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Abstract 
This review summarizes recent advances in the chemistry of 

σ-hydrocarbyl rare-earth metal complexes stabilized by nitrogen-

containing ligands with main emphasis on the synthesis, structural 

features, stability, and reactivity of these compounds. 
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1. Introduction 

Past decades have seen an impressive progress in the design 

and synthesis of new σ-bonded rare-earth metal alkyl complexes 

owing to their unique reactivity and the ability to promote 

various thermodynamically unfavorable reactions, including 

C−H bond activation and alkane functionalization [1–4]. Along 

with the high reactivity in stoichiometric reactions, rare-earth 

hydrocarbyl complexes hold great promise for catalysis of a 

wide range of transformations involving unsaturated substrates, 

such as polymerization (alkenes, dienes, and lactides) [5–11] 

hydrogenation [12–13], hydrosilylation [14], hydroamination 

[15–18], hydrophosphination (alkenes and alkynes) [19–22], 

hydroboration (alkenes) [23, 24], and alkyne dimerization [25, 

26]. 

Owing to the large ionic radii, the Lewis acidity, and the 

presence of unoccupied 5d and 6s orbitals (for the Ln3+ ions) 

[27], rare-earth elements show a pronounced tendency to form 

complexes and acquire high coordination numbers. An 

insignificant contribution of the covalent component to the rare-

earth metal–ligand interactions removes restrictions associated 

with the compatibility of orbitals in symmetry. This can give 

rise to radically new types of compounds the reactivity of which 

differs from that of d-element derivatives. A similarity in the 

redox [28] and chemical properties of rare-earth elements along 

with a substantial variation of the ionic radii within a series of 

their compounds (Sc3+ 72.3 pm, Y3+ 89.3 pm, La3+ 101.6 pm, 

Nd3+ 99.5 pm, Eu3+ 95.1 pm, Lu3+ 85.0 pm) [27] offer a unique 

possibility of optimizing the reactivity of metal complexes by 

designing a metal coordination sphere and choosing an 

appropriate radius of the central atom in accordance with the 

main features of the catalyzed reaction. 

In recent years, there has been a trend towards the design of 

new non-cyclopentadienyl ligand systems that allow for 

stabilization of rare-earth metal alkyl and hydride complexes 

[29, 30]. The main objectives of the ligand replacement are to 

enhance the stability of rare-earth metal derivatives with the 

maintenance of their high catalytic activity, to increase the 

catalyst tolerance to functional groups of substrates, to extend 

the scope of the design and fine-tuning of the geometry of a 

metal coordination sphere in the resulting complexes, and to 

control the catalytic activity of rare-earth element compounds 

and the selectivity of metal-promoted reactions [31, 32]. Of 

particular interest is the investigation of the effect of a 

coordination environment of rare-earth metal atoms on the 

reactivity of the M–C and M–H bonds and the catalytic activity 

of their compounds. It should also be noted that nitrogen-

containing ligand systems are widely used in the chemistry of 

organic derivatives of lanthanides, since they offer multiple 

synthetic solutions to the problem of modification of the 

electronic and steric properties [33]. 

2.1. Rare-earth monoalkyl complexes with 

the monodentate N-containing ligands 

Imidazoline-2-imine ligands (ImRN) have been successfully 

used in the chemistry of organic derivatives of rare-earth 

elements as effective coordination environments that are able to 

stabilize alkyl complexes [34]. 

Chloride complexes of rare-earth elements 

(ImDippN)2LnCl(THF)n (Ln = Sc, n = 1 or 2; Ln = Y, n = 2; Ln = 

Lu, n = 2) were obtained by the treatment of 1,3-bis(2,6-

diisopropylphenyl)imidazolyl-2-imine with two equivalents of 

LiCH2SiMe3 and one equivalent of anhydrous LnCl3 (Ln = Y, 

Lu, Sc) (Scheme 1) [34]. The subsequent interaction with an 

equimolar amount of LiCH2SiMe3 in THF resulted in the 

corresponding alkyl bis(imine) derivatives 

(ImDippN)2LnCH2SiMe3(THF)n (Ln = Sc, n = 1 (1); Ln = Y, n = 

2 (2); Ln = Lu, n = 2 (3)). According to the NMR spectroscopy 

data, scandium complex 1 contains one coordinated THF 
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molecule, while similar compounds of yttrium and lutetium 

include two molecules of THF. The X-ray analyses indicated 

that alkyl compounds of Y (2) and Lu (3) are isostructural. The 

coordination environment of the central metal atom is a distorted 

trigonal bipyramid. 

2.2. Rare-earth monoalkyl complexes with 

the bidentate N-containing ligands 

Bidentate amidinate ligands [RC(NR')2]
– are one of the first 

non-cyclopentadienyl ligand systems that have been 

successfully used for the synthesis of alkyl complexes of rare-

earth elements. In 1996 Teuben et al. synthesized a series of 

monomeric bis(amidinate) alkyl and benzyl derivatives of 

yttrium [PhC(NSiMe3)2]2YR(THF)n (R = CH2Ph, n = 1 (4); R = 

CH(SiMe3)2, n = 0 (5)) and [p-

MeOC6H4C(NSiMe3)2]2YCH(SiMe3)2 (6) (Scheme 2) [35]. 

Complexes 4–6 are thermally stable in C6D12 or C6D6. Upon 

heating of their solutions at 100 °C for several hours, there were 

no signs of H/D exchange, solvent metalation or thermal 

decomposition. The XRD analysis of complex 6 showed that 

this compound is monomeric, and the steric demand of the 

amidinate moiety is comparable with that of the 

pentamethylcyclopentadienyl ligand. Based on the results of 

semi-empirical calculations using the INDO/1 method for model 

complexes [HC(NH)2]2YMe and (C5H5)2YMe, it was concluded 

that the high electron-withdrawing activity of the amidinate 

ligands leads to an increase in the positive charge on the yttrium 

atom in the bis(amidinate) derivatives compared to the analogs 

of a metallocene series. The charge separation in the Y–C bond 

in complex [HC(NH)2]2YMe composed 1.06 e vs 0.75 e in 

(C5H5)2YMe, which indicates a much higher bond polarity in the 

bis(amidinate) derivative. In the authors' opinion, the high value 

of the positive charge on the yttrium atom in [HC(NH)2]2YMe 

leads to a greater orbital contraction, which complicates the 

interaction between the metal atom and the substrate, resulting 

in their inactivity in H/D exchange (for example, H2), as well as 

reduces the rates of hydrogenolysis compared to those of the 

cyclopentadienyl compounds [35]. 

The dimeric acetylide complexes of a general formula 

[L2Y(μ-CCR)]2 (R = H (7a), Me (7b), nPr (7c), SiMe3 (7d), Ph 

(7e), CMe3 (7f)) were obtained by the σ-bond metathesis of 

compound 5 with terminal alkynes (Scheme 3). The reaction of 

acetonitrile with complex 5 gave rise to dimer [L2Y(μ-(N,N')-

N(H)C(Me)=C(H)CN)]2 8, whereas an analogous reaction with 

complex 4 afforded not only complex 8 but also the products of 

insertion of the multiple nitrogen–carbon bond: [L2Y(μ-

N=C(Me)CH2Ph)]2 (8
CH2Ph) and [L2Y(μ-N(H)C(Me)=C(H)Ph)]2 

(8CHPh). The reaction of pyridine with compound 5 led to the 

metallation of the pyridine ring at the α-position with the 

formation of L2Y(C5H4N) (9a), while the same reaction with 

compound 4 afforded complex L2Y[C5H5(CH2Ph)N] 9b due to 

the addition of the benzyl group to the multiple bonds of the 

heterocycle. The reactions of alkyl (5) and benzyl (4) derivatives 

of yttrium with 2-methylpyridine were accompanied by the 

activation of the C–H bond of the methyl groups and led to 

heterobenzyl derivative L2Y(o-СH2C5H4N) (10) (Scheme 3). 

