is of finite type as an R -module. Contradiction.

Exercise 4.2. i) Prove equivalence of (1) and (2);
ii) Let R be a Noetherian ring, I ⊂ R is an ideal. Show that R/I as also a Noetherian

ring.

The easiest example of a Noetherian ring is a field. Hilbert’s basis theorem produces a lot of
examples of Noetherian rings.

Theorem 4.4 (Hilbert’s basis theorem). If R is a Noetherian ring, then so are the polynomial
ring R[z] and the formal power series ring R[[z]] .

Proof. Let I ⊂ R[z] be an ideal. We associate to it a series of ideals in R : I0 ⊂ I1 ⊂ I2 ⊂ . . . ,
where Ij is generated by the leading coefficients of polynomials in I of degree j . Since R
is Noetherian, this chain of ideals stabilizes, say, at Ir . Then we have a finite collection of
polynomials whose leading coefficients generate I0, . . . , Ir . Then the ideal of R[z] generated
by these polynomials is I . The same idea works with R[[z]] , if we use the discrete valuation
instead of degree function.

Exercise 4.3. Prove the theorem 4.4 for R[[z]] .

Definition 4.6. Now we are able to formulate what is the spectral curve of B . There is the
following basic geometric observation: if B = K[P1, . . . , Pn] is a finitely generated ring, then
there is a surjective homomorphism of rings

ϕ : K[T1, . . . , Tn]→ B, Ti 7→ Pi.

Note that I := kerϕ is an ideal. By Hilbert’s basis theorem I is finitely generated by, say,
f1, . . . , fk . Then B ' K[T1, . . . , Tn]/(f1, . . . , fk) . Let K = C . The set

f1(T1, . . . , Tn) = 0
f2(T1, . . . , Tn) = 0

...
fk(T1, . . . , Tn) = 0

, (T1, . . . , Tn) ∈ Cn

is a geometric object, an algebraic set (affine variety), called the affine spectral curve. We’ll
denote it by C0 = SpecB .

Later we will see that the affine curve can be completed by one smooth point. So, if the
curve is smooth, then the completion will be a Riemann surface of finite genus.

Example 4.1. Consider the following example of Wallenberg:

P = ∂2 − 2

(x+ 1)2
, Q = 2∂3 − 6

(x+ 1)2
∂ +

6

(x+ 1)3

commute. The ring B = C[P,Q] ' C[T1, T2]/(f) , where f = T 2
2 −4T 3

1 . Thus the spectral curve
in this case is a plane curve defined by the equation f(T1, T2) = 0 .
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Remark 4.2. First proof of the fact that two commuting operators are algebraically dependent
belongs to Burchnall and Chaundy [5]. Their famous lemma was proved by different method,
which gives in particular an explicit form of the equation of the algebraical dependence, cf. [22,
Lemma 1.11]. Moreover, their method is applicable also in the case of commuting difference
operators.

Let’s define the spectral module:

Definition 4.7. Let B ⊂ D be a commutative subring. Consider the right D –module F :=
D/xD ' K[∂], a(x)∂n 7→ a(0)∂n . Clearly, the right action of D on K[∂] is given by the
following rules: {

p(∂) ◦ ∂ = ∂ · p(∂)
p(∂) ◦ x = p′(∂).

(5)

Restricting the action (5) on the subalgebra B , we endow F with the structure of a B –module.
Since the algebra B is commutative, we shall view F as a left B –module (although having
the natural right action in mind). The module F is called the spectral module.

Note that if B is elliptic, then F is torsion free, i.e. for any non-zero f ∈ F and for any
non-zero b ∈ B fb 6= 0 .

Definition 4.8. Let B be a commutative subring of D . We call the natural number

r = rk(B) = gcd
{
ord(P )

∣∣P ∈ B}
the rank of B .

To explain the dictionary between geometric and algebraic objects, as well as to explain the
construction of completion of the spectral curve we need to recall more facts from CA.

4.0.2 More from CA about integral elements

Proposition 4.5. Let A ⊂ B be integral domains. The following conditions are equivalent:

1. x ∈ B is integral over A ,

2. A[x] is an A -module of finite type,

3. There exists an A -module M of finite type such that A ⊂M ⊂ B and xM ⊂M .

Proof. The proof of (1) ⇒ (2) and (2) ⇒ (3) is direct. Suppose we know (3). Let m1, . . . ,mn

be a system of generators of M . Then xmi =
∑n

i=1 bijmj , where bij ∈ A .
Recall that in any ring R we can do the following ”determinant trick”. Let N be a matrix

with entries in R . Let adj(N) be the matrix with entries in R given by

adj(N)ij = (−1)i+j det(N(j, i)),

where N(i, j) is N with i -th row and j -th column removed. It is an exercise in linear algebra
that the product adj(N) ·N is the scalar matrix with det(N) on the diagonal.

We apply this trick to the polynomial ring R = A[T ] . For N we take the n × n -matrix
Q(T ) such that Q(T )ij = Tδij − bij . Let f(T ) = det(Q(T )) ∈ A[T ] (this is the analogue of the
characteristic polynomial of x ). We have a matrix identity

adj(Q(T )) ·Q(T ) = diag(f(T )).

We consider this as an identity between matrices over the bigger ring B[T ] . We are free to
assign T any value in B . Substitute T = x ∈ B , and apply these matrices to the column
vector (m1, . . . ,mn)T . Then the left hand side is zero. Hence f(x)mi = 0 for any i . Since the
mi generate M , the whole module M is annihilated by f(x) ∈ B . In particular, f(x) · 1 = 0 ,
that is, f(x) = 0 . Now note that f(T ) has coefficients in A and leading coefficient 1 .

19



Definition 4.9. Let A ⊂ B be integral domains, then B is integral over A if every its element
is integral over A . The set of elements of B which are integral over A is called the integral
closure of A in B .

Let us prove some basic properties of integral elements.

Proposition 4.6. 1. The integral closure is a ring.

2. Suppose that B is integral over A , and is of finite type as an A -algebra. Then B is of
finite type as an A -module.

3. Suppose that C is integral over B , and B is integral over A , then C is integral over
A .

Proof. (1) Let x, y ∈ B be integral over A . Consider the A -module generated by all the
monomials xiyj , i, j ≥ 0 . All higher powers of x, y can be reduced to finitely many of its
powers using monic polynomials whose roots are x, y . So, the module is of finite type, and xy
and x+ y act on it. Then by proposition 4.5 (3) xy and x+ y are integral.

(2) Suppose that B is generated by b1, . . . , bn as an A -algebra, then B is generated by
monomials bi11 . . . b

in
n as an A -module. As in item 1), all higher powers of each of the bi ’s can

be reduced to finitely many of its powers using a monic polynomial whose root is bi . There
remain finitely many monomials which generate B as an A -module.

(3) Let x ∈ C . Consider the A -subalgebra F ⊂ C generated by x and the coefficients
bi of a monic polynomial with coefficients in B , whose root is x . Then F is an A -module
of finite type, as only finitely many monomials generate it (the bi are integral, and the higher
powers of x can be reduced to lower powers). Now use item 3) of proposition 4.5.

Definition 4.10. A ring is integrally closed or normal if it is integrally closed in its field of
fractions.

Example 4.2. The rings K[x] and K[x, y] are integrally closed, but K[x, y]/(y2−x2−x3) is
not.

Theorem 4.5 (Noether’s normalization lemma). Let k be any field, and I ⊂ k[T1, . . . , Tn] be
an ideal, R = k[T1, . . . , Tn]/I . There exist algebraically independent elements Y1, . . . , Ym ∈ R
such that R is integral over k[Y1, . . . , Ym] .

Proof. If I = 0 there is nothing to prove. Suppose we have a non-zero polynomial f ∈ I . Let
d be a positive integer greater than deg(f) . Let us choose new variables in the following tricky
way:

T ′2 = T2 − T d1 , T ′3 = T3 − T d
2

1 , T ′4 = T4 − T d
3

1 , . . . , T ′n = Tn − T d
n−1

1 .

Substituting T2 = T ′2 + T d1 , . . . into f we rewrite it as a linear combination of powers of T1

and a polynomial, say, g containing no pure powers of T1 . We observe that the pure powers
of T1 are of the form i1 + di2 + d2i3 + . . . + dn−1in . Since d > is , all these integers are
different, hence there is no cancellation among the pure powers of T1 . At least one such power
enters with a nonzero coefficient. On the other hand, any power of T1 in g is strictly less
than the corresponding pure power. Therefore, we get a polynomial in T1 with coefficients in
k[T ′2, . . . , T

′
n] and leading coefficient in k . Normalizing this polynomial we conclude that T1 is

integral over R1 = k[T ′2, . . . , T
′
n]/(I ∩k[T ′2, . . . , T

′
n]) . Hence R is integral over R1 . We now play

the same game with R1 instead of R , and obtain a subring R2 over which R1 is integral. By
proposition 4.6, item (3) R is also integral over R2 . We continue like that until we get a zero
ideal, which means that the variables are algebraically independent.

Exercise 4.4. Show that for B ⊂ D from proposition 4.1 the field Quot(B) is a finite algebraic
extension, i.e. a module of finite type, over K(Q) , Q ∈ B , ord(Q) > 0 .
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4.0.3 Nullstellensatz

Theorem 4.6. Let k be an algebraically closed field. All maximal ideals of k[X1, . . . , Xn] are
of the form (X1− a1, . . . , Xn− an) , ai ∈ k , that is, consist of polynomials vanishing at a point
(a1, . . . , an) ∈ kn .

Proof. Any polynomial has a Taylor expansion at the point (a1, . . . , an) . The canonical map

k[X1, . . . , Xn]→ k[X1, . . . , Xn]/(X1 − a1, . . . , Xn − an)

sends f to f(a1, . . . an) , hence is surjective onto k . It follows that the ideal (X1−a1, . . . , Xn−
an) is maximal.

