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Abstract—A phase-equivalent transformation of local interaction is generalized to the multichannel case in the
direct-scattering problem. Generally, the transformation does not change the number of bound states in the sys-
tem and their energies. For a special choice of the parameters involved, however, the transformation removes
one of the bound states and is equivalent to the multichannel supersymmetry transformation recently proposed
by J.M. Sparenberg and D. Baye (1997). With the aid of the transformation, it is also possible to add a bound
state to the discrete spectrum of the system at a given energy E < 0 if the angular momentum l ≥ 2 in at least
one of the coupled channels. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nucleon–nucleon, nucleon–cluster, and cluster–clus-
ter potentials are an input for various microscopic calcu-
lations of nuclear structure and reactions. Unfortunately,
the exact form of the potentials describing these interac-
tions is unknown. It is conventionally supposed that the
available scattering data and bound state properties can
be fitted with approximately the same accuracy by differ-
ent local potentials. For example, there are a lot of so-
called realistic NN potentials on the market describing
NN scattering and deuteron properties with high accu-
racy. Moreover, a description of phenomenological data
can be achieved with potentials very different in struc-
ture. In particular, meson-exchange NN potentials of the
Nijmegen kind [1] are known to have a short-range
repulsive core in a triplet s wave. The same high-quality
description of the nucleon–nucleon data is provided by
the latest versions of the Moscow potential [2, 3] that
does not have a repulsive core but instead is deeply
attractive in the triple s wave at short distances and sup-
ports an additional forbidden state. The possibility of
alternative descriptions of various cluster–cluster and
nucleon–cluster interactions by means of repulsive-core
and deeply attractive potentials with forbidden states is
also well known (see, e.g., the discussion in [2] and ref-
erences therein).

Principally, it is possible to distinguish experimen-
tally between alternative potentials by studying their
off-shell properties in interactions with an additional
particle. The simplest probe is the photon, and as it was
shown in [4–6], the proton–proton bremsstrahlung
reaction pp  ppγ in the energy range of 350–
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400 MeV can be used to discriminate between various
NN potentials. However, the pp  ppγ reaction has
not been examined experimentally in this energy range.

Another possibility is to study the properties of three-
and four-body systems bound by two-body potentials of
interest. From this point of view, it looks like we do not
have satisfactory nucleon–nucleon, cluster-nucleon, and
cluster–cluster potentials at present. It is well known that
none of the realistic NN potentials provides proper binding
of tritium or 3He. There have been successful attempts in
generating phenomenological three-nucleon interactions
tuned to fit the properties of light nuclei [7] (see also [8]
and references therein). However, as it was shown in the
detailed study of Picklesimer et al. [9], the effect of three-
nucleon forces consistent with realistic two-body ones on
the binding energy of the triton is canceled by the effects
of virtual excitations of ∆ isobars, etc. Hence, the trinu-
cleon cannot be satisfactorily described using known real-
istic two-body potentials supplemented by three-body
potentials consistent with them. All calculations within
three-body cluster models also fail to reproduce the cor-
rect binding energy of three-cluster nuclear systems with
known local cluster–cluster and cluster–nucleon poten-
tials fitted to the corresponding scattering data.

To design a potential consistent with two-body phe-
nomenological data and providing the correct binding
of few-body systems, it seems promising to make use
of phase-equivalent transformations depending on a
continuous parameter(s). Some attempts in this direc-
tion have been performed using nonlocal phase-equiv-
alent transformations. The results of these attempts are
encouraging: in [10], an oversimplified NN potential
providing a satisfactory description of s-wave NN scat-
tering data was fitted to exactly reproduce the triton
binding energy, while in [11], realistic nα potentials
were tuned to reproduce various 6He properties, includ-
ing the binding energy within the α + n + n cluster
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model. The interactions suggested in [10, 11] are non-
local ones. Various applications (see, e.g., [12, 13]) of
local phase-equivalent transformations to few-body
problems were restricted to the supersymmetry trans-
formation [14–16] that removes one of the bound states
in a two-body system. The supersymmetry transforma-
tion does not contain parameters and cannot be used for
fine tuning of the interaction of interest.