Dimeric hydride complex with a benzamidinate ligand 

{[PhC(NSiMe3)2]2Y(μ-H)}2 (11) was obtained by the 

hydrogenation of both compounds 

[PhC(NSiMe3)2]2YCH(SiMe3)2 (5) and 

[PhC(NSiMe3)2]2YCH2Ph (4) with H2 (3 atm) in benzene at 

40 oC. Complex 11 was the first one and remained for a long 

time the only one rare-earth hydride derivative stabilized by the 

non-cyclopentadienyl ligand system [36, 37]. Compound 11 

demonstrated high stability in hydrocarbon solvents upon 

heating to 100 °C but reacted with the C–O bond of THF. 

Treatment of complex 11 with acetonitrile and pyridine resulted 

in {[PhC(NSiMe3)2]2Y(μ-N=C(H)Me)}2 and 

[PhC(NSiMe3)2]2Y(NС5H6), respectively. Dimeric acetylide 

complex {[PhC(NSiMe3)2]2Y(μ-ССH)}2 (7а) was obtained by 

the reaction of 11 with acetylene. 

Alkyl and aryl scandium species with amidinate ligands 

[PhC(NSiMe3)2]2ScR (R = CH2SiMe3 (12), Mes (13)) and 

[PhC(NSiMe3)2]2ScMe(THF) (14) were obtained by the 

metathesis reactions between the corresponding chloride 

compound [PhC(NSiMe3)2]2ScCl(THF) and alkyllithium 

reagents (Scheme 4) [38]. The reaction of compound 12 with 

Me3SiCCH resulted in monomeric acetylenide complex 

[PhC(NSiMe3)2]2Sc(CСSiMe3) (15). Dimeric hydride complex 

{[PhC(NSiMe3)2]2Sc(-H)}2 (16) was isolated in high yield 

upon hydrogenation of derivative 12 with H2. Complex 16 is 

stable in a solution of C6D6: no signs of decomposition were 

detected even after heating at 60 °C for a day. Treatment of 

complex 16 with D2 did not lead to H/D exchange. Furthermore, 

the dimeric structure of hydride complex 16 was preserved even 

upon treatment with THF. The addition of 16 across the triple 

CC bond of tolane led to the formation of complex 

[PhC(NSiMe3)2]2ScС(Ph)=C(Ph)H. 
The reactions of Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Dy, 

Sm) with two equivalents of bulky formamidines 2,6-

(Me)2C6H3N=CH=NHC6H3(Me)2-2,6 (HL1) and 2,6-

(iPr)2C6H3N=CH=NHC6H3(iPr)2-2,6 (HL2) in hexane at 0 oC 
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gave rise to the corresponding alkyl species [HC(N-2,6-

R2C6H3)2]2LnCH2SiMe3(THF) (R = Me, Ln = Y (17); R = iPr: 

Ln = Y (18), Sm (19), Er (20), Dy (21)) in good yields (Scheme 

5) [39]. A similar complex of neodymium [HC(N-2,6-

iPr2C6H3)2]2NdCH2SiMe3(THF) (22) was synthesized by the 

exchange reaction between NdCl3 and lithium salt of 

formamidine [HC(N-2,6-iPr2C6H3)2]Li followed by the 

alkylation with LiCH2SiMe3. According to the X-ray analyses of 

18–21, both amidinate fragments in the alkyl complexes are 

coordinated to the metal center through two nitrogen atoms in a 

κ2-fashion. 

The formamidine ligands allow for the synthesis of methyl 

species of the rare-earth elements with the large ionic radii, such 

as lanthanum and samarium. Bis(formamidinate) alkyl 

complexes [HC(N-2,6-iPr2C6H3)2]2LnMe(THF) (Ln = Sm (23), 

La (24)) were obtained by the reactions of chloride compounds 

[HC(N-2,6-iPr2C6H3)2]2LnCl(THF) with equimolar amounts of 

MeLi in toluene at room temperature (Scheme 6) [40]. 

Complexes 23 and 24 demonstrate extremely high stability and 

do not decompose in the solid state up to 250 °C. 

Dianionic boramidinate ligand systems, with the BH– 

fragment isoelectronic to amidinates, can also serve as 

convenient coordination environments for the synthesis and 

isolation of alkyl derivatives of rare-earth elements. The reaction 

of [2,6-iPr2-C6H3-NHBHNH-C6H3-iPr2] with equimolar 

amounts of tris(aminobenzyl) compounds of yttrium and 
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samarium Ln(o-CH2C6H4NMe2)3 (Ln = Y, Sm) in toluene at 60 
oC afforded neutral alkyl complexes [HB(N-2,6-

iPr2C6H3)2]Ln(o-CH2C6H4NMe2) (Ln = Y (25), Sm (26)) in high 

yields (Scheme 7) [41]. The XRD analysis showed that complex 

26 is a dimer with the bridging boramidinate ligands, where 

each samarium atom is η3-coordinated by the phenyl ring of 

iPr2C6H3-group of an adjacent fragment. 

Substituted guanidinate ligands [RNC(NR')2]
– have found 

wide application in the chemistry of organic derivatives of rare-

earth elements owing to the simplicity of their synthesis. The 

variation of substituents at the nitrogen atoms allows for 

modification of the electronic and steric characteristics of 

guanidinate ligands [42]. 

Bis(guanidinate) yttrium alkyl species 

[Me3SiNC(NiPr)2]2YR (R = tBu (27), (Me3Si)2CH (28)) were 

obtained by the salt metatheses of dimeric chloride complex 

[((Me3Si)2NC(NiPr)2)2YCl]2 with alkyllithium reagents (Fig. 1) 

[43]. These compounds do not contain the coordinated Lewis 

bases, which leads to the low coordination numbers of the metal 

centers. More sterically bulky dicyclohexyl guanidine was 

successfully used to synthesize alkyl derivatives of yttrium 

[(Me3Si)2NC(NСy)2]YR (R = tBu (29), Ph (30), Bn (31)) [44], 

samarium, ytterbium, and erbium 

[(Me3Si)2NC(NСy)2]LnCH(SiMe3)2 (Ln = Sm (32), Yb (33)) 

and [(Me3Si)2NC(NСy)2]LnR (R = tBu: Ln = Yb (34), Er (35); 

R = Bn: Ln = Er (36)) (Fig. 1) [45, 46]. It is noteworthy that the 

yttrium atom in complex 29 is coordinationally unsaturated, 

which leads to the agostic interaction between the metal center 

and two methyl groups of the tert-butyl substituent. This resuts 

in short Y. . .C contacts and significant deviations of the bond 

angles around the central carbon atom from tetrahedral ones 

[44]. According to the data of XRD analysis and 13C NMR 

spectroscopy, this agostic interaction is present not only in the 

crystalline state but also in a solution of C6D6. 

