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1. INTRODUCTION

The action of external (magnetic, electric, or opti�
cal) fields on molecules of a nematic liquid crystal
(NLC) leads to the rotation of its director n. For a
mutually perpendicular or parallel orientation of
director n and the external field, the director rotation
has a threshold character (Fréedericksz transition)
[1, 2]. The effect exhibits features of a phase transi�
tion, since the crystal changes its symmetry and cer�
tain critical phenomena are manifested near the
threshold [3–6]. The role of the order parameter can
be played by the angle of NLC director rotation in the
central layer. The Fréedericksz transition usually
exhibits features of a second�order transition, so that
the director rotation angle is a continuous function of
the applied field [2, 3, 7].

The fundamental possibility of a first�order transi�
tion in an NLC under the action of a linearly polarized
light field followed from an analysis performed in [8–
10]. These results showed that a first�order transition
can take place in NLCs with a large anisotropy of
dielectric permittivity. This effect was not observed
experimentally. At the same time, it was shown theo�
retically and confirmed experimentally that first�order
transitions are possible under the combined action of
low�frequency and optical fields. A stabilizing low�
frequency field can lead to a light�induced first�order
transition, while the stabilizing effect of light can lead
to a first�order transition induced by low�frequency
fields [11–16].

Optical studies stimulated more detailed investiga�
tions of the interaction of NLCs with low�frequency
fields. It was predicted [17, 18] and confirmed experi�
mentally [18, 19] that a first�order transition takes

place in a homeotropically oriented NLC under the
action of an electric field applied parallel to the liquid�
crystal (LC) layer. Frisken and Palffy�Muhoray [18,
20] theoretically studied the behavior of NLCs in
combinations of electric and magnetic fields and
showed that, similar to the case of a light field, the sta�
bilizing action of one field can transform the second�
order transition induced by another field into a first�
order transition. The physical reason for the first�
order transitions in all the aforementioned cases was a
reverse effect of deformation of the NLC director field
on the low�frequency electric field or the light field
with extraordinary polarization.

It was also shown [21, 22] that first�order transi�
tions in a circularly polarized light field could be
induced by the energy exchange of extraordinary and
ordinary waves in an NLC with light�induced nonpla�
nar deformation of the director. In this case, the direc�
tor field is nonstationary and exhibits precession
caused by angular momentum transfer from light to
the medium.

In absorbing NLCs, rotation of the director is
related to modification of intermolecular forces upon
absorption of light photons [23–25] rather than to the
action of light on the induced dipoles (as it is in the
aforementioned transparent NLCs). 

First�order transitions under the action of light
beam in the absence of low�frequency fields have been
observed and studied in NLCs containing additives of
absorbing azobenzene compounds [26–30]. As the
power of a light beam with extraordinary polarization
normally incident onto a planar�oriented NLC was
increased to a certain value P1, the director exhibited
jumplike reorientation. During a subsequent decrease

Phase Diagrams of Orientational Transitions
in Absorbing Nematic Liquid Crystals

A. S. Zolot’koa*, V. N. Ochkina, M. P. Smayeva, and S. A. Shvetsova,b

a Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, 141700 Russia

*e�mail: zolotko@lebedev.ru
Received October 2, 2014

Abstract—A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expan�
sion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for
NLCs with additives of conformationally active compounds under the action of optical and low�frequency
electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polar�
ization of the light field, the strength of low�frequency electric field, and a parameter that characterizes the
feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first�
and second�order transitions are determined. The proposed theory agrees with available experimental data.

DOI: 10.1134/S1063776115040196

STATISTICAL, NONLINEAR,
AND SOFT MATTER PHYSICS



906

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 5  2015

ZOLOT’KO et al.

in beam power, the reverse transition to a homoge�
neous state of the director field took place at P2 < P1;
that is, reorientation of the director field was accom�
panied by bistability. The relative width of the bistabil�
ity region, Δ = (P1 – P2)/P1, exceeded by more than an
order of magnitude the values known for the first�
order optical transitions in transparent NLCs in the
presence of an additional field. The application of a
low�frequency electric field or the addition of an ordi�
nary wave changed the order of the transition [26, 29].

The experimental results [26–30] were stipulated
by additional feedback between the director rotation
and optical torque, which appeared under the influ�
ence of the light field on the conformational composi�
tion of azobenzene compounds [31]. The theoretical
description of orientational transitions [26, 29] was
based on the exact solution of the torque balance
equation for the NLC director.