Let M be a maximal ideal (recall that M 6= k[X1, . . . , Xn] ), then K̃ := k[X1, . . . , Xn]/M
is a field containing k . By Noetherian normalization K̃ is integral over its subring A =
k[Y1, . . . , Ym] . But K̃ is a field, and we now show that then A must also be a field, in which
case k[Y1, . . . , Ym] = k (no variables at all), and hence K̃ is integral over k . Indeed, let x ∈ A ,
then it is enough to show that x−1 ∈ K̃ also belongs to A . Since x−1 ∈ K̃ is integral over A
it is subject to a polynomial relation (x−1)n + an−1(x−1)n−1 + . . . + a1x

−1 + a0 = 0 , for some
ai ∈ A . Multiplying this by xn−1 we express x−1 as a polynomial in x with coefficients in A ,
hence x−1 ∈ A .

The k -algebra of finite type K̃ is integral over k , hence by proposition 4.5, item 2)
K̃ is a k -module (= vector space over k ) of finite type (= of finite dimension). Since k
is algebraically closed, we must have k = K . Now let ai ∈ k be the image of Xi un-
der the map k[X1, . . . , Xn] → k = k[X1, . . . , Xn]/M . Then M contains the maximal ideal
(X1 − a1, . . . , Xn − an) , hence coincides with it.

Remark 4.3. When k is not supposed to be algebraically closed, this proof shows that the
quotient by a maximal ideal of k[X1, . . . , Xn] is a finite extension of k .

Corollary 4.5. Let k be an algebraically closed field. If the polynomials of an ideal I ⊂
k[X1, . . . , Xn] have no common zeros in kn , then I = k[X1, . . . , Xn] .

Proof. Assume I 6= k[X1, . . . , Xn] . Hilbert’s basis theorem says that k[X1, . . . , Xn] is Noetheri-
an. Then I is contained in a maximal ideal, since the set of ideals that contain I has a maximal
element, by item 2) of proposition 4.4 above. Therefore I ⊂ (X1 − a1, . . . , Xn − an) , for some
ai ∈ k , since all the maximal ideals are of this form by the previous result. But then all the
polynomials of I vanish at the point (a1, . . . , an) , which is a contradiction.

Theorem 4.7 (Nullstellensatz). Let k be an algebraically closed field. If a polynomial f van-
ishes at all the zeros of an ideal I ⊂ k[X1, . . . , Xn] , then fm ∈ I for some positive integer
m .

Remark 4.4. Let I ⊂ A be an ideal in a ring A . The ideal

√
I = {f ∈ A| f r ∈ I for some integer r > 0 }

is called the radical of the ideal I .

Proof. We know that I is generated by finitely many polynomials, say, I = (g1, . . . , gr) . Let T
be a new variable. Consider the ideal J ⊂ k[T,X1, . . . , Xn] generated by g1, . . . , gr and Tf−1 .
We observe that these polynomials have no common zero. The previous corollary implies that
J = k[T,X1, . . . , Xn] , in particular, J contains 1 . Then there exist polynomials p, p1, . . . , pr
in variables T,X1, . . . , Xn such that

1 = p(Tf − 1) + p1g1 + . . .+ prgr.
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Note that this is an identity in variables T,X1, . . . , Xn . Thus we can specialize the variables
anyway we like. For example, we can set T = 1/f . Multiplying both sides by an appropriate
power of f we get an identity between polynomials in variables X1, . . . , Xn , which gives that
some power of f belongs to I = (g1, . . . , gr) .

The Nullstellensatz and Hilbert’s basis theorem form a foundation of a ”dictionary” between
commutative algebra and algebraic geometry. Below we give an overview of basic concepts from
affine and projective algebraic geometry. We need these concepts to explain the connection
between algebraic objects arising from a commutative ring of differential operators and geometric
objects from complex algebraic geometry.

4.1 Affine algebraic geometry

Affine algebraic geometry studies the solutions of systems of polynomial equations with coeffi-
cients in k ( k is any field). Let A = k[X1, . . . , Xn] be the polynomial ring in n variables. We
can consider elements of A as functions on the affine space kn . Let

Z(T ) = {Q ∈ kn| f(Q) = 0 for all f ∈ T }

be the set of zeros of a subset T ⊂ A . Instead of a set of polynomials it is better to consider the
ideal of the polynomial ring A generated by them. The subsets of kn consisting of common zeros
of the subset of polynomials are called closed algebraic sets. They define the Zariski topology on
kn .

4.1.1 Zariski topology

Let us prove some easy facts about closed algebraic sets. If X ⊂ kn we denote by I(X) ⊂
k[X1, . . . , Xn] the ideal consisting of polynomials vanishing at all the points of X . It is a
tautology that X ⊂ Z(I(X)) and J ⊂ I(Z(J)) . If X is a closed algebraic set, then X =
Z(I(X)) (if X = Z(J) , then I(Z(J)) ⊃ J , hence Z(I(Z(J))) ⊂ Z(J)) .

It is clear that the function J → Z(J) reverses inclusions; associates the empty set to the
whole ring, and the whole affine space kn to the zero ideal; sends the sum of (any number
of) ideals to the intersection of corresponding closed sets; and sends the intersection I1 ∩ I2 to
Z(I1) ∪ Z(I2) .

Because of these properties we can think of closed algebraic sets as the closed sets for some
topology on kn (any intersections and finite unions are again closed, as are the empty set and
the whole space). This topology is called Zariski topology. In the case when k = C or k = R
we can compare it with the usual topology on Cn where closed sets are the zeros of continuous
functions. Any Zariski closed set is also closed for the usual topology but not vice versa. Hence
the Zariski topology is weaker. Another feature is that any open subset of kn is dense (its
closure is the whole kn ).

Definition 4.11. A closed algebraic subset X ⊂ kn is irreducible if there is no decomposition
X = X1 ∪X2 , where X1 6= X and X2 6= X are closed algebraic sets.

Proposition 4.7. A closed algebraic subset X ⊂ kn is irreducible iff I(X) is a prime ideal.
Any closed set has a unique decomposition into a finite union of irreducible subsets X = ∪iXi

such that Xi * Xj for i 6= j (these Xi ’s are called the irreducible components of X ).

Proof. Suppose X is irreducible. If fg ∈ I(X) , then X ⊂ Z(fg) = Z(f) ∪ Z(g) . Therefore,
X = (X ∩ Z(f)) ∪ (X ∩ Z(g)) . Since X is irreducible, we have either X = X ∩ Z(f) and
X ⊂ Z(f) or X = X ∩Z(g) and X ⊂ Z(g) . Therefore, either f ∈ I(X) or g ∈ I(X) , i.e. the
ideal I(X) is prime.
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Conversely, let ℘ be a prime ideal. Suppose that Z(℘) = X1∪X2 . Then ℘ = I(X1)∩I(X2) ,
i.e. either ℘ = I(X1) or ℘ = I(X2) . Therefore, Z(℘) = X1 or Z(℘) = X2 , i.e. Z(℘) is
irreducible.

Now let’s prove the existence of the finite decomposition of X . Let Σ be the set of non-empty
closed subsets of X which can not be represented as a finite union of irreducible closed subsets.
Suppose that Σ is not empty. Since the ring k[X1, . . . , Xn]/I(X) is Noetherian, any chain of
closed subsets X ⊃ Y1 ⊃ Y2 ⊃ . . . stabilizes, i.e. there exists r > 0 such that Yr = Yr+1 = . . . .
Therefore, Σ has a minimal element, say Y . The subset Y can not be irreducible by definition
of Σ , hence Y = Y ′ ∪ Y ′′ , where Y ′ and Y ′′ are proper closed subsets in Y . Since Y
is minimal, the sets Y ′ , Y ′′ can be represented as finite union of closed irreducible subsets.
Therefore, Y also can be represented in such a way, a contradiction. Thus, X = X1 ∪ . . .∪Xr ,
and we can assume w.l.o.g. that Xi * Xj for i 6= j (by deleting proper subsets from the union).

Assume that there exists another representation X = X ′1 ∪ . . . X ′s . Then X ′1 = ∪(X ′1 ∩Xi) .
But since X ′1 is irreducible, we have X ′1 ⊂ Xi for some i , say i = 1 . Analogously, X1 ⊂ X ′j
for some j . Then X ′1 ⊂ X ′j whence j = 1 and X1 = X ′1 . Now set Z = X −X1 . Then Z =
X2∪. . . Xr = X ′2∪. . . X ′s . By induction on r we obtain the uniqueness of the decomposition.

Let k be an algebraically closed field. Let us call an ideal I ⊂ k[X1, . . . , Xn] radical if√
I = I . A corollary of Hilbert’s Nullstellensatz is that radical ideals bijectively (via operations I

and Z ) correspond to closed algebraic sets. The most important class of radical ideals are prime
ideals. Again, by Hilbert’s Nullstellensatz, these bijectively correspond to irreducible closed
algebraic sets. A particular case of prime ideals are maximal ideals, they correspond to points
of kn .

Definition 4.12. An affine variety is a closed irreducible algebraic subset of kn for some n .
The variety kn will be also denoted An

k , and called the affine space of dimension n .

Let X ⊂ An
k be an affine variety. Let J = I(X) be the corresponding prime ideal. Let us

denote k[X] := k[X1, ..., Xn]/J . Then k[X] is an integral k -algebra of finite type. k[X] is
called the coordinate ring of X . The fraction field of k[X] is denoted by k(X) , and is called
the function field of X . Its elements are called rational functions as opposed to the elements of
k[X] which are called regular functions.