Subseqeuntly, a series of rare-earth alkyl complexes with a 

bulky isopropyl guanidinate ligand were synthesized [47, 48]. 
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Complexes [(Me3Si)2NC(NiPr)2]2LnCH2SiMe3 (Ln = Y (37), Lu 

(38), Sm (39), Nd (40), Gd (41), Yb (42)) were obtained by the 

exchange reactions between the corresponding chloride 

derivatives and LiCH2SiMe3. Treatment of alkyl complexes 37–
42 with equimolar amounts of PhSiH3 in hexane afforded 

dimeric hydride compounds {[(Me3Si)2NC(NiPr)2]2Ln(μ-H)}2 

(Ln = Y (43), Lu (44), Sm (45), Nd (46), Gd (47), Yb (48)) 

without coordinated Lewis bases on the metal centers (Scheme 

8) [47, 48]. The X-ray analyses demonstrated that the 

guanidinate ligands in complexes 43–48 are coordinated in an 

asymmetric fashion in both [(Me3Si)2NC(NiPr)2]2Ln fragments. 

Cui et al. [49] reported the synthesis of rare-earth alkyl 

complexes (2-tBu-C4H2N-4-CHN(2,6-iPr2C6H3)YCH2SiMe3 

(49) and (2-tBu-C4H2N-4-CHN(2,6-iPr2C6H3)SmR (R = 

CH2SiMe3 (50), Me (51)), coordinated by a monoanionic 

bidentate pyrrolcarbaldiminate ligand, by the exchange reactions 

between the corresponding chloride derivatives and alkyllithium 

reagents in toluene at low temperature (Fig. 2). An attempt to 

synthesize the yttrium methyl complex using an analogous 

procedure did not lead to the desired product. According to the 

XRD analysis data, complex 50 is monomeric and contains two 

η1-coordinated pyrrole fragments. 

Zhang et al. used substituted imino-indoles as coordination 

environments for rare-earth alkyl complexes [50–52]. Binuclear 

alkyl species {[η2:η1-μ-η1-3-

(CyNCH(CH2SiMe3))C8H5N]LnCH2SiMe3(THF)}2 (Ln = Yb 

(52), Er (53), Y (54)) were obtained upon interaction of 

Ln(CH2SiMe3)3(THF)2 with equimolar amounts of 3-

(CyN=CH)C8H5NH in toluene at room temperature (Scheme 9) 

[51]. The reactions in THF under similar conditions afforded 

binuclear complexes {[η1-μ-η1-3-

(CyNCH(CH2SiMe3))C8H5N]LnCH2SiMe3(THF)}2 (Ln = Yb 

(55), Er (56), Y(57), Gd (58)). In both cases, the reaction of 3-

imino-indole with tris(alkyl) derivatives was accompanied by 

the insertion of CH2SiMe3 group into the C=N bond, resulting in 

a new cyclohexylamido-indole ligand system. The XRD 

analyses of complexes 52–54 showed that the indole ligand is 

bound to one metal center through two carbon atoms of the five-

membered ring in a η2-fashion, while the nitrogen atom of the 

indole fragment is bound to the other metal center in a η1-mode. 

In complexes 55–58, two metal atoms are connected by the 

nitrogen atoms of the indole ring and the amide groups. It is 

noteworthy that, unlike complexes 52–54, the indole ligands in 

compounds 55–58 are not parallel. Moreover, six-membered 

rings of the indole ligands in 55–58 are oriented in one 

direction, whereas in 52–54 they have opposite orientations. 

Treatment of alkyl complexes 52, 53, and 54 with an excess of 

THF yielded compounds 55, 56, and 57, respectively. The 

conversion of 55–57 to 52–54 can be accomplished upon boiling 

in toluene. 

The interaction of Ln(CH2SiMe3)3(THF)2 with an equimolar 

amount of a similar iminoindole bearing a tert-butyl group at the 

nitrogen atom, 3-(tBuN=CH)C8H5NH, in THF gave rise to 

binuclear complexes {[η2:η1-μ-η1-3-(tBuNCH(CH2SiMe3))-

C8H5N]LnCH2SiMe3(THF)}2 (Ln = Y (59), Dy (60), and Yb 

(61)) in high yields (Scheme 10) [50]. Just as with compounds 

52–54, the reactions of 3-tert-butyl iminoindole with tris(alkyl) 

derivatives were accompanied by the transfer of one CH2SiMe3 

group over the double C=N bond, resulting in a dianionic 

amido-indole ligand. It is noteworthy that, unlike 3-

(CyN=CH)C8H5NH, in the case of 3-(tBuN=CH)C8H5NH the 

binuclear complexes with η1-μ-η1-bound ligands were not 

formed. 

Monomeric bis(imino-indole) alkyl complexes [η1:η1-2-(2,6-

iPrC6H3N=CH)C8H5N]2LnCH2SiMe3(THF) (Ln = Yb (62), Er 

(63), Y (64), Dy (65), Gd (66)) were obtained in moderate yields 

by the reactions of Ln(CH2SiMe3)3(THF)2 with 2-(2,6- 

iPrC6H3N=CH)C8H5NH in toluene at room temperature 

(Scheme 11) [52]. The authors failed to synthesize an analogous 
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samarium complex, since the interaction of the freshly prepared 

tris(alkyl) derivative of Sm with 2-imino-indole was 

accompanied by the redistribution of the ligands and the 

formation of [η1:η1-2-(2,6-iPrC6H3N=CH)C8H5N]3Sm (67). 

According to the results of XRD analysis, the coordination 

environments of the metal centers in complexes 62–66 are 

distorted octahedra. 

In order to obtain hydrido derivatives of rare-earth elements 

stabilized by the 2-imino-indole ligand, complexes 63 and 64 

were treated with PhSiH3 in toluene at 80 oC. However, only 

binuclear compounds {[µ-η6:η1:η1-2(2,6-

iPrC6H3NCH2)C8H5N]Ln[2(2,6-iPrC6H3N=CH)C8H5N]}2 (Ln = 

Er (68) and Y (69)) were isolated from the reaction mixtures 

(Scheme 12). Complexes 68 and 69 contain two µ-bridging 

dianionic imino-indole ligands bound to the metal centres in a µ- 

η6:η1:η1-fashion, and two terminal monoanionic imino-indole 

ligands η1:η1-coordinated to the metal atoms [52]. 

The acid-base interactions between Ln(CH2SiMe3)3(THF)2 

(Ln = Sc, Lu, and Y) and equimolar amounts of tropidine (N-

methyl-1,4-cyclohepta-5,6-ene) (TropH) in hexane at room 

temperature afforded rare-earth alkyl complexes of variable 

structures, which depended on the ionic radii of the metal 

centers (Scheme 13) [53]. In the case of the smallest scandium 

ion, mono(tropidyl) bis(alkyl) complex 

(Trop)Sc(CH2SiMe3)2(THF) (70) was isolated in 65% yield. For 

lutetium, an analogous bis(alkyl) derivative appeared to be 

unstable and binuclear alkyl compound [(NMCH)LuCH2SiMe3]2 

(71) with tetradentate dianionic 6-N-methyl-1,4-

cycloheptadienyl (NMCH) ligand was formed. This 

transformation of ligand systems is a result of the elimination of 

one CH2SiMe3 group of the initial bis(alkyl) complex 

(Trop)Lu(CH2SiMe3)2(THF), which is accompanied by the 

opening of the tropidinyl ring and the formation of the Lu–N 

bond. Finally, treatment of Y(CH2SiMe3)3(THF)2 with tropidine 

resulted in neutral alkyl complex (Trop)2Y(CH2SiMe3)(THF) 

(72) (Scheme 13) [53]. The structures of complexes 70–72 were 

confirmed by X-ray crystallography. The tropidinyl ligands in 

compounds 70 and 72 are coordinated to the metal centers 

through the nitrogen atoms and the covalently bonded anionic 

allylic moieties. Each lutetium atom in dimeric complex 71 is 

bound to tetradentate 6-N-methyl-1,4-cycloheptadienyl ligand 

via 2σ/6π-electron-donor cyclopentadienyl moiety. 