At the same time, in the most studies, the orienta�
tional transitions in NLCs in external fields were the�
oretically described using the expansion of equations
for the field of the NLC director or free energy with
respect to the director rotation angle. For example, in
[9, 13–15, 18–20], these transitions were treated using
the Landau theory of phase transitions [32–34]. This
approach yielded an adequate and clear description of
the main properties of orientational transitions; in
particular, it established conditions for achieving first�
and second�order transitions and gave simple analyti�
cal expressions for the director rotation angle.

This work constructs a theory for orientational
transitions in absorbing NLCs based on expansion of
the torque balance equation with respect to the direc�
tor rotation angle.

2. EQUATION OF DYNAMICS
OF THE NLC DIRECTOR

Let us consider the interaction of a planar�oriented
NLC with a normally incident linearly polarized light
wave (Fig. 1) and introduce a Cartesian coordinate

system with axis x parallel to undisturbed director n0
and axis y perpendicular to the LC layer and parallel to
wave vector k of the light wave. The coordinates of the
NLC director n(r) rotating in the xy plane can be
expressed as

(1)

where ψ(y) is the director rotation angle.
For the incident light with the polarization plane

rotated by angle ϕ relative to the xy plane, the light
field inside the NLC is a superposition of extraordi�
nary and ordinary waves, which can be expressed as
follows:

(2)

where

(3)

is the complex unit vector of light polarization; A0 is
the light field amplitude; ee = ex and eo = ez are the
polarization vectors of the extraordinary and ordinary
wave, respectively; ke and ko are the corresponding
wave vectors; and ω is the light frequency.

The torque related to the modification of intermo�
lecular forces in absorbing NLCs can be expressed as
follows:

(4)

where

(5)

is the optical torque for a transparent (undoped) NLC,
Δε is the optical anisotropy, and η is the torque
enhancement factor relative to that of the transparent
NLC [31].

For NLCs doped with azobenzene compounds, the
enhancement factor η is determined by concentra�
tions ct and cc of the trans and cis isomers in azoben�
zene chromophores:

(6)

where ηt and ηc are the parameters of the LC mixture.
The trans isomers induce a negative torque in the nem�
atic matrix (ηt < 0, the director rotates away from light
field E), and the cis isomers induce a positive torque
(ηc > 0, the director tends to align parallel to light field
E). The light field induces conformational transitions
of isomers and changes their concentrations [31]. In a
sufficiently strong field (where the thermal cis–trans
relaxation can be ignored), cc/ct ~ σt/σc, where σt and
σc are the absorption cross sections of the correspond�
ing isomers in the nematic matrix, which depend on
the geometry of the light wave and the director inter�
action. This dependence is much more strongly man�
ifested for the trans isomer, which has a more elon�
gated shape and is characterized by a higher degree of
ordering in the nematic matrix. As a result, the ratio of
isomer concentrations (and, hence, the torque
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Fig. 1. Geometry of interaction of a light beam and planar
NLC: n0 is the undisturbed director; n is the director
rotated by external fields; ψm is the angle of director rota�
tion in the central NLC layer; L is the LC layer thickness;
E and k are, respectively, the electric field and wave vector
of the light incident onto NLC; ϕ is the angle of rotation of
the polarization plane of the incident light beam relative to
the xy plane; G is the low�frequency electric field strength;
and H is a constant magnetic field.
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enhancement factor) also depends on the geometry of
interaction of the light wave and NLC director.

According to the expression obtained in [31] for the
torque enhancement factor η in an NLC under the
action of an incident linearly polarized light wave, the
influence of the geometry of interaction is manifested
as the dependence of η on the variable sin2Ψ = sin2ψ +
sin2ϕcos2ψ (where Ψ is the angle between the polariza�
tion vector of light incident on the NLC and the direc�
tor n). By expanding the function η(sin2Ψ) in powers
of sin2Ψ, we can write the torque enhancement factor
in the following form:

(7)

where η0 and m0 are quantities dependent on the con�
centrations of azochromophores, ηt and ηc values, and
parameters characterizing the absorption cross sec�
tions of isomers.

Using Eqs. (4), (5), and (7), we can express the
total optical torque Γopt = Γabs + Γtr as follows:

(8)

where m = m0η0/(1 + η0). For azo dopants leading to
the first�order transition, we have 1 + η0 < 0 and the
NLC director under the action of light rotates away
from the light field direction. Parameter m (deter�
mined by the properties of the LC system) character�
izes the depth of additional feedback between rotation
of the director and optical torque Γopt. The greater m,
the higher the rate of torque increase during rotation
of the director.