The function field k(X) is an important object defined by X . Two affine varieties X and
Y are called birationally equivalent if k(X) = k(Y ) . A variety X is called rational if k(X) is
a purely transcendental extension of k , that is, k(X) = k(T1, . . . , Tl) .

Zariski topology on An
k induces a topology on a variety X ⊂ An

k . An open subset U ⊂ X
is an intersection of X with an open set of An

k . Such sets are called quasi-affine varieties.

Definition 4.13. The dimension of the topological space X can be defined as the supremum
of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of distinct closed irreducible
subsets of X .

From the Nullstellensatz it follows immediately that dim(X) = dim(k[X]) . By proposition
4.3 the dimension is equal to the transcendence degree of the field k(X) .

4.2 Regular functions and morphisms of affine varieties

In order to explain the second component of spectral data associated to a commutative ring
B ⊂ D , we need to introduce, in particular, the notion of a sheaf of modules on an affine variety
(cf. §3 of Wei-Ping Li’s lectures on this school!). To do this, we need to introduce the notion of
a ring of regular functions on the affine variety, which appears to be naturally isomorphic to the
ring B . Also we need to introduce the notion of a morphism of affine varieties, which appear to
be defined by a homomorphism of corresponding commutative rings.
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Subrings of regular functions on open subsets of affine varieties can be obtained with the help
of a localisation procedure:

4.2.1 Localization, local rings, DVR

Definition 4.14. Let R be a ring. A subset S ⊂ R is called multiplicative if it is closed under
multiplication and contains 1 . The localization S−1R of R with respect to S is defined as the
set of formal fractions a

b , with a ∈ R and b ∈ S , up to the equivalence relation: a
b = a1

b1
if

(ab1 − a1b)s = 0 for some s ∈ S .
When R has no zero divisors, the natural map a → a

1 is an injective homomorphism of
rings, so that we can think of R as a subset of S−1R . Then S−1R is simply the fractions
with ”restricted denominators”. The set formal fractions form a ring with a usual addition and
multiplication of fractions. Note that if I ⊂ R is an ideal, then S−1I is an ideal in S−1R .

The localisation of a R -module M with respect to the multiplicative subset S ⊂ R is
defined in analogous way. The S−1R -module S−1M is canonically isomorphic to the S−1R -
module S−1R⊗RM ([1, Prop.3.5.]).

Exercise 4.5. Prove that a localization of a Noetherian ring is Noetherian.

Example 4.3. If S = R\{0} and R is an integral domain, then S−1R is just the field of
fractions.

Another important example: let S = {an} , n = 0, 1, 2, . . . , a 6= 0 . The localisation S−1R
is usually denoted by Ra , and can be understood as the ring of polynomials R[a−1] ⊂ Quot(R)
if R has no zero divisors. Such rings play important role in algebraic geometry: they form rings
of regular functions on open affine sets (see section about affine morphisms of algebraic varieties
below). Besides, if R is finitely generated over a field K , then Ra is also finitely generated.

Definition 4.15. Let ℘ ⊂ R be a prime ideal, then S = R\℘ is a multiplicative system.
Then S−1R is denoted R℘ and is called the localization of R at ℘ . The ring R℘ has a very
important property: S−1℘ is its only maximal ideal (every element not in S−1℘ is by definition
invertible, hence S−1℘ contains all other ideals). Such rings have a name:

Rings with just one maximal ideal are called local rings. If R is a local ring and M is its
maximal ideal then the field R/M is called the residue field. Note that if R is a localisation
of a finitely generated ring over an algebraically closed field K at a maximal ideal, then the
residue field is a finite extension over K , i.e. it is K .

Note that the ring R℘ is not finitely generated even if R is finitely generated over K .

Example 4.4. 1. Rational functions in one variable over a field K such that the denomi-
nator does not vanish at 0 ,

2. Formal power series K[[z]] ,

3. Rational functions in two variables such that the denominator does not vanish at (0, 0) .

In all these examples, except the last one, the maximal ideal is principal. Such rings form
the simplest class of local rings.

Definition 4.16. Let K̃ be a field. A subring R ⊂ K̃ is called a discrete valuation ring (DVR
for short) if there is a discrete valuation v on K̃ such that R\{0} = {x ∈ K̃∗|v(x) ≥ 0} . In
particular, K̃ = Quot(R) .

Remark 4.5. Recall that in our lectures we work with fields over K and K -valuations.

Proposition 4.8. The following conditions are equivalent
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1. R is a DVR.

2. R is a local ring which is a Noetherian integral domain and whose maximal ideal is
principal.

Moreover, all ideals of R are principal.

Proof. Let R be a DVR. Then it has the ideal M = {x ∈ R|v(x) > 0} . Note that any element
of R\M is invertible, thus M is a unique maximal ideal. Obviously, M is generated by any
element of valuation one.

To prove the converse statement we need the following lemma.

Lemma 4.3. Let R be a Noetherian integral domain, t ∈ R\R∗ . Then ∩∞i=1(ti) = 0 .

Proof. For contradiction let x 6= 0 be contained in (ti) , for any i ≥ 1 . We write x = tixi ,
then (x) ⊂ (x1) ⊂ (x2) ⊂ . . . is an ascending chain of ideals. Then (xi+1) = (xi) = (txi+1) for
some i . Hence xi+1 = taxi+1 ⇔ xi+1(1 − ta) = 0 , but this implies t ∈ R∗ since xi+1 6= 0
and R is an integral domain, a contradiction.

Let R be a local ring which is a Noetherian integral domain and whose maximal ideal
M = (t) is principal. By lemma above every x ∈ R , x 6= 0 , is in Mi\Mi+1 for some i ≥ 0 .
Then x = tiu , where u ∈ R must be a unit. Define v(x) = i . If y = tju′ with u′ ∈ R∗ , then
xy = ti+juu′ , hence v(xy) = v(x) + v(y) . Suppose that i ≤ j , then x + y = ti(u + tj−iu′) ,
hence v(x+ y) ≥ v(x) = min{v(x), v(y)} . We now can extend v to the field of fractions K̃ by
the formula v(x/y) = v(x)− v(y) . The remaining properties are clear.

Now let I be a non-zero ideal of R . Let s be the infinum of v on the ideal I ⊂ R ,
then there exists x ∈ I such that v(x) = s . Then Ms = (x) ⊂ I . On the other hand,
v(I\{0}) ⊂ {s, s + 1, . . .} , and Ms\{0} = {x ∈ K̃∗|v(x) ≥ s} , hence I ⊂ Ms . Combining all
together we obtain I =Ms .

Exercise 4.6. Prove that a DVR is normal (i.e. integrally closed in its field of fractions).

4.2.2 Morphisms of affine varieties

A morphism of affine varieties X → Y , X ⊂ An
k , Y ⊂ Am

k , is given by a function representable
by m polynomials in n variables (thus affine varieties form a category). The varieties X and Y
are called isomorphic if there are morphisms f : X → Y and g : Y → X such that fg and gf
are identities. The following proposition tells that the category of affine varieties is equivalent
to the category of finitely generated integral domains over k .

Proposition 4.9. Let X ⊂ An
k and Y ⊂ Am

k be affine algebraic varieties.

1. A morphism f : X → Y defines a homomorphism of k -algebras f∗ : k[Y ] → k[X] via
the composition of polynomials.

2. Any homomorphism of k -algebras ϕ : k[Y ] → k[X] is of the form ϕ = f∗ for a unique
morphism f : X → Y .

3. f : X → Y is an isomorphism of affine varieties if and only if f∗ : k[Y ] → k[X] is an
isomorphism of k -algebras.

25



Proof. 1) follows from the fact that the composition of polynomials is a polynomial.
2) Let x1, . . . , xn be the coordinates on X , and t1, . . . , tm be the coordinates on Y . Let

Φ be the composition of the following homomorphisms of rings:

k[t1, . . . , tm]→ k[Y ] = k[t1, . . . , tm]/I(Y )→ k[X] = k[x1, . . . , xn]/I(X)

Let fi = Φ(ti), i = 1, . . . ,m . The polynomial map f = (f1, . . . , fm) maps X to Am
k . Let

F (t1, . . . , tm) be a polynomial. Since we consider homomorphisms of rings we have

F (f1, . . . , fm) = F (Φ(t1), . . . ,Φ(tm)) = Φ(F (t1, . . . , tm)).

If F ∈ I(Y ) , then Φ(F ) = 0 . Hence all the polynomials from I(Y ) vanish on f(X) , that is,
f(X) ⊂ Z(I(Y )) = Y .

Finally, f∗ = ϕ , since these homomorphisms take the same values on the generators ti of
the ring k[Y ] .

3) follows from (1) and (2).

Definition 4.17. A rational function f ∈ k(X) is called regular at a point P of X if f = g/h ,
where g, h ∈ k[X] and h(P ) 6= 0 . A function is regular on an open set U ⊂ X if it is regular
at every point of U .

The ring of regular functions on an open subset U ⊂ X is denoted by k[U ] . Since k[X] ⊂
k[U ] ⊂ k(X) , the fraction field of k[U ] is k(X) . To a rational function f ∈ k(X) one associates
”the ideal of denominators” Df ⊂ k[X] consisting of regular functions h such that hf ∈ k[X]
(check this is an ideal!). The set of all points P where f is regular is X\Z(Df ) . Indeed, we can
write f = g/h , g, h ∈ k[X] , h(P ) 6= 0 , if and only if P /∈ Z(Df ) . An immediate corollary of
the Nullstellensatz says that if I ⊂ k[X] is an ideal, and f ∈ k[X] vanishes at all the common
zeros of I in X , then fs ∈ I for some s > 0 . (Apply the Nullstellensatz to the pre-image of
I in k[x1, . . . , xn] under the natural surjective map.) This is a little more general form of the
Nullstellensatz.