Diamido ligands, differing both in the number of donor 

groups and the nature and length of a bridging unit between the 

functional groups, are the most popular non-cyclopentadienyl 

ligand systems in the field of organic derivatives of rare-earth 

elements [54]. Sterically demanding dianionic bidentate 2,2'-bis-

tert-butyldimethylsilylamido-6,6'-dimethyldiphenyl ligand 

(DADMB) was used for the synthesis of yttrium alkyl species. 

The coordination of DADMB to a metal atom results in the 

formation of a seven-membered metallocycle. Complexes 

(DADMB)YMe(THF)2 (73) and 

(DADMB)YCH(SiMe3)2(THF)2 (74) were obtained by the σ-

bond metathesis of chloride compound (DADMB)YCl(THF)2 

with MeLi and (Me3Si)2CHLi, respectively (Scheme 14). 

Similar ethyl and n-hexyl derivatives of yttrium, 

(DADMB)YR(THF)2 (R = Et (76), n-hexyl (77)), were 

synthesized by the reactions of dimeric hydride complex 

{[DADMB]Y(-H)(THF)}2 (75) with ethylene and 1-hexene in 

a THF solution (Scheme 14) [54]. According to the X-ray 

diffraction data, the molecule of complex 76 lies on a C2 axis 

and the ethyl group is highly disordered between the two 

symmetry positions. 
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Chiral (R)-binaphthylamines were used for the synthesis of 

neutral alkyl complexes of yttrium and ytterbium. Treatment of 

(R)-(+)-2,2'-bis(cyclopentylamino)-1,1'-binaphthyl (BinamH2) 

with tris(alkyl) derivatives Ln(CH2SiMe3)3(THF)2 (Ln = Y, Yb) 

led to the formation of alkyl complexes 

(Binam)LnCH2SiMe3(L)n (Ln = Y, L = THF, n = 2 (78); Ln = Y, 

L = DME, n = 1 (79); Ln = Yb, L = THF, n = 2 (80)) in high 

yields (Fig. 3) [55]. Compounds 78–80 demonstrate high 

stability in the crystalline state and can be stored in an inert 

atmosphere at 0 °C for several months without a trace of 

decomposition. However, in C6D6 at room temperature they 

slowly decompose with the release of SiMe4. Yttrium complex 

(Binam)YCH2SiMe3(DME) (79) was characterized by single-

crystal XRD analysis which revealed the presence of short 

contacts between the metal center and the carbon atoms at the 

ipso- and ortho-positions of the binaphtyl fragment. The 

synthesis of yttrium alkyl complex 

(Binam(SiMe3)2)YCH2SiMe3(THF)2 (81) coordinated by the 

binaphthyl ligand with SiMe3 groups at the nitrogen atoms 

instead of the cyclopentyl ones was also reported (Fig. 3) [56]. It 

should be emphasized that the binaphthylamido ligand with 

more bulky SiMe2tBu groups at the nitrogen atoms does not 

interact with Y(CH2SiMe3)(THF)2. Complex 81 showed lower 

thermal stability than analogous compound 78. The 

decomposition of 81 in C6D6 at room temperature completes in a 

day. The interaction of Ln(CH2SiMe3)3(THF)2 (Ln = Y, Sc) with 

an equimolar amount of binaphthylamine with benzyl 

substituents at the nitrogen atoms in THF at 25 °C gave rise to 

the corresponding neutral alkyl derivatives 

(Binam(СH2Ph)2)LnCH2SiMe3(THF)2 (Ln = Y (82), Sc (83)) 

(Fig. 3) [57]. Complexes 82 and 83 can be stored in the solid 

state at –20 °C for several weeks with no evidence of 

decomposition. 

More labile diamide ligands with ethylene and propylene 

linkers were used to synthesize alkyl complexes of yttrium in 

high yields. Alkyl and benzyl complexes (C6H3-2,6-

iPr2N(CH2)nN-iPr2-2,6-C6H3)YR(THF)x (n = 1, R = CH2Ph, x = 

2 (84); n = 1, R = CH(SiMe3)2, x = 1 (85); n = 2, R = CH2Ph, x 

= 2 (86); n = 2, R = CH(SiMe3)2, x = 1 (87)) were obtained by 

the salt metatheses of iodine derivatives (C6H3-2,6-

iPr2N(CH2)nN-iPr2-2,6-C6H3)YI(THF)2 (n = 1, 2) with RK (R = 

CH2Ph, CH(SiMe3)2) (Scheme 15) [58, 59]. The structures of 
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complexes 84–87 were supported by the X-ray analyses. Upon 

coordination to the yttrium atom, the diamide ligands form a 

five- or six-membered metallocycle. Compounds 84 and 85 

show high stability in C6D6 at room temperature. In addition, 

they are absolutely inert towards 1-hexene and ethylene. 

Related dianionic bidentate ligands ArN(CH2)2NAr (Ar = 

C6H3-2,6-iPr2, C6H2-2,4,6-Me3, Ph) with an ethylene linker 

between the aryl-amide groups were used for the synthesis of 

alkyl complexes of yttrium 88–90 and lutetium 91–93 (Scheme 

16) [59]. The reaction of alkane elimination between the 

diamine and tris(alkyl) derivatives Ln(CH2SiMe3)3(THF)2 (Ln = 

Y, Lu) was chosen as a synthetic approach. However, only the 

structure of yttrium complex (C6H3-2,6-iPr2N(CH2)2N-iPr2-2,6-

C6H3)YСH2SiMe3(THF)2 88, bearing the most bulky 

diisopropylphenyl substituents at the nitrogen atoms, was 

elucidated by single-crystal XRD. The compounds of yttrium 

(89, 90) and lutetium (92, 93) with the less bulky ligands were 

unstable in solutions of aliphatic and aromatic solvents and were 

characterized only by spectroscopic methods. 

The amidopyridinate ligands with a chelating monoanionic 

planar N,C,N-fragment, similar to guanidinates and amidines, 

proved to be convenient ligand systems for the synthesis and 

isolation of stable alkyl derivatives of rare-earth elements. Bulky 

2,6-diisopropylphenyl-(6-(2,6-dimethylphenyl)pyridin-2-

yl)amine (Ap'-H) was used for the synthesis of an yttrium alkyl 

complex. Compound (Ap')2YCH2SiMe3(THF) (94) was obtained 

in 65% yield by the exchange reaction of the corresponding 

chloride derivative (Ap')2YCl(THF) with an equimolar amount 

of LiCH2SiMe3 (Scheme 17) [60]. The structure of complex 94 

was confirmed by X-ray crystallography. The coordination 

environment of the yttrium atom is a distorted octahedron. In 

order to obtain a hydride complex with the amidopyridinate 

ligand, compound 94 was treated with PhSiH3 in toluene at 

room temperature. However, only complex (Ap'(Ap'-

H))Y(THF) (95) was isolated from the reaction mixture due to 

the intramolecular activation of the C–H bond of one of the
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methyl groups in Me2C6H3-substituent of the ligand (Scheme 

17). It is noteworthy that metallated product 95 can also be 

obtained by keeping complex 94 in a benzene solution at room 

temperature for several weeks. According to the results of XRD 

analysis, complex 95 is monomeric with one tridentate 

amidopyridinate ligand owing to the methylation of the methyl 

group and the formation of the new Y–C bond. 