Let an additional low�frequency electric field G =
eyG0sinΩt perpendicular to the LC layer (where G0 and
Ω are the field amplitude and frequency, respectively)
and constant magnetic field H = exH parallel to the LC
layer (see Fig. 1) act on the NLC together with the
light field. The torques produced by these fields can be
expressed as

where Δεlf is the anisotropy of the dielectric permittiv�
ity (at frequency Ω) and Δμ is the anisotropy of mag�
netic permeability. The NLC director is also influ�
enced by the torques of elastic forces, Γelast = K[n × Δn]
(where K is the Frank elastic constant), and viscous
forces, Γvisc = –γ1[n × ∂n/∂t] (where γ1 is the viscosity
coefficient).

By equating the sum of torques Γopt, Γel, Γmagn,
Γelast, and Γvisc to zero and rejecting rapidly oscillating
terms proportional to exp[±i(ke – ko)y], we obtain 
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where ξ = πy/L and τ = t/τ0 are the dimensionless
coordinate and time, respectively; τ0 = γ1L

2/π2K; and

δe = |A0|2cos2ϕ/|Ae, th|2 and δH = H2/  are the squared
strength of the extraordinary wave field and magnetic
field, respectively, normalized to the corresponding
threshold values

above which reorientation of the director begins. In
the case of positive anisotropy Δεlf of the permittivity,

the value of δG = /  (where  = 8π3K/|Δεlf|L2

has the meaning of the squared threshold field) can be

represented as δG = U2/ , where U is the voltage
applied to the NLC and Uth is the Fréedericksz thresh�

old voltage. For Δεlf < 0, we have δG = – /  and
in this case the low�frequency field stabilizes the
undisturbed director field.

By expanding the right�hand side of Eq. (9) into a
power series in ψ up to ψ5, approximating the longitu�
dinal distribution of the director ψ(ξ, τ) with its lower
spatial harmonic as ψ(ξ, τ) = ψm(τ)sinξ (where ψm is
the director rotation angle in the central plane of the
LC�layer y = L/2), and using the Galerkin method, we
can transform the equation in partial derivatives (9)
into an ordinary differential equation:

(10)

where

(11)

(12)

(13)

Note that Eq. (10) can also be written in the follow�
ing form:

(14)

where

Equation (14) is analogous to the equation that
describes the order parameter dynamics in the Landau
theory [33, 35], although function F is not a thermo�
dynamic potential. Nevertheless, the formal analogy
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of Eq. (14) to the equation of Landau theory allows us
to use the latter for determining the order parameter
and the type of transition. These quantities can also be
determined directly from Eq. (10).

3. LIGHT�INDUCED FIRST�ORDER 
TRANSITION IN AN NLC

Let us first consider transitions under the action of
an extraordinary light wave (ϕ = 0) in the absence of
low�frequency electric and magnetic fields (δG, δH = 0).
The transition threshold determined by the condition
a(δe) = 0 [32, 34] is δe, 1 = 1, for which b = (2 – 3m)/4.
If b > 0 (m < 2/3), then δe > 1 corresponds to a second�
order transition.

For b < 0 (m > 2/3), the threshold at δe = δe, 1 = 1
corresponds to a jumplike transition from a homoge�
neous state with ψm = 0 (point A in Fig. 2) to a
deformed state with the amplitude

(15)

(point B). Solution (15) (curve CD in Fig. 2) exists
provided that b2 – 4ac ≥ 0. The condition

(16)

or in the given case

(17)

determines the lower boundary of the bistability
region. As δe decreases to δe, 2, the system exhibits a
reverse jumplike transition from a deformed state
(point D) to a homogeneous state (point E). The width
of the bistability region is Δ = 1 – δe, 2. In addition to
solution (15), there exists another solution

ψm 1,
2 b– b2 4ac–+

2c
�������������������������������=

b2 4ac– 0=

δe δe 2,
8 15m 2–( )

27m2 84m 4–+
�������������������������������= =

which is depicted by the dashed line in Fig. 2, but this
solution is unstable.

The value of m = 4.35, for which the plot of ψm(δe)
was constructed in Fig. 2, corresponds to a width of
Δ = 0.42 of the bistability region for the first�order
transition observed in a ZhKM�1277 nematic matrix
doped with a 0.15% G2 (second�generation) den�
drimer [26].

The results are graphically illustrated by the (δe, m)
phase diagram in Fig. 3a, where curves 1 and 2 corre�
spond to the direct (δe, 1 = 1) and reverse (Eq. (17))
transitions, respectively. The director field is homoge�
neous in region I, homogeneous or deformed
(depending on the prehistory) in region II, and
deformed in region III. Tricritical point T, in which
the type of the orientational transition exhibits a
change, is determined by the conditions

(18)

and has the coordinates (δe, T = 1, mT = 2/3). Line AA'
corresponds to m = 4.35 determined from experimen�
tal data [26], for which the curve ψm(δe) is plotted in
Fig. 2. The length of segment A2A1 is equal to a width
of the bistability region Δ = 0.42.