It can be shown that the open subsets of an affine variety X of the form h 6= 0 , h ∈ k[X] ,
form a base of Zariski topology on X . The following lemma gives a connection of these open
subsets with the localised ring k[X]h .

Lemma 4.4. Let X be an affine variety. The subset of k(X) consisting of functions regular
at all the points of X is k[X] . A function is regular on the open subset given by h 6= 0 , for
h ∈ k[X] , if and only if f ∈ k[X]h , in other words, if f = g/hs for some g ∈ k[X] and s > 0 .

Proof. Let f be such a function. Then Z(Df ) = ∅ . By corollary 4.5 Df must be the whole
ring, hence contains 1 , hence f ∈ k[X] . This proves the fist statement. To prove the second
statement we note that Z(Df ) is contained in the closed set given by h = 0 . By Nullstellensatz
if h vanishes on Z(Df ) , then a power of h is in Df .

At last, for each point P ∈ X there is a notion of a stalk (cf. also §3 of lectures by Wei-Ping
Li):

Definition 4.18. The stalk OX,P of the ring of regular functions on the variety X at point
P is the set of pairs (U, f) , where U is a (Zariski) open subset of X , containing P and f is
a regular function on U . Two pairs are said to be equivalent if f = g on U ∩ V .

Exercise 4.7. Prove that OX,P is a local ring isomorphic to the ring k[X]℘ , where ℘ is the
maximal ideal corresponding to P by the corollary from Nullstellensatz.
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4.3 From algebraic geometry to complex geometry: smooth and singular
points of algebraic varieties

If K = C a natural question arises: when an algebraic variety form a complex manifold? The
answer is simple: when algebraic variety is smooth, i.e. all its points are smooth points:

Definition 4.19. Let X ⊂ An
K is an affine variety and suppose that the ideal of X is generated

by polynomials f1, . . . , fm ∈ K[X1, . . . , Xn] . Let P = (a1, . . . , an) be a point of X . The variety
X is called non-simgular or smooth at P ∈ X if the rank of the matrix (∂fi/∂xj)(P ) is equal
to n − r , where r is the dimension of X . X is non-singular or smooth if it is smooth at all
its points.

Definition 4.20. A Noetherian local ring R with maximal ideal M and residue field K is
regular if dimR = dimK(M/M2) .

Theorem 4.8. Let X ⊂ An
K be an affine variety. It is smooth at P ∈ X if and only if the

local ring OX,P (' k[X]℘ ) is regular.

Proof. Let P = (a1, . . . , an) be coordinates of P in An
K and let ℘ = (X1 − a1, . . . , Xn − an)

be the corresponding maximal ideal in A = K[X1, . . . , Xn] . Define a linear map θ : A → Kn

by setting

θ(f) =

〈
∂f

∂X1
(P ), . . . ,

∂f

∂Xn
(P )

〉
, f ∈ A.

Clearly, the elements θ(xi− ai) , i = 1, . . . , n form a basis in Kn and θ(℘2) = 0 . Therefore, θ
induces an isomorphism θ′ : ℘/℘2 ' Kn .

Let I = I(X) and f1, . . . , ft be its generators. Then the rank of the jacobian matrix J =
(∂fi/∂Xi)(P )) is equal to the dimension of the subspace θ(I) and (since θ′ is an isomorphism)
to the dimension of the subspace (I+℘2)/℘2 in ℘/℘2 . On the other hand, the local ring OX,P
is isomorphic to (A/I)℘ . Therefore, if M is the maximal ideal of OX,P , then we have an
isomorphism

M/M2 ' ℘/(I + ℘2).

Calculating the dimensions of vector spaces we get the equality

dimM/M2 + rk J = n

Now assume dimY = r . Then the local ring also OX,P has dimension r (as dimOX,P = htM ,
OX,P ' k[X]℘ , k[X]℘/M ' k[X]/℘ ' K and ht℘ + dimK = dimA = n by proposition
4.3). Therefore, OX,P is regular iff dimKM/M2 = r . But this is equivalent to the equality
rk J = n− r , the definition of a smooth point P .

Remark 4.6. If X is a smooth variety, it can be shown that locally I(X) is generated by n−r
functions (try to show it!). Then by the implicit function theorem X is a complex submanifold
in An

K , i.e. X is a complex manifold.

5 Affine spectral pair and their analytic determination

Now we can define the affine spectral pair. It consists of the affine spectral curve and a spectral
sheaf. Algebraic curves entered for the first time into the theory of commutative subrings of
D in the works of Burchnall and Chaundy [5, 6] and in a greater generality in the works of
Krichever [13, 14]. Main references for this section (concerning the results about commutative
subrings in D ) are the papers [19, Section 2] and [29], cf. also [4, Section 1]. Main references
concerning results from algebraic geometry are standard books mentioned in section 4.

Before we’ll define the notion of a sheaf, let’s study basic properties of the spectral module.
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Definition 5.1. The rank of the spectral sheaf is the dimension of its localisation at the zero
ideal (0) of B :

rk(F ) = dimQuot(B) F(0) = dimQuot(B) F⊗B Quot(B).

Theorem 5.1. Let B ⊂ D be a commutative subring of rank r . Then the spectral module F
is finitely generated and torsion free B -module of rank r .

Proof. Since r divides ord(P ) for any P ∈ B , it is easy to see that the elements 1, ∂, . . . , ∂r−1

of F are linearly independent over B . Let F ◦ := 〈1, ∂, . . . , ∂r−1〉B ⊂ F . It is sufficient to prove
that the quotient F/F ◦ is finite dimensional over K . Let Σ :=

{
d ∈ Z+

∣∣ there existsP ∈
B with ord(P ) = d

}
. Obviously, Σ is a sub–semi–group of rZ+ (as in proposition 4.1).

Moreover, one can find l ∈ N such that for all m ≥ l there exists some element Pm ∈ B such
that ord(Pm) = mr . One can easily prove that F/F ◦ is spanned over K by the classes of
1, ∂, . . . , ∂lr, hence F is finitely generated.

Now note: F ·Quot(B) is torsion free over Quot(B) and there is an obvious embedding

(Quot(B))⊕r ↪→ F ·Quot(B), (w1, . . . , wr) 7→ w1 · 1 + . . .+ wr · ∂r1 .

Exercise 5.1. Show that F ·Quot(B) = F ⊗B Quot(B) ' (Quot(B))⊕r .

With every B -module we can associate a ”semi-geometric object”: the spectral sheaf.

Definition 5.2. A sheaf on algebraic variety (or more generally, on a topological space) consists
of

a) an abelian group (or a ring or a module) F(U) (its elements are called sections of the
sheaf over U ) for any open subset U ⊂ X ,

b) a homomorphism of abelian groups (rings, modules) ρU,V : F(U)→ F(V ) (called restric-
tion maps) for any open V ⊂ U ⊂ X such that

1. F(∅) = 0

2. ρU,U = id

3. if W ⊂ V ⊂ U , then ρU,W = ρV,W ◦ ρU,V

4. if U = ∪iVi and s ∈ F(U) is such that s|Vi = 0 for any i , then s = 0

5. if for any i there are given sections si ∈ F(Vi) such that ρVi,Vi∩Vj (si) = ρVj ,Vi∩Vj (sj)
for any i, j , then there exists a section s ∈ F(U) (which is unique by item 4) such that
ρU,Vi(s) = si for any i .

A morphism of sheaves is a collection of groups (rings, modules) homomorphisms F(U) →
F ′(U) compatible with the restriction maps.

Example 5.1. 1) If we set F(U) = K[U ] for any open U of an algebraic variety X , we get a
sheaf of rings called the structure sheaf and denoted by OX .

2) If F(U) is a OX(U) -module for any open U of a variety X and the maps ρU,V are
compatible with the module structure, then F is called a sheaf of OX -modules.

For a sheaf we can define the notion of a stalk analogous to the notion of a stalk of (a sheaf)
of regular functions:

FX,p = {(f, U)| f ∈ F(U), U -open, p ∈ U}/ ∼,

where two pairs are equivalent (f, U) ∼ (g, V ) , if there exists an open subset p ∈ W ⊂ U ∩ V
such that ρU,W (f) = ρU,W (g) .

The spectral sheaf F is a sheaf of OX -modules. The standard construction of a sheaf
associated with module is as follows:
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Definition 5.3. Let F be a B -module, where B = K[X] , X — affine variety. Construct the
associated sheaf of OX -modules F∼ as follows:

F∼(U) = {set of maps s : U → qP∈UFP s.t. s(P ) ∈ FP ∀P ∈ U and ∀P ∈ U
∃V ⊂ U , V 3 P and ∃f ∈ F , b ∈ B s.t. s(q) = f/b ∈ Fq and b /∈ q ∀q ∈ V } (6)

with the obvious module structure (componentwise multiplication) on the maps.
A sheaf F is called coherent if there is a covering X = ∪iUi by affine open subsets such

that F(Ui) is a finitely generated OX(Ui) -module.
The sheaf F∼ associated to the spectral module F is called the spectral sheaf. This sheaf

is coherent.

Note that F∼ is a torsion free sheaf, i.e. for any U F∼(U) is a torsion free OX(U) = K[U ] -
module (i.e. for any 0 6= m ∈ F∼(U) and for any 0 6= a ∈ K[U ] ma 6= 0 ). In particular, FX,p
is a torsion free OX,p -module.

Exercise 5.2. Check that modules F∼(U) with usual restriction maps form a sheaf of OX -
modules.

The following properties can be derived easily from definition:

Proposition 5.1. 1. F∼ is a sheaf of OX -modules;

2. for any point p ∈ X we have (F∼)X,p ' Fp ;

3. for any b ∈ B we have F∼(Ub) ' Fb , in particular, F∼(X) ' F ;

Definition 5.4. The sheaf F is locally free, if there exists a covering X = ∪iUi such that F(Ui)
is a free OX(Ui) -module (in particular, for any point p ∈ X FX,p is a free OX,p -module, i.e.
FX,p ' O⊕...X,p ).