Potentially tridentate amidopyridinate ligands with a 

diphenylphosphine substituent, [Py-NPPh2]
–, were used by Cui 

and coworkers to synthesize neutral bis(alkyl) complexes of 

rare-earth elements. However, the reaction of equimolar 

amounts of aminopyridine [Py-NHPPh2] with tris(alkyl) 

derivatives Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu, Sc) was 

accompanied by the elimination of two alkyl groups and 

afforded bis(amidopyridinate)monoalkyl complexes (Py-

NPPh2)2LnCH2SiMe3(THF) (Ln = Y (96), Lu (97), Sc (98)) 

(Scheme 18) [61]. 

Neutral alkyl complexes (BDPPmxyl)LnCH2SiMe3(THF) 

(Ln = Sc (99), Lu (100), Y (101)) and 

(BDPPoxyl)LnCH2SiMe3(THF) (Ln = Sc (102), Lu (103), Y 

(104)) were obtained in good yields by the protonolysis of 

diamino-substituted benzenes BDPPmxyl and BDPPoxyl 

bearing bulky diisopropylphenyl groups with equimolar 

amounts of Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Lu, Y) (Fig. 4) 

[62]. 
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2.3. Rare-earth monoalkyl complexes with 

the tridentate N-containing ligands 

A tridentate amidinate ligand with a pendant donor group in 

a side chain was used for the synthesis of an yttrium benzyl 

derivative [63]. Bis(amidinate) complex 

(PhC(NSiMe3)(CH2)3NMe2)2YCH2Ph (105) was obtained by the 

reaction of anhydrous YCl3(THF)3.5 with the corresponding 

lithium amidinate followed by the alkylation with an equivalent 

of PhCH2K (Fig. 5). The XRD analysis revealed that only one 

amino group of the amidinate ligands is coordinated to the 

yttrium atom. 

N

Ph

N

Me3Si

N

Ph

N

SiMe3

Y

Me2N Me2N

Ph

105  

Figure 5 

Monoanionic tridentate hydro-tris(3-tert-butyl-5-

methylpyrazolyl)borate (TptBu,Me) is one of the few ligands that 

enable the synthesis of stable alkyl derivatives of divalent 

ytterbium and thulium. The exchange reactions of iodine-

containing compound (TptBu,Me)LnI(THF) with alkylpotassium 

reagents resulted in the formation of the alkyl complexes of 

ytterbium and thulium of a general formula 

(TptBu,Me)LnR(THF)n (R = CH2SiMe3, Ln = Yb, n = 1 (106); R = 

CH(SiMe3)2: Ln = Yb, n = 0 (107), Ln = Tm, n = 0 (108)) 

(Scheme 19) [64, 65]. The structures of complexes 107 and 108 

were supproted by X-ray crystallography. Compound 107 reacts 

with phenylacetylene to form the corresponding acetylide 

derivative (TptBu,Me)YbССPh (109) [64]. 
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The first hydride complex of lanthanides in +2 oxidation 

state, [(Tpt-Bu,Me)Yb(μ-H)]2 (110), was obtained by the 

hydrogenation of compound 106 with H2 (Scheme 20) [66]. 

The reactions of tris(alkyl) derivatives 

Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y, Lu) with equimolar 

amounts of diamino-substituted pyridines provided the 

corresponding rare-earth alkyl complexes (Fig. 6) [62]. 

Monomeric complexes (BDPPpyr)LnCH2SiMe3(THF)n (n = 1, 

Ln = Sc (111); n = 2, Ln = Lu (112); n = 2, Ln = Y (113)) 

demonstrate high stability at room temperature in hexane. The 

stability of the alkyl derivatives depends on the size of the ionic 

radius of the central metal atom. An increase in the ionic radii of 

the metal centers leads to a noticeable decrease in the stabilities 

of the alkyl complexes. Thus, compounds 

(BМespyr)LnCH2SiMe3(THF)n (n = 1, Ln = Sc (114); n = 2, Ln 

= Lu (115)) with smaller mesityl substituents at the nitrogen 

atoms were less stable under similar conditions (hexane, 20 °C). 

It should be noted that attempts to isolate the yttrium complex at 

room temperature failed. 

A nonconventional approach to the synthesis of a 

trimethylsilylmethyl neodymium derivative with a tridentate 

2,6-diiminopyridine ligand was suggested by Gambarotta et al. 

[67]. Alkyl complex [2,6-{[2,6-iPr2C6H3]N-

C=(CH2)}2(C5H3N)]Nd(CH2SiMe3)(THF) (116) was obtained 

by the partial alkylation of NdCl3(THF)3 with alkyllithium 

reagent Me3SiCH2Li followed by the treatment with a diimine or 

a lithium salt of the ligand (NdCl3(THF)3/Me3SiCH2Li ratio 1/4 

or 1/2, respectively) (Scheme 21). Dianion [2,6-{[2,6- 

iPr2C6H3]N-C=(CH2)}2(C5H3N)]2– was formed as result of the 

C–H bond activation in the methyl groups at the imine carbon 
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Figure 6 

atoms of 2,6-{[2,6-iPr2C6H3]N=C(CH3)}2(C5H3N). The 

structure of complex 116 was confirmed by XRD. 

Tridentate dianionic diamido-pyridinate and diamido-amino 

ligands have been extensively used in the chemistry of organic 

derivatives of rare-earth elements. Five-coordinate alkyl and aryl 

complexes of scandium [(C5H4N)CH(Me)(CH2NR')2]ScR(THF) 

(R = CH2SiMe3, R' = SiMe3 (117); R = CH2SiMe3, R' = C6H4Me 

(118); R = CH2SiMe3, R' = C6H2Me3 (119); R = Ph, R' = SiMe3 

(120)), [R'N{(CH2)2NSiMe3}2]ScR(THF) (R = CH2SiMe3, R' = 

Me (121); R = CH2SiMe3, R' = SiMe3 (122)), 

[Me3SiN{(CH2)3NSiMe3}2]ScCH2SiMe3(THF) (123), and 

[(C5H4N)CH2N((CH2)2NSiMe3)2]ScCH2SiMe3(THF) (124) can 

be obtained both by the reactions of ScR3(THF)2 (R = 

CH2SiMe3, Ph) with equimolar amounts of neutral ligands and 

by the exchange reactions starting from ScCl3 followed by the 

alkylation (Fig. 7) [68–70]. According to the X-ray diffraction 

analysis data, compounds 119 and 124 are monomeric, whereas 

complex [{(C5H4N)CH(Me)(CH2NC6H4Me)2}ScCH2SiMe3]2 

(125), deprived of the coordinated THF molecules, has a dimeric 

structure in the crystalline state due to the presence of two 

bridging amido groups. 

Yttrium complexes [(ArNCH2CH2)2NMe)Y(o-

CH2C6H4NMe2)] (Ar = 2,4,6-Me3C6H2 (126), 2,6-Et2C6H3 

(127), 2,6-Cl2C6H3 (128)), containing σ-linked aryl ligands with 

additional donor groups in side chains, were obtained by arene 

elimination upon treatment of the corresponding tris(aryl) 

derivatives with amines (Scheme 22) [71]. Compound 126 

features low stability in solution and decomposes at 25 °C, 

whereas complexes 127 and 128 are much more stable. 