It should be noted that m determined [26] from the
exact solution to the torque balance equation for the
experimental value of Δ = 0.42 was 3.6. The difference
from m = 4.35 obtained in this work from Eq. (17) is
related to the use of expansion with respect to angle ψ.

The values of the width of the bistability region for
orientational transitions in the extraordinary light
wave can vary significantly for different LC systems.
For example, the value for an NLC doped with the G3
(third�generation) dendrimer is Δ = 0.22 [27], which
corresponds to m =2.32. For an NLC doped with
comblike homopolymers having different numbers of
side fragments (14 and 29) [28], the related values were
Δ = 0.23 and 0.05 [28], which correspond to m = 2.40
and 1.16, respectively. A very large width Δ = 0.77 of
the bistability region observed in [30] for an NLC
doped with a statistical comblike copolymer corre�
sponded to m = 16.1.

4. ABSORBING NLCs IN A COMBINATION 
OF OPTICAL AND LOW�FREQUENCY 

ELECTRIC FIELDS

In the presence of a low�frequency electric field
(δH = 0, δG ≠ 0) for extraordinary light wave (ϕ = 0),
the coordinates of a tricritical point on the (δe, m)
phase diagram determined using Eqs. (11)–(13) and
(18) are as follows:

(19)
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Fig. 2. Plot of the director rotation angle ψm vs. dimen�
sionless intensity δe of the light beam for m = 4.35 (corre�
sponding to the width Δ = 0.42 of the bistability region
[26]): (OA, DC) stable branches; (AD) unstable branch;
arrows AB and DE indicate direct and reverse transitions.
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As can be seen from these formulas, the effect of a low�
frequency electric field on the light�induced transition
depends on the sign of δG, i.e., on the sign of the
anisotropy of dielectric permittivity Δεlf. For Δεlf > 0
(δG > 0), the low�frequency field reduces the transition
threshold and increases the m value necessary for the
first�order transition. In contrast, for Δεlf < 0 (δG < 0),
the threshold increases so that the first�order transi�
tion takes place at a smaller m. Expressions (11)–(13)
show that a constant magnetic field exhibits a stabiliz�
ing influence on the light�induced transition, which is
analogous to the effect of electric field in the case of

Δεlf < 0. Note that, as was pointed out in the Introduc�
tion, an analogous effect—the improvement of condi�
tions for the first�order transition in transparent
NLCs—was observed in the presence of additional
stabilizing fields.

The effect of a low�frequency electric field on the
light�induced transition is also manifested in the (δe, m)
phase diagram in Fig. 3b for δG = 0.5 and –1.0. Here,
the curves of direct transitions (1 and 3) determined
from the condition for a(δe, δG) = 0 are represented by
vertical lines δe, 1 = 1 – δG. The curves of reverse transi�
tions (2 and 4) were calculated using the relation

(20)

which follows from condition (16).
Figure 4 shows a phase diagram on the (δe, δG)

plane for the experimental conditions [26] (Δεlf > 0),
which is plotted using the relation δe, 1 + δG, 1 = 1 and
a solution of Eq. (16):

(21)

The coordinates of a tricritical point on this phase dia�
gram are expressed by the following formulas:

(22)

For the conditions studied in [26], these formulas
yield δe, T = 0.15 and δG, T = 0.85.

For δG < δG,T, the light�induced transition is of the
first order (line AA' in Fig. 4). For δG > δG,T a second�

order transition takes place (line BB'). In experiments
reported in [26], the Fréedericksz threshold voltage
was (Uth = 0.95 V) and the first�order transition took
place at U = 0 and U = 0.5 V (δG = 0 and δG = 0.28,
respectively), while the second�order transition took
place at U = 0.7 V (δG = 0.54). The latter value is sig�
nificantly smaller than δG, T = 0.85, which is probably
related to the existence of a pretilt of the director on
the LC cell substrates. The pretilt leads to rotation of
the director in a subthreshold region, which increases
the influence of a low�frequency field and results in a
more rapid change in the transition order.