However, a local phase-equivalent transformation
which preserves the number of bound states and depends
on a continuous parameter exists and is well known in the
inverse scattering theory [17]. To the best of our knowl-
edge, so far nobody has used it in few-body calculations.
This transformation was developed for a single-channel
case only and cannot be applied without some approxi-
mations to realistic NN interactions that mix triplet s and
d partial waves. Another drawback of the transformation
is that it involves a bound-state wave function and, thus,
cannot be used to modify nn and pp interactions and the
np interaction in all “nondeuteron” partial waves.

Recently, Sparenberg and Baye [18] suggested a mul-
tichannel supersymmetry transformation. We use some
ideas of [18] to derive a multichannel phase-equivalent
transformation which depends on continuous parameters.
The transformation can be treated as a generalization of
both the single-channel phase-equivalent transformation
[17] and the multichannel supersymmetry transformation
of [18]. Generally, the transformation does not change the
number of bound states in the system and their energies.
However, with a special choice of the parameters, the
transformation removes one of the bound states and
becomes equivalent to the multichannel supersymmetry
transformation suggested in [18]. If the angular momenta
in all coupled channels are less than two, a parameter-
dependent family of local interactions phase-equivalent
to the given initial one can be constructed by means of the
transformation, even in the case when the system does not
have a bound state. If the angular momentum is l ≥ 2 in at
least one of the coupled channels, the transformation can
be used to add a bound state to the discrete spectrum of
the system at a given energy E < 0. Having a bound state,
one can construct a family of phase-equivalent potentials
and afterwards remove the bound state by the supersym-
metry version of the transformation. Thus, the suggested
transformation can be used in a multichannel case to pro-
duce phase-equivalent interactions without any restric-
tion on the structure of the discrete spectrum of the sys-
tem. In particular, the transformation can be applied to the
realistic NN interaction in all partial waves.

2. GENERAL FORM OF LOCAL 
MULTICHANNEL PHASE-EQUIVALENT 

TRANSFORMATION

Multichannel scattering and bound states are
described by the Schrödinger equation

(1)Hij Eδij–( )ϕ j E r,( )
j

∑ 0,=
P

where indices i and j label the channels, E is the energy,

(2)

is the Hamiltonian, m is the reduced mass, and li stands
for the angular momentum in the channel i. We suppose
that the potential Vij(r) (i) is Hermitian and (ii) tends
asymptotically at large distances to a diagonal constant
matrix,

(3)

where ei is a threshold energy in the channel i. We sup-
pose that e1 = 0 and ei ≥ ej if i > j.

The boundary conditions for the wave functions are

(4)

(5)

Except for the discussion in Section 3.3, we suppose
that there is at least one bound state in the system at the
energy E0. The corresponding wave function ϕi(E0, r) is
supposed to be normalized:

(6)

where “*” denotes complex conjugation. Of course,
ϕi(E0, r) fits a more severe boundary condition for
r  ∞ than (5):

(7)

We define the transformed potential (r) as

(8)

where 

(9)

and A, C, and a are arbitrary real parameters.
The main result of this paper can be formulated as

the following statement.
The wave function

(10)

Hij
"

2

2m
------- d

2

dr
2

--------–
li li 1+( )

r
2

--------------------+ δij Vij r( )+=

Vij r( ) eiδij,r → ∞

ϕ i E 0,( ) 0,=

ϕ i E ∞,( ) ∞.<

ϕ i* E0 s,( )ϕ i E0 s,( ) sd

0

∞

∫
i

∑ 1,=

ϕ i E0 ∞,( ) 0.=

Ṽ ij

Ṽ ij r( ) Vij r( ) v ij r( ),+=

v ij r( ) 2C
"

2

2m
------- d

dr
-----

ϕ i E0 r,( )ϕ j* E0 r,( )

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

----------------------------------------------------------–=

ϕ̃ i E r,( ) ϕ i E r,( )=

– Cϕ i E0 r,( )

ϕk* E0 s,( )ϕk E s,( ) sd
a

r

∫
k

∑

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

------------------------------------------------------------
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fits the nonhomogeneous multichannel Schrödinger
equation

(11)

where the Hamiltonian

(12)

and the quasi-Wronskian

(13)

We use the prime to denote derivatives: f ' ≡ df /dr.
To prove the statement, one can verify (11) by the

direct calculation of  – Eδij) (E, r) using def-
initions (8)–(10) and (12) and other formulas given
above, as well as the fact that the interaction Vij(r) is
Hermitian, (r) = Vji(r). The calculation is lengthy
but straightforward.