Chen et al. successfully used dianionic tridentate N,N,N-β-

diketiminate ligands to produce a series of alkyl complexes of 

rare-earth elements. The reactions of Ln(CH2SiMe3)3(THF)2 (Ln 

= Sc, Lu, Y) with substituted β-diketimines 

RNHCH2CH2NC(Me)CHC(Me)NH(2,6-iPr2C6H3) (R = tBu, 

2,6-Me2C6H3, 2,6-iPr2C6H3) led to monoalkyl complexes 

[RNHCH2CH2NC(Me)CHC(Me)NH(2,6-iPr2C6H3)]-

LnCH2SiMe3(THF) (R = tBu, Ln = Y (129); R = 2,6-Me2C6H3, 

Ln = Sc (130); R = 2,6-Me2C6H3, Ln = Y (131); R = 2,6-

Me2C6H3, Ln = Lu (132); R = 2,6-iPr2C6H3, Ln = Y (133)) 
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(Fig. 8) [72]. Alkyl compounds of gadolinium, dysprosium and 

neodymium [2,6-

iPr2C6H3NHCH2CH2NC(Me)CHC(Me)NH(2,6-

iPr2C6H3)]LnCH2SiMe3(THF) (Ln = Dy (134), Gd (135), Nd 

(136)) with the most bulky diisopropylphenyl substituents in 

side chains were obtained by the protonolysis of the freshly 

prepared tris(alkyl) derivatives with equimolar amounts of the 

corresponding β-diketimines (Fig. 8). The XRD analyses 

demonstrated that the coordination environments in complexes 

129, 131, and 136 are distorted square pyramids with alkyl 

groups at the apical positions. 

2.4. Rare-earth monoalkyl complexes with 

the polydentate N-containing ligands 

Alkyl complexes with tetradentate dianionic ligands are 

represented by ansa-linked bis(amidinate) 

[(CH2)3{N(CPh)NSiMe3}2]YCH(SiMe3)2(THF) (137) [73] and 

guanidinate [(CH2)3{N(CN(iPr)(SiMe3))NiPr}2]- 

SmCH2Ph(DME) (138) [74]. These compounds were 

synthesized by the exchange reactions of the corresponding 

chloride derivatives with alkyllithium or alkylpotassium 

reagents (Fig. 9). 

The syntheses of yttrium and lutetium alkyl complexes with 

tetradentate bis(amidinate) ligands containing ortho-phenylene 

linkers were also reported [75]. Complexes [C6H4-1,2-

{NC(tBu)N(2,6-R2C6H3)}2]Ln(CH2SiMe3)(THF)n (R = Me, Ln 

= Y, n = 1 (139); R = Me, Ln = Lu, n = 1 (140); R = iPr, Ln= Y, 

n = 2 (141)) were obtained by the reactions of equimolar 

amounts of tris(alkyl) derivatives Ln(CH2SiMe3)3(THF)2 and the 

corresponding bis(amidine) (Fig. 10). Compounds 139–141 are 

quite stable in the solid state and can be stored in an inert 

atmosphere at 0 °C for several months without evidence of 

decomposition. The structures of complexes 139 and 140 were 

confirmed by single-crystal X-ray analyses. 

Tetradentate dianionic aminotropominate ligands were 

successfully used for the synthesis and isolation of alkyl 

derivatives of rare-earth elements 142, 143, and 144 (Fig. 11) 

[76]. 
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Rare-earth complexes with macrocyclic ligands are of 

particular interest owing to their luminescence and magnetic 

properties [77]. However, there are only a few examples of the 

application of nitrogen-containing macrocyclic ligand systems 

as coordination environments for alkyl derivatives of 

lanthanides. A doubly deprotonated octaethylporphyrinic (OEP) 

macrocycle was used to synthesize alkyl complexes of yttrium 

and lutetium (OEP)LnCH(SiMe3)2 (Ln = Y (145), Lu (146)) 

[78] as well as scandium (OEP)ScR (R = Me (147), CH(SiMe3)2 

(148), CH2SiMe3) (149) (Fig. 12) [79]. Compounds 145 and 146 

resulted in high yields from the alkane elimination during the 

reactions between Ln[CH(SiMe3)2]3 (Ln = Y, Lu) and 

octaethylporphyrin (OEPH2). Complexes 145 and 146 can also 

be obtained by the treatment of the corresponding phenolate 

complexes (OEP)Ln(O-2,6-tBuC6H3) (Ln = Y, Lu) with 

LiCH(SiMe3)2. Compounds 145 and 146 feature high stability 

and do not decompose even upon heating in toluene at 60 °C for 

6 h. The structure of lutetium complex 146 was elucidated by 

XRD. The coordination environment of the lutetium atom 

appeared to be a distorted square pyramid due to the 

coordination of the octaethylporphyrinic ligand and the alkyl 

group. Scandium derivatives 147–149 were synthesized by the 

exchange reactions of chloride complexes (OEP)ScCl with 

alkyllithium reagents. According to the X-ray diffraction data, 

compounds 147 and 148 have structures similar to that of the 

lutetium complex. 

Treatment of complexes 145 and 146 with HO-2,6-tBu-

C6H3, tBuCCH, and H2O leads to monomeric phenolate 

derivatives (OEP)Ln(O-2,6-tBu-C6H3), dimeric acetylides 

[(OEP)Ln(-CCtBu)]2, and dimeric hydroxo compounds 

[(OEP)Ln(-OH)]2, respectively. It is noteworthy that 

alkylderivatives 145 and 146 do not react with molecular 

hydrogen even at the high pressure (25 atm, 25 °C). 

Scandium complexes 147–149 readily react with the C≡O 
bond of carbon monoxide and the C≡N bond of xylyl 

isocyanate, but in all cases inseparable mixtures of products 

were derived. The reactions of methyl derivative (OEP)ScMe 

(147) with CO2 and trans-N,N-dimethylated porphyrinogen 

(PORF) afforded stable monomeric alkyl complexes of trivalent 

samarium that lack the coordinated solvent molecules or alkali 

metal halides (compounds (PORF)SmR with R = Me (150) or 

CH2SiMe3 (151)) (Scheme 23) [80]. Alkyl derivatives 150 and 

151 were synthesized by the oxidation of divalent samarium 

complex (PORF)Sm(THF)2 with tert-butyl chloride followed by 

the alkylation with the corresponding RLi salt. The structures of 

complexes 150 and 151 were supported by X-ray 

crystallography. Unlike the methyl derivatives of samarium 

metallocene complexes, compound 150 appeared to be quite 

inert: it does not activate the C–H bond of benzene, alkenes or 

diethyl ether. The reactions of 150 with carbon dioxide and 

acetone resulted in the acetate and tert-butoxide complexes, 

respectively [79]. 

3.1. Rare-earth bis(alkyl) complexes with the 

monodentate N-containing ligands 

N-Substituted anilines have proved to be excellent ligands 

for the synthesis of bis(alkyl) derivatives of rare-earth elements. 

Complexes [2,6-iPr2C6H3N(SiMe3)]Ln(CH2SiMe3)2(THF) (Ln = 

Sc (152), Y (153), Ho (154), Lu (155)) stabilized by N-

trimethylsilyl-2,6-diisopropylanilide were prepared by the 

reactions of equimolar amounts of Ln(CH2SiMe3)3(THF)2 with 

2,6-iPr2C6H3NH(SiMe3) (Fig. 13) [81]. In the case of 

gadolinium, this reaction was accompanied by the 

intramolecular activation of the methyl C–H bond of SiMe3 

group in the anilide ligand followed by the redistribution of the 

ligands, which resulted in bimetallic complex Gd2(μ-

CH2SiMe2NC6H3iPr2-2,6)3(THF)3 (156). Interestingly, bis(alkyl) 

complexes 152–155 do not interact with the second equivalent 

of 2,6-iPr2C6H3NH(SiMe3). 