The (δe, δG) phase diagram in Fig. 4 also illustrates
the case of transitions caused by the variation of a low�
frequency field in the presence of illumination (vertical
lines CC ', DD', and EE '). As can be seen, an increase in
intensity of the light field must lead sequentially to a
second�order transition (CC ', δe < δe,T), first�order tran�
sition (DD', δe, T < δe < δe, 2), and irreversible first�order
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Fig. 3. Phase diagram of orientational transitions plotted in (δe, m) coordinates at δH = 0, ϕ = 0 and δG = 0 (a) and δG = 0.5 and
–1.0 (b). Curves 1 (a) and 1, 3 (b) correspond to the threshold intensity for transitions into a disturbed state; curves 2 (a) and 2,
4 (b) correspond to the threshold intensity for reverse transitions; T, T1, and T2 are tricritical points. Region I corresponds only
to undisturbed state of the NLC director, region II admits the existence of both disturbed and undisturbed states, and region III
corresponds only to disturbed states of the director field.
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transition (EE ', δe, 2 < δe). In the latter case, an increase
in the low�frequency field leads to a jumplike transition
from the homogeneous to the deformed state at the
point of intersection of lines EE' and 1. The reverse
transition to a homogeneous state does not take place
even if δG decreases to zero (and the deformation is
maintained by the light field). All these types of transi�
tions have been experimentally observed [26] at a light
beam power of P = 10 mW (δe = 0.27), P = 22.5 and
30 mW (δe = 0.61 and 0.81), and P = 32.5 mW (δ =
0.88), respectively. However, the light beam powers at
which these changes in transition regimes took place are
higher than the theoretically calculated values. These
discrepancies are apparently explained by the same fac�
tors as those in the case of light�induced transitions.

5. EFFECT OF POLARIZATION
ON THE LIGHT�INDUCED ORIENTATIONAL 

TRANSITION IN ABSORBING NLCs

Let us consider the influence of the light polariza�
tion on the states of NLC, assuming for the sake of
simplicity that low�frequency electric and magnetic
fields are absent. Then, the coordinates of a tricritical
point are determined by the following relations:

(23)

The thresholds of the direct and reverse transitions are
given by the formulas

(24)
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As the angle of rotation of the director ϕ increases up
to the ϕT value, the first�order transition caused by the
variation of δe changes to the second�order transition.
This change is related to weakening of the feedback
between director rotation angle ψ and optical torque
Γopt with increasing ϕ, which follows directly from
Eq. (8). At δe = δe,T, there is a change in the order of a
transition induced by the variation of angle ϕ.

Figure 5 presents the phase diagram of light�
induced orientational transitions plotted in (δe, ϕ)
coordinates for m = 3.95 in comparison to experimen�
tal points for the thresholds of first� and second�order

transitions [29]. The m value was determined by aver�
aging over values calculated using Eq. (24) for the
experimental points of direct transitions at various
ϕ ≠ 0 and the width of bistability region at ϕ = 0. The
data in Fig. 5 show good coincidence of the theory and
experiment.

6. CONCLUSIONS

We have constructed a theory of orientational tran�
sitions in NLCs doped with light�absorbing confor�
mationally active additives, which employs the expan�
sion of torques acting on the NLC director with

Fig. 4. Phase diagram of orientational transitions plotted
in (δe, δG) coordinates for (1) direct transitions at a thresh�
old power from the homogeneous to deformed state and
(2) reverse first order transitions; T is the tricritical point;
lines AA', BB', CC', DD', an EE' correspond to various
light�induced and low�frequency electric�field�induced
transitions.
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Fig. 5. Phase diagram of light�induced orientational tran�
sitions plotted in (δe, ϕ) coordinates at m = 3.95 for (1)
direct and (2) reverse transitions in comparison to experi�
mental points for (�) direct and (�) reverse first�order
transitions; point (+) refers to a second�order transition
[29]. T is the tricritical point.

δG

0.80
δe

0.2

B

0.40.2

A

C D E

1

0.6

1.0

0.8

0.4

2

C ' D ' E '

B '

A '

T

0.6 1.0



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 120  No. 5  2015

PHASE DIAGRAMS OF ORIENTATIONAL TRANSITIONS 911

respect to the angle of rotation. Transitions induced by
variation of the intensity of an extraordinary light
wave, light polarization, and low�frequency electric
and magnetic fields have been described.

Phase diagrams of NLCs have been calculated as
functions of the intensity and polarization of the light
field, low�frequency electric field strength, and
parameter m that characterizes additional feedback
between the NLC director rotation and optical torque.
Conditions for the occurrence of first� and second�
order transitions have been considered. The results of
calculations adequately describe the first� and second�
order transitions, including a change in the transition
type upon application of an additional fields.

NLCs under the action of light and low�frequency
electric and magnetic fields provide a good experi�
mental model for studying fluctuational phenomena
during first� and second�order phase transitions,
including those in the vicinity of tricritical points.
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