If the sheaf is coherent (as we’ll consider here), then these free modules are of finite rank.

We’ll need one more fact from commutative algebra:

Proposition 5.2. A torsion free finitely generated module over a Noetherian regular local ring
of dimension one (i.e. over an DVR) is free.

Proof. Let m1, . . . ,ms be a minimal set of generators of a module M over a ring A from
proposition. If M is not free, there is a relation a1m1 + . . .+asms = 0 for some a1, . . . , as ∈ A ,
not all of them are zero. If one of elements ai is a unit, then mi belongs to a submodule
generated by all other mj , i.e. m1, . . . ,ms is not a minimal set of generators. If there are no
units, all elements ai belong to the maximal ideal. Since A is a local ring, this ideal is principal,
i.e. for any i we have ai = ta′i , where t is a generator of the maximal ideal, a′i ∈ A . Then
a1m1 + . . . + asms = t(a′1m1 + . . . + a′sms) = 0 , and, since M is torsion free, we must have
a′1m1 + . . . + a′sms = 0 . Repeating our arguments again, we will come to a relation with a
unit as one of its coefficients, a contradiction (by lemma 4.3 we will need only finite number of
repetitions).

Remark 5.1. We would like to emphasize that the spectral sheaf is not, in general, locally free.
It is locally free only over a smooth locus of the spectral curve. On the other hand, locally free
sheaves are closely related to geometric objects — vector bundles, see the next section.
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5.1 Locally free sheaves and vector bundles

In this subsection we would like to explain the relation between locally free sheaves and vector
bundles over algebraic varieties (cf also lectures by Wei-Ping Li at this summer school). Name-
ly, the isomorphism classes of locally free sheaves are in one to one correspondence with the
isomorphism classes of vector bundles, i.e. we can ”identify” them.

Definition 5.5. Let X be an algebraic variety. A vector bundle of rank n over X is a variety
Y together with a morphism f : Y → X and with the following additional structure: there
is an open covering X = ∪iUi and isomorphisms ψi : f−1(Ui) → An

K × Ui such that for any
i, j and any open affine subset V = Spec(A) ⊂ Ui ∩ Uj the automorphism ψ = ψj ◦ ψ−1

i of
the space An

K × V = SpecA[x1, . . . , xn] is given by a linear automorphism θ of the algebra
A[x1, . . . , xn] , i.e. θ(a) = a for any a ∈ A and θ(xi) =

∑
aijxj , aij ∈ A .

An isomorphism g : (Y, f, {Ui}, {ψi}) → (Y ′, f ′, {U ′i}, {ψ′i}) of vector bundles of rank n is
an isomorphism g : Y → Y ′ such that f = f ′ ◦ g and Y, f together with the covering of X
consisting of all open Ui , U ′i and isomorphisms ψi , ψ′i ◦ g also define a structure of a vector
bundle on Y .

Construction. Let F be a locally free sheaf of rank r and let {Ui} be a covering X = ∪iUi
such that F(Ui) ' OX(Ui)

⊕r . Consider the symmetric algebra S(F(Ui)) = (⊕n≥0F(Ui)⊗OX(Ui)

. . .⊗OX(Ui)F(Ui))/(x⊗y−y×x) — this is an OX(Ui) -algebra. If we choose a basis {x1, . . . , xn}
of F(Ui) over OX(Ui) , then there is a natural isomorphism

S(F(Ui)) ' OX(Ui)[x1, . . . , xn].

Obvious homomorphisms of rings f∗Ui : OX(Ui) → S(F(Ui)) define the morphisms of cor-
responding affine varieties fUi : SpecS(F(Ui)) → Ui , and we have natural isomorphisms
ψi : An

K × Ui = SpecOX(Ui)⊗K K[x1, . . . , xn]→ SpecS(F(Ui)) .
Symmetric algebras S(F(Ui)) form a sheaf S(F) of OX -algebras, and varieties Spec(F(Ui))

can be glued together to form a variety E (it can be not affine, but projective or quasiprojective,
see definitions below) with a morphism E → X — a vector bundle V (F) (all other data are
already defined).

Vice versa: If f : E → X is a vector bundle of rank n , then we can construct the sheaf of
sections

U 7→ {the set of sections of f over U , i.e. morphisms s : U → E s.t. f ◦ s = idU }.

Direct check shows that it is a sheaf of OX -modules, called F(E) , which is locally free of rank
n .

Remark 5.2. We would like to emphasize that F(V (F)) ' F∨ = HomOX (F ,OX) (not F
itself!). The sheaf F∨ is defined as

U 7→ HomOX |U (F|U ,OX |U )

(and it is easy to see that HomOX |U (F|U ,OX |U ) are OX(U) -modules). If we are given s ∈
F∨(V ) for an open affine V , then s defines a homomorphism of OV -algebras S(F∨|V )→ OV
which defines a morphism of affine varieties V → f−1(V ) = SpecS(F∨|V ) , i.e. a section of the
vector bundle V (F)→ X . This construction establishes the isomorphism F(V (F)) ' F∨ .

As for vector bundles we can speak about fibres of sheaves: any sheaf on X has a fibre at
p ∈ X : F|p := FX,p ⊗OX,p K , where K ' OX,p/Mp (see definition 4.15). If F = F∼ , where
F is a spectral module, then F|p ' F ⊗B B/p .

30



5.2 Geometric meaning of the spectral sheaf

By the Nullstellensatz all points of the affine variety C0 = Spec(B) are in one to one corre-
spondence with maximal ideals of the ring B . Any maximal ideal q ⊂ B gives a K -algebra
homomorphism χq : B → B/q ' K , and vice versa.

Definition 5.6. Let q ∈ C0 be any point and χ = χq : B → K the corresponding character.
We call the K –vector space

Sol
(
B,χ

)
:=
{
f ∈ K[[x]]

∣∣P ◦ f = χ(P )f for all P ∈ B} (7)

the solution space of the algebra B at the point q . Here, we apply the usual left action ◦ of
D on K[[x]] . Observe, that Sol

(
B,χ

)
has a natural B –module structure: f ∈ Sol

(
B,χ

)
⇒

∀Q ∈ B Q(f) ∈ Sol
(
B,χ

)
.

The geometric meaning of the B –module F is explained by the next result.

Theorem 5.2. The following K –linear map

F
ηχ→ Sol

(
B,χ

)∗
, ∂i 7→

(
f 7→ 1

i!
f (i)(0)

)
(8)

is also B –linear, where Sol
(
B,χ

)∗
= HomK

(
Sol
(
B,χ

)
,K
)

is the vector space dual of the
solution space. Moreover, the induced map

B/ ker(χ)⊗B F
η̄χ→ Sol

(
B,χ

)∗
(9)

is an isomorphism of B –modules.

Proof. First note that the following map

Hom
K

(
F,K

) Φ→ K[[x]], λ 7→
∞∑
p=0

1

p!
λ(∂p)xp (10)

is an isomorphism of left D –modules. Let B
χ→ K be a character, then K = Kχ := B/ ker(χ)

is a left B –module. We obtain a B –linear map

Ψ : Hom
B

(F,Kχ)
I→ Hom

K
(F,K)

Φ→ K[[x]], (11)

where I is the forgetful map. The image of I consists of those K –linear functionals, which are
also B –linear, i.e.

Im(I) =
{
λ ∈ Hom

K
(F,K)

∣∣ λ(P ◦ − ) = χ(P ) · λ(− ) for all P ∈ B
}
.

This implies that Im(Ψ) = Sol(B,χ) . Next, we have a canonical isomorphism of B –modules
(check it!): HomB(F,Kχ) ∼= HomK

(
B/ ker(χ)⊗BF,K

)
. Dualizing again, we get an isomorphism

of vector spaces

Ψ∗ : Sol(B,χ)∗ →
(
B/ ker(χ)⊗B F

)∗∗ ∼= B/ ker(χ)⊗B F.

It remains to observe that Ψ∗ is also B –linear and
(
Ψ∗
)−1

= η̄χ .

Remark 5.3. The isomorphism (9) has the following geometric meaning: if we view F as a
coherent sheaf on C0 = Spec(B) then for any point q ∈ C0 (smooth or singular) we have:

F
∣∣
q
∼= Sol(B,χ)∗ , where B

χ→ K is the character corresponding to the point q . Because of this
fact, F is called spectral module of the algebra B .

Corollary 5.1. Let B ⊂ D be a commutative subring of rank r . Then for any character
B

χ→ K we have: r ≤ dimK

(
Sol(B,χ)

)
<∞. Moreover, dimK

(
Sol(B,χ)

)
≥ r + 1 if only if χ

defines a singular point q ∈ C0 and F∼ is not locally free at q .
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5.3 Analytic determination of Sol(B,χ)

For any character B
χ→ K consider the K –vector space

Sol′
(
B,χ

)
:=
{
f ∈ K[[x]]

∣∣P ◦ f = χ(P )f for all P ∈ B
}
. (12)

Obviously, Sol
(
B,χ

)
⊆ Sol′

(
B,χ

)
. However, the following result is true.

Theorem 5.3. Let B ⊂ D be a commutative subring of rank r and B
χ→ K a character.

Then we have: Sol
(
B,χ

)
= Sol′

(
B,χ

)
and there exists a uniquely determined

Rχ = ∂m + c1∂
m−1 + · · ·+ cm ∈ D̃ (13)

such that ker(Rχ) = Sol′
(
B,χ

)
. Moreover, m ≥ r and m = r if and only if F = F∼ is locally

free at the point q ∈ C0 corresponding to χ .