It is clear from (10) and (7) that the suggested trans-
formation is phase-equivalent at any energy E > 0; all
the bound states supported by the initial potential Vij are
preserved by the transformation, since the wave func-
tions (Eb , r) for the corresponding energies Eb < 0
(including E0) fit both boundary conditions (4) and (7).
However, the denominator in the last term in (10)
should be nonzero at any distance r; therefore, one
should be accurate in assigning values to arbitrary
parameters A, C, and a. This requirement can be easily
satisfied in a wide and continuous range of parameter
values. 

3. PARTICULAR CASES OF THE PHASE-
EQUIVALENT TRANSFORMATION

3.1. Homogeneous Schrödinger Equation

Of course, we are mostly interested in phase-equiv-
alent transformations that result in the homogeneous
Schrödinger equation

(14)

instead of the nonhomogeneous Schrödinger equations
(11). To derive the transformation leading to (14), we

H̃ij Eδij–( )ϕ̃ j E r,( )
j

∑

=  C
"

2

2m
-------

ϕ i E0 r,( )

A C ϕk E0 s,( ) 2
sd

a

r

∫
k

∑+

----------------------------------------------------------0 E0 E; a,( ),

H̃ij δij
"

2

2m
------- d

2

dr
2

--------–
li li 1+( )

r
2

--------------------+ Ṽ ij r( )+=

0 E0 E; a,( )

≡ ϕk* E0 a,( )ϕk' E a,( ) ϕk*' E0 a,( )ϕk E a,( )–[ ] .
k

∑

(H̃ijj∑ ϕ̃ j

Vij*

ϕ̃ i

H̃ij Eδij–( )ϕ̃ j E r,( )
j

∑ 0=
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can search for the parameters A, C, and a providing
zero values of the right-hand side of (11). The choice
C = 0 brings us to the equivalent (contrary to phase-
equivalent) transformation that is of no interest. Thus,
we should search for the parameters that fit the equation

(15)

Two obvious solutions of (15) are a = 0 and a = ∞.
Various other solutions of (15) can be found for partic-
ular potentials Vij(r). However, the nonzero finite solu-
tions a of (15) are energy-dependent. With the solutions
a(E) of (15), we can obtain energy-dependent poten-

tials (E; r) phase-equivalent to the initial energy-
independent potential Vij(r). It may be interesting for
some applications, but we shall not discuss the energy-
dependent transformation and shall concentrate our
attention on the solutions a = 0 and a = ∞.

The case a = 0 presents a generalization of the sin-
gle-channel phase-equivalent transformation from
[17]. For the bound state at the energy E0, the wave
function obtained by means of the transformation is of
the form

(16)

The wave function (16) is not normalized. The normal-
ization constant can be easily calculated. The normal-
ized bound-state wave function is 

(17)

It is interesting that the components of the bound-
state wave function in all channels are modified by the
transformation synchronously: all the components
ϕi(E0, r) are multiplied by the same factor

(A + C (E0, s)|2ds)–1. Neverthe-

less, the relative weight of the components ϕi(E0, r) in
the norm of the total multichannel wave function can be
changed by the transformation.

Let us now discuss the case of a = ∞. The trans-
formed wave function in this case is of the form

(18)

0 E0 E; a,( ) 0.=

Ṽ ij

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

---------------------------------------------------------.=

A C+
A

--------------ϕ̃ i E0 r,( )
A A C+( )ϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

---------------------------------------------------------.=

A A C+( ) |ϕ j0

r∫j∑

ϕ̃ i E r,( ) ϕ i E r,( )=

–

Cϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

∞

r

∫
j

∑

A C ϕ j E0 s,( ) 2
sd

∞

r

∫
j

∑+

--------------------------------------------------------------------------------------.
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If E ≠ E0, the functions ϕi(E, r) and ϕi(E0, r) are
orthogonal:

(19)

With the help of (19) and (6), we can rewrite (18) as

(20)

It is seen from (20) that the case of a = ∞ is identical (up
to the redefinition of the parameter A  A + C) to the
case of a = 0 if E ≠ E0. It is clear, however, that after the
redefinition of the parameter A  A + C, the potential
vij(r) obtained with a = ∞ becomes equivalent to the
potential vij(r) corresponding to the case of a = 0.
Hence, the case of a = ∞ appears to be equivalent to the
case of a = 0 at any energy E, including E = E0. To dem-
onstrate this explicitly, let us examine the wave func-
tion (E0, r) in the case of a = ∞. Replacing E by E0 in
(18), we obtain

(21)

or, equivalently,

(22)

Replacing A by A + C and normalizing the wave func-
tion (22), we obtain expression (17).