The reaction of (tBu2bpy)Lu(CH2SiMe3)3 (tBu2bpy = 4,4'-

di-tert-butyl-2,2'-bipyridyl) with H2NC6H3iPr2-2,6 in toluene led 

to a tris(amide) lutetium complex. The use of a more bulky 

aniline, namely, H2NC6H2tBu3-2,4,6 ensured the high-yield 

synthesis of mono(amido) bis(alkyl) complex 

(tBu2bpy)Lu(NHC6H2tBu3-2,4,6)(CH2SiMe3)2 (157) (Scheme 

24) [82]. Treatment of compound 157 with Ph3P=O promoted 

the replacement of tBu2bpy in the metal coordination sphere, 

resulting in the corresponding adduct 

(Ph3P=O)2Lu(NHC6H2tBu3-2,4,6)(CH2SiMe3)2 (158) [82]. 

Scandium, yttrium, and lutetium bis(alkyl) complexes of a 

general formula [ImArN]Ln(CH2R)2(THF)n (R = SiMe3, Ln = Sc, 

n = 1 (159); R = SiMe3, Ln = Y, n = 2 (160); R = SiMe3, Ln = 

Lu, n = 2 (161); R = Ph, Ln = Lu, n = 2 (163)) (ImArN = 1,3-

bis(2,6-diisopropylphenyl)imidazoline-2-imine ligand) were 

obtained by the reactions of the corresponding dichloride 

compounds [(ImArN)LnCl2(THF)3] with two equivalents of 

LiCH2SiMe3 or KCH2Ph (Scheme 25) [83]. Note that 

gadolinium derivative [(ImArN)Gd(CH2SiMe3)2(THF)2] (162) 

was prepared from ate-complex 

[(ImArN)GdCl2(THF)2]·[LiCl(THF)2] [83]. 

Treatment of complexes 159–161 with one equivalent of 

zwitterionic compound [nido-(Me2NHCH2CH2)C2B9H11] in 

THF afforded dicarbolide complexes with additional donor 

groups [(ImArN)M{σ:η5-(Me2NCH2CH2)C2B9H10}(THF)] (Ln = 
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Sc (164), Y (165), Lu (166)) in high yields (Scheme 26) [84]. 

Yttrium dicarbolide complexes containing two amine 

([(ImArN)Y{σ:σ:η5-(Me2NCH2)2C2B9H9}(THF)] (167)) or amine 

and ester groups ([(ImArN)Y{σ:σ:η5-

(Me2NCH2CH2)(MeOCH2CH2)C2B9H9}] (168)) in the ligand 

frameworks were synthesized by similar reactions (Scheme 26) 

[84]. 
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3.2. Rare-earth bis(alkyl) complexes with the 

bidentate N-containing ligands 

Monoanionic chelate amidinate, guanidinate and 

diiminophosphinate ligands have been widely used in the 

chemistry of organic derivatives of lanthanides for the synthesis 

of mono- and bis(alkyl) complexes. 

Stable rare-earth bis(alkyl) amidinate complexes 

[PhC(NC6H3iPr2-2,6)2]Ln(CH2SiMe3)2(THF)n (Ln = Sc, n = 1 

(169) [85]; Ln = Y: n= 1 (170), 2 (171) [86, 87]; Ln = Lu, n= 1 

(172) [86]), [(C6F5)C(NC6H3iPr2-2,6)2]Y(CH2SiMe3)2(THF) 

(173) [88], [CyC(NC6H3iPr2-2,6)2]Ln(CH2SiMe3)2(THF) (Ln = 

Y (174), Lu (175)) [89], [CyC(NC6H3Me2-

2,6)2]Ln(CH2SiMe3)2(THF)2 (Ln = Y (176), Lu (177)) [89], 

[PhC(NC6H3Me2-2,6)2]Y(CH2SiMe3)2(THF)2 (178) [89], 

[tBuC(NC6H3iPr2-2,6)2]Ln(CH2SiMe3)2(THF) (Ln = Y (179) 

[90], Yb (180) [91]) resulted from the alkane elimination during 

the reaction of Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y, Lu) with the 

corresponding amidines (Scheme 27). Dibenzyl complexes of 

lanthanum [RC(NC6H3iPr2-2,6)2]La(CH2Ph)2(THF) (R = Ph 

(181) [92, 93], tBu (182) [93]) with bulky benzamidines were 

also isolated in high yields (Scheme 27). 

According to the XRD analysis data, in complex 182 two 

benzyl groups are bound in a η2-fashion, whereas in complex 

181 there are one η3- and one η2-benzyl groups [91]. The alkane 

elimination appeared to be a convenient synthetic method for the 

preparation of mono(amidinate) bis(aminobenzyl) rare-earth 

complexes [PhC(NC6H3iPr2-2,6)2]Ln(CH2C6H4NMe2-o)2 (Ln = 

Sc (183) [94], Y (184) [95], Lu (185) [94]) that do not have 

coordinated solvent molecules (Scheme 27). Complexes 183–
185 and [Me2NC6H4CH2C(NC6H3iPr2-2,6)2]Ln(CH2C6H4NMe2-

o)2 (Ln = Sc (186), Lu (187)) can also be obtained by the 

metathesis between anhydrous LnCl3 and lithium amidine 

derivative [RC(NC6H3iPr2-2,6)2]Li (R = Ph, CH2C6H4NMe2-o) 

followed by the alkylation with LiCH2C6H4NMe2-o [96]. 

Related tris(alkyl) derivatives of lanthanides with the large 

ionic radii Ln(CH2SiMe3)3(THF)n (Gd, Nd, La) were 

synthesized without isolation by the reactions of LnX3(THF)n 

(Ln = La, X = Br, n = 4; M = Gd, Nd, X = Cl, n = 3) with three 

equivalents of Me3SiCH2Li in THF. The subsequent addition of 

one equivalent of the amidine gave rise to the corresponding 

bis(alkyl) complexes PhC(NC6H3iPr2-

2,6)2]Ln(CH2SiMe3)2(THF)2 (Ln = La (188), Nd (189), Gd 

(190)) in good yields (Fig. 14) [86]. For neodymium, in the case 

of [CyC(NC6H3iPr2-2,6)2] ligand, ate-complex 

[CyC(NC6H3iPr2-2,6)2]Nd(CH2SiMe3)2(μ-Cl)Li(THF)3 (192) 

was isolated in 48% yield, while the use of a less bulky 

amidinate ligand, namely, [CyC(NC6H3Me2-2,6)2] resulted in 

neutral bis(alkyl) complex [CyC(NC6H3Me2-

2,6)2]Nd(CH2SiMe3)2(THF)2 (191) in 52% yield (Fig. 14) [89]. 

Complex [Me3SiCH2C(NCy)2]Lu(CH2SiMe3)2(4,4'-tBu2-

2,2'-bipy) (193) (Scheme 28) [82] was synthesized by the 

addition of carbodiimide CyN=C=NCy to the Lu–C bond of 

tris(alkyl) derivative Lu(CH2SiMe3)3(4,4'-tBu2-2,2'-bpy). 

Treatment of neutral mono(amidinate) bis(alkyl) complexes 

[PhC(NC6H3iPr2-2,6)2]Y(CH2SiMe3)2(THF)n (170, 171) with 

the Brönsted acid [HNMe2Ph][B(C6F5)4] in THF-d8 and 

[PhC(NC6H3iPr2-2,6)2]Ln(CH2SiMe3)2(THF)n (Ln = Sc (169), Y 

(170 and 171), La (188), Nd (189), Gd (190), Lu (172)) with 
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[HNMe2Ph][BPh4] in THF afforded cationic alkyl derivatives 

[{PhC(NC6H3iPr2-2,6)2}Y(CH2SiMe3)(THF)n]
+[B(C6F5)4]

− 

(194) [87] and [{PhC(NC6H3iPr2-2,6)2}Ln(CH2SiMe3)(THF)n]
+ 

[BPh4]
− (Ln = Sc, n = 2 (195); Ln = Y, n = 3 (196); Ln = La, n = 

4 (197); Ln = Nd, n = 4 (198); Ln = Gd, n = 3 (199); Ln = Lu, n 

= 3 (200)) [88]. 