Proof. Let P = ∂n + a1∂
n−1 + · · · + an ∈ D . Then the dimension of the K –vector space

ker(P ) ⊂ K[[x]] is n and ker(P ) ⊂ K[[x]] . This implies that Sol
(
B,χ

)
= Sol′

(
B,χ

)
.

For any differential operators Q1, . . . , Ql ∈ D̃ we denote by 〈Q1, . . . , Ql〉 ⊆ D̃ the left ideal
generated by these elements. Recall that by theorem 3.1 any left ideal J ⊆ D̃ is principal. Let
P1, . . . , Pn ∈ B be the algebra generators of B (i.e. B = K[P1, . . . , Pn] ) and αi = χ(Pi) for
all 1 ≤ i ≤ n . Then there exists a uniquely determined Rχ ∈ D̃ as in (13) such that〈

P − χ(P )1
∣∣ P ∈ B〉 =

〈
P1 − α1, . . . , Pn − αn

〉
= 〈Rχ〉. (14)

Now let’s use Differential Galois Theory: there is the universal Picard–Vessiot extension
PV (K((x))) of K((x)) , see [23, Section 3.2], where any differential operator of order m from
D̃ has exactly m linearly independent solutions with values in PV (K((x))) ( D̃ acts on
PV (K((x))) ).

Obviously, ker(Rχ) = Sol′
(
B,χ

)
= Sol

(
B,χ

)
viewed as subspaces of PV (K((x))) . More-

over, dimK

(
ker(Rχ)

)
= ord(Rχ) . In virtue of Corollary 5.1, we get the statement about the

order of Rχ .

6 Projective spectral data and classification of commutative
rings of ODOs

In this section we explain how to construct a completion of the affine spectral data and explain
the classification of commutative subrings of ODOs in terms of their projective spectral data.
Main references for this section (concerning results from algebraic geometry) are standard books
mentioned in section 4. Main references concerning results about commutative subrings are
papers [19] and [17].

6.1 Projective algebraic geometry

From the affine spectral data (C0 = Spec(B), F∼) we can get a natural completion (C,F) ,
where C is a projective curve and F is a coherent sheaf on C . In order to explain this we need
to give a short introduction to the projective algebraic geometry.

It studies algebraic subsets in the projective space. The projective space PnK is the set
of equivalence classes of points of An+1

K \{(0, . . . , 0)} , where two points are equivalent if they
differ by a common non-zero multiple. The equivalence class of (x0, x1, . . . , xn) is denoted by
(x0 : x1 : . . . : xn) .

The Zariski topology on the projective space is defined with the help of homogeneous poly-
nomials. The zeros of homogeneous polynomials, denoted also as Z(T ) , are closed projective
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sets. The condition xi 6= 0 defines an open subset of PnK isomorphic to the affine space An
K

with coordinates x0/xi, . . . , xn/xi . We get n+ 1 affine spaces which provide an open covering
of PnK .

For any affine variety there is a ”usual” projective closure defined with the help of homogeni-
sation procedure of polynomials. Let f(T1, . . . , Tn) be a polynomial of degree d . It can be
written as the sum f = f0 + . . . + fd , where fi is a form of degree i . The homogenization of
f is the form of degree d in n+ 1 variables given by

F (T0, T1, . . . , Tn) = F = T d0 f0 + T d1
0 f1 + . . .+ fd.

Now if X ⊂ An
K is a closed affine set, then associating to polynomials in the ideal of X their

homogenizations defines the projective closure of X .
For closed projective sets there is an analogous notion of irreducible set. The irreducible

projective sets are called projective varieties. Quasi-projective varieties are dense open subsets
of projective varieties. Projective varieties are simpler than affine, since they are compact (also
in the usual complex topology if K = C ). Geometry of projective varieties is based on the
commutative algebra of graded rings and homogeneous ideals.

Definition 6.1. A ring R is graded if R = ⊕d≥0Rd , where Rd are abelian groups (called
group of homogeneous elements) and Rd ·Re ⊂ Rd+e .

Analogously, a graded R -module, where R is a graded ring, is a module M = ⊕d≥0Md with
Md ·Re ⊂Md+e .

An ideal J ⊂ R is homogeneous if J = ⊕d≥0(J ∩Rd) .

Example 6.1. The ring of polynomials K[T0, . . . , Tn] can be considered as graded:
K[T0, . . . , Tn] = ⊕d≥0Rd , where Rd is the group of homogeneous polynomials of degree d . An
ideal J ⊂ K[T0, . . . , Tn] is homogeneous if whenever f ∈ J , its homogeneous part fi ∈ J .

Exercise 6.1. Prove the projective Nullstellensatz: if J is a homogeneous ideal, then
(1) Z(J) = ∅ if the radical of J contains the ideal (T0, . . . , Tn) (the maximal ideal of the

zero point in An+1
K ),

(2) if Z(J) 6= ∅ , then I(Z(J)) =
√
J .

For graded rings we have special localisations:
Localisation. If T is a multiplicative system of homogeneous elements in a graded ring R ,

then the localisation with respect to T is

T−1R = {a
b
, a, b ∈ Rd for some d and b ∈ T }.

As in the case of usual localisation T−1R is a ring (but not necessarily graded ring).
Analogously, if M is a graded R -module, then

T−1M = {m
b
, b ∈ Rd , m ∈Md for some d and b ∈ T }.

is a T−1R -module.

Example 6.2. 1) If ℘ ⊂ R , ℘ + R+ = ⊕d>0Rd , then we can take set T to be equal to the
set of homogeneous elements in R\℘ . Denote by R(℘) := T−1R . This is a local ring (analogue
of R℘ for ordinary rings).

2) If a is a homogeneous element from R , let’s take T = {an} , n ≥ 0 and denote by
R(a) = T−1R . This ring is an analogue of the ring Ra in affine geometry. In particular, if
a = Ti in R = K[T0, . . . , Tn] , then R(a) ' K[x1, . . . , xn] .
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For projective varieties we have also a dictionary between geometry and commutative algebra,
which is analogous to the dictionary in affine geometry.

• Projective variety X defined by homogeneous polynomials f1, . . . , fk corresponds to the
graded ring R = K[T0, . . . , Tn]/I , where I = (f1, . . . , fk) is a prime homogeneous ideal.
We’ll denote this variety by ProjR .

• dimX = dimR− 1 = trdegR((0))

• Open subset of X defined by condition h 6= 0 , where h is a homogeneous element,
corresponds to the ring R(h)

• closed subsets are defined by homogeneous radical ideals in R

• Rational functions K(X) on X are defined as elements of the ring R((0)) , and stalks of
regular functions (defined in the same way as for affine varieties) are isomorphic to the
local rings R(℘) .

Note that the graded ring K[T0, . . . , Tn]/I from the list above is finitely generated over K
by the set from its first homogeneous component (by the images of the elements T0, . . . , Tn ).
Clearly, if we have a graded ring which is finitely generated by its first homogeneous component
over its zero component equal to K , then such a ring is isomorphic to the image of the graded
ring K[T0, . . . , Tm] for some m , i.e. to the ring K[T0, . . . , Tm]/J for some homogeneous ideal
J . In particular, this ring determines a projective variety. Now if R is a graded ring finitely
generated over K , there is the following important result from commutative algebra:

Proposition 6.1. [3, Ch.III, § 1.3, prop. 3] Let R be a graded ring finitely generated over
K = R0 . Then there exists d > 0 such that the graded ring R(d) := ⊕i≥0Rid ⊂ R is finitely

generated by its first graded component R
(d)
1 = Rd as a R

(d)
0 = K -algebra.

It can be shown (try to do it or see e.g. [12]) that there is a one to one correspondence
between prime homogeneous ideals of the ring R and prime homogeneous ideals of the ring
R(d) . Thus, if we are given a ring from proposition 6.1, we can find a better ring R(d) and
construct a projective variety, which can be thought of as a projective variety constructed by
R . We’ll denote such a variety also by ProjR .

Morphisms. A rational map f : X 99K PnK is (a not necessarily everywhere defined func-
tion) given by (F0, . . . , Fn) , where Fi ∈ K(X)∗ , defined up to an overall multiple from K(X)∗ .
A rational map f is regular at P ∈ X if there exists a representative (F0, . . . , Fn) , such that all
the Fi s are regular at P , and (F0(P ), . . . , Fn(P )) 6= (0, . . . , 0) . A morphism is an everywhere
regular rational map.

6.2 Projective spectral data and the classification

Now we can construct the completion of the affine spectral pair. Notably, our completion of the
affine spectral curve will be not usual one.

Construction. Given a commutative ring of ODOs B ⊂ D , we consider the Rees ring
B̃ = ⊕d≥0B

drsd ⊂ B[s] .

Exercise 6.2. 1) Show that gr(B) = ⊕d≥0B
(d+1)/B(d) is a subring of a polynomial ring K[z] ,

therefore it is finitely generated.
2) Deduce from 1) that B̃ is also finitely generated over K .

We define the projective spectral curve (a completion of the affine spectral curve C0 ) as
C = Proj B̃ .
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Analogously, we consider the Rees module F̃ = ⊕d≥0F
(dr−1)sd (where the homogeneous

components are defined by the filtration on the spectral module F ), which is a graded torsion
free finitely generated B̃ -module. Such a module defines a coherent sheaf on C :

F(U) := (F̃ )∼(U) = {set of maps s : U → qP∈U F̃(P ) s.t. s(P ) ∈ F̃(P ) ∀P ∈ U and ∀P ∈ U
∃V ⊂ U , V 3 P and ∃f ∈ F̃d, b ∈ (B̃\P )d s.t. s(q) = f/b ∈ F̃(q) and b /∈ q ∀q ∈ V }, (15)

which is called the spectral sheaf (defined on C ).