3.2. Supersymmetry

Let us discuss a particular choice of parameters: C =
1, a = ∞, and A = 1. The wave function in this case is

(23)

ϕ i* E0 s,( )ϕ i E s,( ) sd

0

∞

∫ 0.=

ϕ̃ i E r,( ) ϕ i E r,( )=

–

Cϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

0

r

∫
j

∑

A – C C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

--------------------------------------------------------------------------------------.

ϕ̃ i

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C ϕ j E0 s,( ) 2
sd

∞

r

∫
j

∑+

---------------------------------------------------------=

ϕ̃ i E0 r,( )
Aϕ i E0 r,( )

A C– C ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑+

-------------------------------------------------------------------.=

ϕ̃ i E r,( ) ϕ i E r,( )=

+

ϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

r

∞

∫
j

∑

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
---------------------------------------------------------------------------------
P

or 

(24)

Equation (23) can be used at any energy E, while (24)
is applicable only if E ≠ E0. In the case of E = E0, the
wave function can be rewritten in a simpler form as

(25)

Equation (23) is just Eq. (4) of [18]. In [18], Sparen-
berg and Baye suggested a multichannel supersymme-
try transformation. Thus, Eqs. (24) and (25) describe
the multichannel supersymmetry transformation, or, in
other words, the multichannel supersymmetry transfor-
mation is a particular case of the phase-equivalent mul-
tichannel transformation discussed in this paper that
corresponds to the particular choice of the parameters.
Let us discuss how it works.

It is clear from (25) that | (E0, r)|  ∞ as r 

0. Hence, at the energy E0, the wave function (E0, r)
does not match the required boundary condition (4) at
r = 0. At the same time, (E0, r) fits the boundary con-
dition (7) at r = ∞. Therefore, it is impossible to con-
struct another solution of the Schrödinger equation (14)
consistent with both boundary conditions at the energy
E = E0. As a result, the phase-equivalent transformation
removes the bound state at E = E0. At the same time, it
is clear from (24) that for all energies E ≠ E0, the zero
in the denominator arising in the limit r  0 is can-
celed by the zero in the numerator and the wave func-
tion (24) matches the boundary conditions at the origin
and at infinity both at once. Thus, the transformation in
this case removes the bound state at E = E0 but none of
the other bound states, while the S-matrix at any energy
E > 0 is unchanged.

Of course, the supersymmetry transformation can
also be formulated in the case of a = 0. It is interesting
that the bound state in this case is removed by a differ-
ent mechanism. Suppose that A = 0 and that C is arbi-
trary. The wave function at any energy E in this case
may be written as (24). However, it is seen that, at E =
E0, the wave function (E0, r) ≡ 0.

We used the boundary condition (4) to construct the
supersymmetry transformation: the bound state is
removed because, for some particular parameter val-
ues, the wave function (E0, r) diverges at the origin
and appears to be inconsistent with (4). One can sup-

ϕ̃ i E r,( ) ϕ i E r,( )=

–

ϕ i E0 r,( ) ϕ j* E0 s,( )ϕ j E s,( ) sd

0

r

∫
j

∑

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
---------------------------------------------------------------------------------.

ϕ̃ i E0 r,( )
ϕ i E0 r,( )

ϕ j E0 s,( ) 2
sd

0

r

∫
j

∑
-------------------------------------------.=

ϕ̃ i

ϕ̃ i

ϕ̃ i

ϕ̃ i

ϕ̃ i
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pose that it is also possible to use the boundary condi-
tion at r = ∞ to remove the bound state and to construct
another supersymmetry transformation. This is not so.
Let us discuss the case of a = ∞, A = 0, and arbitrary C.
As is seen from (18), (E0, r) ≡ 0 in this case; thus, the
bound state is removed. However, the transformation is
no longer phase-equivalent. Indeed, at energies E > E0,
the last term in (18) does not vanish when r  ∞ and
provides an additional phase shift, or, in other words, it
modifies the S matrix.

3.3. Inverse Supersymmetry

We shall refer to a transformation that adds a bound
state to the discrete spectrum of the system and leaves
unchanged the S matrix and the energies of all bound
states supported by the initial Hamiltonian as the
inverse supersymmetry transformation. 