Exercise 6.3. The discrete valuation −ord on D induces a discrete valuation on B and
Quot(B) . Now consider the ideal (s) in B̃ . Prove that it is prime. Show that B̃((s)) is a DVR
with respect to (− ord) . So, the ideal (s) defines a smooth point p on C .

Note that Us = Spec B̃(s) is just the affine curve C0 . The point p is called the ”divisor at
infinity”.

From the exercise and by proposition 5.2 it follows that F̃((s)) ' O⊕rC,p . Note that our
construction gives this isomorphism explicitly:

Φ : O⊕rC,p → F̃((s)) = Fp (0, . . . , ei, . . . , 0) 7→ ∂i, i = 0, . . . , r − 1.

Moreover, we have an isomorphism π : ÔC,p ' K[[∂−r]] ' K[[zr]] , where ÔC,p is the completion
of the DVR OC,p .

All this can be seen also using the Schur theory: if S is the Schur operator for the ring B ,
then S−1BS ⊂ K((∂−1)) , therefore we can take the localisation of A := S−1BS in K((∂−1)) .
It is easy to see that A ' B and the A -module W = F ◦ S is isomorphic to the B -module
F .

Note that W ⊂ K((∂−1)) too. Thus, the pair (A,W ) is a pair of subspaces in K((∂−1))
such that A is a ring, A ·W ⊂W , where · means the usual multiplication in the ring K((∂−1))
and A ·W means that we consider the subspace of products of any elements from A and W .
Such a pair is called a Schur pair.

Summary. Starting from an elliptic commutative ring B ⊂ D of rank r we have construct-
ed the (projective) spectral data (C, p,F , π,Φ) , where F is a coherent torsion free sheaf of rank
r , π : ÔC,p ' K[[zr]] is an isomorphism (it can be thought of as a choice of a local coordinate
zr at the point p ) and Φ : Fp ' O⊕rC,p is a trivialisation at p .

Two spectral data (C1, p1,F1, π1,Φ1) , (C2, p2,F2, π2,Φ2) are isomorphic if there is an iso-
morphism β of curves such that β(p1) = p2 and an isomorphism ψ : F2 → β∗(F1) of sheaves
on C2 such that the trivialisations πi , Φj are compatible with the homomorphisms of stalks
of structure sheaves and of spectral sheaves (cf. [17, Def. 2.4]).

Given these data we can construct the Schur pair:
Construction (Krichever correspondence): Let (C, p,F , π,Φ) be a spectral datum. Then

we have an embedding

OC(C\p) ↪→ K(C) = QuotOC,p ↪→ Quot ÔC,p ' K((zr)).

Analogously, since F is a torsion free sheaf, we have an embedding

F(C\p) ↪→ F ·K(C) ' K(C)⊕r ↪→ (Quot ÔC,p)⊕r ' K((zr))⊕r ' K((z)), (16)

where the last isomorphism is fixed: the generator (0, . . . , zr, . . . , 0) with zr at i -th place maps
to zi−r and i = 0, . . . , r − 1 . This strange isomorphism is chosen in such a way in order to
make this construction compatible with the Sato theory, see below.

We denote by A the image of OC(C\p) and by W the image of F(C\p) . Note that (A,W )
is a Schur pair in K((z)) .
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Definition 6.2. We define the picture cohomology of the pair (A,W ) as

H0(W ) = W ∩K[[z]], H1(C,W ) =
K((z))

W +K[[z]]
,

H0(A) = A ∩K[[z]], H1(A) =
K((z))

A+K[[z]]
,

Remark 6.1. It can be shown that H i(W ) ' H i(C,F) , H i(A) ' H i(C,OC) (see the lectures
by Wei-Ping Li about cohomologies of sheaves!). To prove it one can use the exact sequence

0→ H0(C,F)→ F(C\p)⊕ F̂p → Quot
(
F̂p
)
→ H1(C,F)→ 0, (17)

(and analogous sequence for OC ), which can be found e.g. in [21, Prop. 3], and the fixed
isomorphism (16).

Combining all constructions together, we obtain

Theorem 6.1. There is a one to one correspondence between elliptic normalised commutative
subrings B ⊂ D and spectral data (C, p,F , π,Φ) with H0(C,F) = H0(W ) = H1(C,F) =
H1(W ) = 0 up to natural isomorphisms.

Proof. In one direction (from B to spectral data) we need only to check that H0(C,F) =
H0(W ) = H1(C,F) = H1(W ) = 0 (where W is the space associated with F !). Careful check
of the constructions shows that W = z−1 ·F ◦S , where S is the Schur operator associated with
B . But then it follows directly from definition 6.2. Note that the choice of the Schur operator
is not unique, but it is not difficult to check that different choices lead to isomorphic data.

In order to construct the ring B from the spectral data, we apply the construction described
above and obtain a Schur pair (A,W ) in the space K((z)) ' K((∂−1)) . Now note that the
right action of D on K[∂] can be naturally extended (just by the same rules) to the right
action of the ring E(K[[x]]) on K((∂−1)) . After that we need to apply the Sato theorems 6.2
and 6.2: if S is the Sato operator, then SAS−1 ⊂ E(K[[x]]) is a subring of the ring of pseudo-
differential operators that stabilises K[∂] , i.e. K[∂] ◦ SAS−1 ⊂ K[∂] . Indeed, W · A ⊂ W ,
therefore ∂−1 ·W ·A ⊂ ∂−1 ·W . Hence

(K[∂]) ◦ SA ⊂ (K[∂]) ◦ S, and K[∂] ◦ SAS−1 ⊂ K[∂].

By proposition 6.2 B := SAS−1 ⊂ D . It is not difficult to see that these constructions establish
a one to one correspondence. For a more detailed proof (which uses however more technical
results from algebraic geometry) we refer to the paper [17].

Remark 6.2. The construction of the spectral data was rewritten several times by different
authors. We used in our lectures an approach offered by Mumford [19] developed further my
Mulase [17] (see also recent review in [4, Section 1]).

First classification of commutative rings of ODOs of any rank was proposed by Krichever
[13], [14] as an algebro-geometric tool in the theory of integrating non-linear soliton systems and
the spectral theory of periodic finite-zone operators (see e.g. review [11]). It used more analytic
spectral data (see the next section) and worked for rings B in ”generic position”, i.e. for rings
whose spectral curve is smooth. The advantage of his approach is the explicit formula for the
common eigenfunction (the Baker-Akhieser function, see presentation) of a rank one subring B .
This formula leads in particular to explicit formulae of commuting operators.

Moreover, as it can be seen from the above constructions, the rank one subrings are classified
essentially (i.e. up to automorphisms x 7→ cx , ∂ 7→ c−1∂ ) only by the geometric data (C, p,F)
(the trivialisations are not important in this case). The higher rank case is much more difficult,
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see comment 7.1. We would like to note that one theorem due to Makar-Limanov says that the
rank of a commutative elliptic subring of the first Weyl algebra must be greater that one. By
the Schur theory, the maximal subring in D containing such a ring will belong again to A1 .
Thus, we see that the most ”easy” coefficient ring is the most difficult to study.

Remark 6.3. If there are two commutative subrings B ⊂ B′ ⊂ D , then on the geometric side
this means that the spectral sheaf F on C is isomorphic to the direct image of the sheaf F ′
on C ′ . This can be derived directly from the constructions above.

6.3 Sato’s theory

The following statements are due to M. Sato [24], cf. [17, Appendix].

Proposition 6.2. If G ⊂ E(K[[x]]) is a subring that stabilises K[∂] , i.e. for each operator
P ∈ E(K[[x]]) K[∂] ◦ P ⊂ K[∂] , then G ⊂ D .

Proof. Obviously, every differential operator P ∈ D preserves K[∂] . In order to prove the
converse, we need the valuation topology on the ring K[[x]] , i.e. the topology induced by the
metric associated with the proper discrete K -valuation v such that v(x) = 1 . Denote by
E := E(K[[x]]) and let P ∈ E . Let

P− =
∞∑
n=1

fn(x)∂−n (18)

be the E≤−1 -part of P (see theorem 3.2). The condition K[∂] ◦ P ⊂ K[∂] implies that D ◦
P mod xE ⊂ D mod xE , i.e.

(QP )− ∈ xE (19)

for every Q ∈ D . Therefore, P− ∈ xE because 1 ◦ P mod xE ∈ D mod xE . Thus
v(fn) ≥ 1 for all n ≥ 1 . So let fm be the coefficient of (18) with the lowest valuation and let
v(fm) = l ≥ 1 . Consider the operator (∂lP )− . Then we have

(∂lP )− = (∂lP−)− = (
∞∑
n=1

∂lfn∂
−n)− = (

∞∑
n=1

l∑
i=0

Cil f
(i)
n ∂−n+l−i)− =

(

∞∑
j=1

l∑
i=0

Cil f
(i)
j−i∂

l−j)− =

∞∑
j=l+1

l∑
i=0

Cil f
(i)
j−i∂

l−j . (20)

Since f
(i)
n (0) = 0 for 0 ≤ i < l , we have

∂l ◦ P =
∞∑

j=l+1

f
(l)
j−l(0)∂l−j =

∞∑
j=1

f
(l)
j (0)∂−j .

But (∂lP )− ∈ xE by (19). Thus f
(l)
n (0) = 0 for all n ≥ 1 . This means that v(fm) > l , a

contradiction with our assumption. Therefore, none of the coefficient fn can have the lowest
valuation. Namely, fn(x) = 0 for all n ≥ 1 , i.e. P is a differential operator.