Let us suppose that there is no bound state at the
energy E0 < 0. By ϕi(E0, r), we now denote the wave
function at energy E0 that matches the boundary condi-

tion (7) at infinity but diverges at the origin as  (see,
e.g.,2) [19]), where li is the angular momentum in the
channel i.

With ϕi(E0, r), we can use our transformation to
obtain the homogeneous Schrödinger equation (14) in
the case of a = ∞. The transformed wave function (E,

r) is given by (18). It is seen from (18) that (E, r)
does not diverge at the origin and matches the boundary
conditions, both at the origin and at infinity, at any
energy E ≠ E0. For E = E0, the transformed wave func-
tion (E0, r) is given by (21). It is clear that (E0, r)

at the origin is proportional to , where L =
max{li}. Hence, (E0, r) matches the boundary condi-
tion (4) if L ≥ 2 and is not consistent with (4) if L ≤ 1.
Therefore, our transformation with ϕi(E0, r) irregular at
the origin is the inverse supersymmetry transformation
in the case of L ≥ 2. In the case of L ≤ 1, the transfor-
mation appears to be a phase-equivalent transformation
that does not make use of the bound state and can be
applied to a system that does not support a bound state.
If the transformation is applied to the free Hamiltonian
with Vij(r) ≡ 0 in the s or p partial wave, it produces a

nonzero “transparent” potential (r) that provides the
phase shift δ = 0 at any energy E. The multichannel ver-
sion of the transformation couples s and p partial waves
to produce a two-channel “transparent” interaction that
provides the S matrix of the form Sij = δij .

2)The r–l divergence of the wave functions at the origin is derived
in [19] for the single-channel case only. However, the derivation
of the r–l rule from [19] can be easily generalized to the multi-
channel case, at least for the potentials that do not diverge at the
origin.

ϕ̃ i

r
li–

ϕ̃ i

ϕ̃ i

ϕ̃ i ϕ̃ i

r
2L li– 1–

ϕ̃ i

Ṽ ij
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It is interesting that the inverse supersymmetry
transformation is not unique: we have three parameters
E0, A, and C that provide a family of inverse supersym-
metry partner potentials. Contrary to it, the supersym-
metry transformation is unique; however, it can be used
in combination with the phase-equivalent transforma-
tion to construct a family of potentials phase-equivalent
to the initial one but not supporting one of the bound
states.

4. CONCLUSION

We derived a multichannel phase-equivalent trans-
formation that can be used without restrictions on the
structure of the discrete spectrum of the system in var-
ious scattering problems like NN scattering, nucleon–
cluster, or cluster–cluster scattering. The multichannel
supersymmetry and inverse supersymmetry transfor-
mations appear to be particular cases of the suggested
general phase-equivalent transformation corresponding
to particular choices of the parameter values. The
inverse supersymmetry transformation is possible if
only the orbital angular momentum li ≥ 2 in at least one
of the coupled channels. It is interesting to note that,
from the point of view of the NN system, this means
that a deep attractive NN potential, supporting an addi-
tional forbidden state like the Moscow NN potential,
can be constructed through the inverse supersymmetry
transformation of the realistic meson-exchange poten-
tial with a repulsive core only due to the d-wave admix-
ture in the deuteron wave function.

By using the suggested transformation, one can con-
struct a family of phase-equivalent potentials depend-
ing on continuous parameters. Such families may be
very useful for fine tuning of the interaction aimed to fit
not only two-body observables but also three- and few-
body ones. If the system has at least one bound state,
the phase-equivalent potential family is constructed
using formulas (8) and (9) directly. One can construct
phase-equivalent single- or multichannel potential fam-
ilies also in the case when there are no bound states in
the system: if all channel orbital angular momenta li ≤
1, one can directly apply the transformation with the
irregular function ϕi(E0, r); if at least one of the channel
orbital angular momenta li ≥ 2, one can produce a
bound state using inverse supersymmetry at the first
stage and remove the bound state at the final stage by
using the supersymmetry version of the transformation.
Thus, one can, for example, construct a family of
phase-equivalent potentials for any combination of
coupled partial waves in the NN system.

It should be noted that our method allows to one
construct the family of phase-equivalent potentials with
given properties of the spectrum in the multichannel
case without use of Gelfand–Levitan–Marchenko pro-
cedure applied in the inverse scattering problem (for
example, see [20]).
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We hope that the suggested transformation will be
useful in various few-body applications.
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