Theorem 6.2. Let W be a subspace in the space K((z)) ' K((∂−1)) with H0(W ) = H1(W ) =
0 . Then there exists a unique Sato operator, i.e. a zero-th order invertible operator S = 1 +
s1∂
−1 + . . . , such that W = ∂ · (K[∂]) ◦ S .
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Proof. Since H0(W ) = H1(W ) = 0 , we can choose a basis {wn}n≥0 for z ·W in the following

form for every n ≥ 0 (we identify here ∂−1 and z ):

wn = z−n +

∞∑
l=1

anlz
l.

Then the equation

w0 = 1 ◦ S = 1 +
∞∑
l=1

sl(0)zl

determines all the constant terms of the coefficients as sl(0) = a0l , l ≥ 1 . Now let’s assume

that we know s
(i)
l (0) for all l ≥ 1 and 0 ≤ i < n . Note that we have

z−n ◦ S =

∞∑
m=0

n∑
i=0

Cins
(i)
m (0)∂n−m−i = ∂n +

∞∑
l=1

n∑
i=0

Cins
(i)
l−i(0)∂n−l =

∂n +

n−1∑
l=1

l∑
i=0

Cins
(i)
l−i(0)∂n−l +

n−1∑
i=0

Cins
(i)
n−i(0) +

∞∑
l=n+1

n∑
i=0

Cins
(i)
l−i(0)∂n−l =

z−n +
n−1∑
l=1

l∑
i=0

Cins
(i)
l−i(0)z−n+l +

n−1∑
i=0

Cins
(i)
n−i(0) +

∞∑
l=1

n∑
i=0

Cins
(i)
n+l−i(0)zl. (21)

The non-negative order terms of the above expression exactly coincides with

wn +

n−1∑
l=1

l∑
i=0

Cins
(i)
l−i(0)wn−l +

n−1∑
i=0

Cins
(i)
n−iw0,

which contains only known quantities. Therefore, the equation

z−n · S = z−n +

n−1∑
l=1

l∑
i=0

Cins
(i)
l−i(0)z−n+l +

n−1∑
i=0

Cins
(i)
n−i(0) +

∞∑
l=1

n∑
i=0

Cins
(i)
n+l−i(0)zl =

wn +

n−1∑
l=1

l∑
i=0

Cins
(i)
l−i(0)wn−l +

n−1∑
i=0

Cins
(i)
n−iw0 (22)

determines s
(n)
l (0) for all l ≥ 1 . Thus we have obtained sl(x) =

∑∞
n=0

1
n!s

(n)
l (0)xn . Now the

operator S = 1 +
∑∞

l=1 sl(x)∂−l satisfies ∂ ·K[∂] ◦ S = W as required.

7 Efficiency of the classification

7.1 Analytic theory: Baker-Akhieser function

In this subsection we explain the Krichever classification of commutative subrings of ODO’s from
[13, 14], the main ingredient of which is the notion of Baker-Akhieser function. If the spectral
curve is smooth and the rank of the sheaf (which locally free in this case, hence corresponds
to a vector bundle) is one, then there are Krichever explicit formulae for the Baker-Akhieser
functions. This is an important case where algebra, geometry and analysis meet together and
produce beautiful effective results.

Assume the spectral curve C is a smooth curve of genus g (i.e. C is a sphere with g
handles). Then the spectral sheaf F is locally free, i.e. corresponds to a vector bundle. If we
take the sheaf F(p) instead of F , it will have r global sections η1, . . . ηr (cf. the axiomatic
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description of the sheaf F(p) in [4, Th. 1.17]). They are linear dependent at rg points γ1, . . . , γrg
(which form the determinantal divisor on the curve C , i.e. the divisor corresponding to the
determinantal line bundle of F(p) , cf. lectures by Wei-Ping Li, where the connection between
line bundles and divisors was explained):

ηl(γi) =

r−1∑
j=1

αijηj(γi).

The set (γ, α) is called Tyurin parameters. These are ”local coordinates” of the moduli space
of rank r and degree rg vector bundles on C .

Krichever used another form of spectral data to classify commuting ODOs:

{C, p, z, γ1, . . . , γrg, α1, . . . , αrg, ω1(x), . . . , ωr−1(x)}

where z is a local coordinate near p , z(p) = 0 , ωi(x) are some functions.
He showed that these data determines a unique (up to a nonzero constant) Baker-Akhieser

function:

Definition 7.1. A vector Baker–Akhiezer function is a function ψ(x, P ) = (ψ0(x, P ), . . . , ψr−1(x, P )) ,
P ∈ C on the curve C depending on a formal parameter x (which can be thought of as a local
coordinate in some neighbouhood of 0 ∈ C ) which satisfies the following conditions:

1. ψ(x, P ) = (
∑∞

s=0 ξs(x)zs) Ψ0(x, P ) , ξ0 = (1, 0, . . . , 0), d
dxΨ0 = AΨ0,

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0 1

z−1 + ω1(x) ω2(x) ω3(x) . . . ωr−1(x) 0

 ,

2. on C − {p} ψ is meromorphic with the simple poles at γ1, . . . , γrg

3. Resγiψj = αijResγiψr−1.

If we know the BA-function, we can reconstruct the ring B as follows: if f(P ) is meromor-
phic function with the pole in p of order n , then there exist ODO L(f) (note: it can be easily
and effectively constructed!) such that

L(f)ψ(x, P ) = f(P )ψ(x, P ), ordL(f) = rn.

Example 7.1. (i) Let C = CP 1, p = ∞ . Then the Baker–Akhiezer function is ψ = exz
−1

,
and for any f = zn + cn−1z

n−1 + · · ·+ c0 we have

∂nxψ + cn−1∂
n−1
x ψ + · · ·+ c0ψ = fψ.

(ii) If C is an elliptic curve (i.e. it is a torus), C = C/{Λ}, p = 0, then

ψ = e−xζ(z)
σ(z + x)

σ(x)σ(z)
,

where σ and ζ are the Weierstrass elliptic functions. Then for the Wallenberg operators we
have

(∂2
x − 2℘(x))ψ(x, z) = ℘(z)ψ(x, z),(

∂3
x − 3℘(x)∂x −

3

2
℘′(x)

)
ψ(x, z) =

1

2
℘′(z)ψ(x, z).
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7.2 Theta-functions

The explicit formulae of Krichever use special functions, namely the theta-functions. In this
subsection we give a short review of them. The main reference is the book of Mumford [20].

Let U be a complex symmetric matrix of order g with Im(U) positive defined. Set

θ(z, U) =
∑
n∈Zg

exp(πintUn+ 2πintz), z = (z1, . . . , zg)
t ∈ Cg

Then θ is a holomorphic function on Cg and is U -quasi-periodic, i.e. ∀m ∈ Zg

θ(z +m,U) = θ(z, U)

θ(z + Um,U) = exp(−πimtUm− 2πimtz)θ(z, U).

Theta-functions are used, in particular, for the embedding of a complex torus XB = Cg/Zg+
UZg to the projective space. The Weierstrass functions mentioned above can be also represented
with the help of theta-functions. There are formulae for solutions of polynomial equations of
degree greater than four that use theta-functions.

7.3 Krichever’s formulae

If the rank of the bundle is 1, there are explicit formulae for the BA-function in terms of theta-
functions of the Jacobian of the spectral curve.

Take a basis {ai, bi} of H1(C,Z) such that aibj = δij , aiaj = bibj , and choose a basis
{w1, . . . , wg} in H0(C,Ω1

C) s.t.
∫
ai
wj = δij . Then the matrix U = (Uij) , where Uij =

∫
bi
wj ,

is symmetric and Im(U) is positively defined.
The torus Cg/(Zg + UZg) is called the Jacobian Jac(C) of the curve C .
Now fix a differential Ω = d(z−1) + . . . . Set 2πiA0 = (

∫
b1

Ω0, . . . ,
∫
bg

Ω0) . Set

j(P ) = (

∫ P

p
w1, . . . ,

∫ P

p
wg).

The map j is the Abel-Jacobi map j : C → Jac(C) .
By the Riemann theorem there exists a vector ζ ∈ Cg such that θ(j(P ) + ζ, U) has zeros

exactly at the points γ1, . . . , γg (here the function θ is considered as a function on C minus
cycles ai, bj , i, j = 1, . . . g ).

Theorem 7.1 (Krichever’s formula). Let

{C, p, z, γ1, . . . , γrg, α1, . . . , αrg, ω1(x), . . . , ωr−1(x)}

be spectral data as above with C smooth of genus g . Then the Baker-Akhieser function (defined
up to a non-zero constant) is

ψ(x, P ) = exz
−1 θ(j(P ) +A0x+ ζ, U)

θ(j(P ) + ζ, U)
.

Remark 7.1. The BA function ψ of rank one spectral data is equal to S(exp−xz
−1

, where S
is the Sato operator from theorem 6.2. For higher rank data the connection is more complicated,
cf. [18].
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Comment 7.1. The Krichever formulae for the Baker-Akhieser functions exist in a broader
context: in particular, they can be extended in order to define a function on the product Jac(C)×
C . These formulae lead to explicit algebro-geometric solutions of the KP hierarchy and, in
particular, to the explicit solutions of non-linear equations like KdV (Korteweg de Vries equation
from the introduction) or KP (Kadomtsev-Petviashvili). They played an important role in the
solution of the Schottky problem by T. Shiota, see e.g. [20, Appendix], [27] or the short special
course for students [9].

Explicit formulae for the Baker-Akhieser functions exist also in the case when C is a rational
singular curve (and the rank of the spectral sheaf is one), see [31]. In other cases there are no
such formulae.

If the rank of the spectral sheaf is greater than one, there are no general explicit formulae
for any curves. Though there are many explicit examples of higher rank commutative operators
(see the references in the extra reference list), there are still many open questions.
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Arch. der Math. u. Phys. (3) 4, 252–268 (1903)

[31] G. Wilson, Bispectral commutative ordinary differential operators, J. Reine
Angew. Math. 442 (1993), 177–204.

42