These reactions were accompanied by the formation of 

SiMe4 and PhNMe2. XRD studies showed that the remaining 

alkyl groups occupy axial positions [86]. Cationic lanthanum 

complex [{PhC(NC6H3iPr2-2,6)2}La(CH2Ph)(THF)3]
+[BPh4]

− 

(201) was synthesized by the reaction of the corresponding 

dibenzyl derivative 181 with [HNMe2Ph][BPh4] in THF [93]. 

Heterotrinuclear complexes [PhC(NC6H3iPr2-2,6)2]Ln[(μ2-

Me)2AlMe2]2 (Ln = Sc (202) [94], Y (203) [95], Lu (204) [94]) 

were synthesized by the reactions of [PhC(NC6H3iPr2-

2,6)2]Ln(CH2C6H4NMe2-o)2 183–185 with AlMe3 (molar ratios: 

1:5 for Y; 1:3 for Sc and Lu) in toluene at room temperature 

(Scheme 29). In the case of complexes [PhC(NC6H3iPr2-

2,6)2]Ln(CH2C6H4NMe2-o)2 (Ln = Sc (183), Lu (185)), 

treatment with two equivalents of AlMe3 furnished 

homometallic trinuclear methylidene complexes 

{[PhC(NC6H3iPr2-2,6)2]Ln(μ2-CH3)}3(μ3-CH3)(μ3-CH2) (Ln = 

Sc (205), Lu (206)) (Scheme 29) in 76% and 72% yields, 

respectively [94]. 

Bis(alkyl) yttrium complexes [(Me3Si)2NC(NR)2]-

Y(CH2SiMe3)2(THF)2 (R = iPr (207) [97], Cy (208) [98]) and 

[(Me3Si)2NC(NiPr)2]YtBu2(THF)2 (209) stabilized by 

guanidinate ligands were obtained by the alkylation of the 

corresponding dichloride compounds with RLi (R = CH2SiMe3, 

tBu), while complex [Me2NC(NC6H3iPr2-

2,6)2]Y(CH2SiMe3)2(THF) (210) [99] was synthesized by the 

alkane elimination (Fig. 15).  

A series of rare-earth bis(alkyl) complexes with 

iminophosphonamide ligands [Ph2PNAr1Ar2]- 

Ln(CH2SiMe3)2(THF) (Ln = Sc (211–213), Y (214–216), Er 

(217), Lu (218–228)), which possess different steric and 

electronic properties, were synthesized by the deprotonation of 

iminophosphonamines with equimolar amounts of 

Ln(CH2SiMe3)3(THF)2 (Scheme 30) [100–102]. According to 

the results of X-ray crystallography, bidentate ligands 
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[Ph2PNAr1Ar2]– are coordinated to the Ln3+ metal center in a η2-

N,N-fashion in the meridional configuration, leading to the 

separation of two alkyl groups. 

The pyridyl-iminophosphonamide can serve as an N,N,N-

tridentate ligand (216 and 217) [101]. In contrast, in the case of 

Sc (212), which has the smallest ionic radius, this pyridyl-

iminophosphonamide ligand is bound to the metal center in a η2-

N,N-mode [100]. 

Bis(alkyl) complexes of rare-earth elements containing β-

diiminesulfonate ligands [R1S(NC6H3iPr2-2,6)2]LnR2(THF)n (R 

= CH2SiMe3, R1 = Ph: Ln = Sc, n = 1 (229); Ln = Y, n = 2 

(230); Ln = Lu, n = 1 (231); R = CH2SiMe3, R1 = 

CH2C6H4NMe2-o, Ln = Lu, n = 1 (232)) were obtained by the 

reactions of cationic bis(alkyl) derivatives 

[Ln(CH2SiMe3)2(THF)x]
+[BPh4]

− (Ln = Sc, Y, Lu) with one 

equivalent of lithium salts synthesized by treating 2,6-

iPr2C6H3N=S=NC6H3iPr2-2,6 with alkyllithium reagents R1Li 

(R1 = Ph, CH2C6H4NMe2-o) (Scheme 31) [102]. The reaction of 

alkane elimination can also be used successfully for the 

preparation of bis(alkyl) complexes [R1S(NC6H3iPr2-

2,6)2]LuR2(THF)n (R = R1 = CH2SiMe3, n = 1 (233); R = R1 = 

CH2C6H4NMe2-o, n = 0 (234)) (Scheme 31) [102]. 

Bulky amidopyridine ligands are suitable coordination 

environments for stabilization of rare-earth bis(alkyl) 

complexes. The use of these ligands allowed for the synthesis of 

a large number of stable bis(alkyl) derivatives of Sc, Y, Er, Yb, 

and Lu (compounds 235–249) (Fig. 16) [103–108]. Most of 

these complexes were obtained by the alkane elimination upon 

interaction of Ln(CH2SiMe3)3(THF)2 with the corresponding 

aminopyridine [103]. However, the alkylation of the parent 

dichloride complexes of yttrium and lutetium with two 

equivalents of LiCH2SiMe3 also resulted in bis(alkyl) 

derivatives 236 and 239 in good yields [104]. XRD analysis 

revealed that the amidopyridine ligands are coordinated to the 

metal center through the amide and pyridyl nitrogen atoms. 

Unlike amidinate complexes, no averaging of the Ln–N bond 

lengths was observed for compounds 235–249 containing 

similar N,C,N-frameworks. 

It was found that the length of a linker between the amide 

and pyridine fragments of amidopyridine ligands is crucial for 

stability of bis(alkyl) complexes. Bis(alkyl) derivatives 

stabilized by bulky N,C,N-amidopyridine ligands with directly 

attached amide and pyridinate groups feature high thermal 

stability. For example, yttrium complex 236 decomposes in 

C6D6 at room temperature during a week only by 10%, while 

analogous lutetium complex 239 does not undergo 

decomposition even in a month [104]. At the same tme, the 

presence of CH2 or CMe2 linker between the amide and pyridine 

groups leads to a significant decrease in the stability of 

bis(alkyl) complexes with N,C,C,N-amidopyridinates. Another 

factor that determines the stability of bis(alkyl) complexes with 

N,C,C,N-amidopyridine ligands is the existence of substituents 

at the sixth position of the pyridyl moiety. Rare-earth bis(alkyl) 

derivatives were isolated only in the case of unsubstituted 

amidopyridinate ligands (250–252) (Fig. 17) [109]. The use of 

ligands bearing additional substituents at the mentioned position 

led to the intramolecular C–H bond activation, resulting in 

alkyl-aryl (253) [110], alkyl-benzyl (254) [110], and alkyl-

hetaryl (255–258) [111, 112] complexes and SiMe4 (Fig. 17). 
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Scheme 32 

Compounds 236–239 undergo hydrogenation upon 

treatment with PhSiH3 (1:2 molar ratio, 0 °C, hexane) and H2 (P 

= 5 atm, 15 °C, 24 h), giving rise to trinuclear alkyl hydride 

complexes 259–262 (Scheme 32) [104, 107]. 

The selective σ-bond metathesis of Y-CH2SiMe3 was 

observed in the reaction of compounds 253–255 containing two 

different Y–C bonds with PhSiH3 (1:2 molar ratio). The 

corresponding aryl-hydride (263), benzyl-hydride (264), and 

heteroaryl-hydride (265) complexes were obtained in high yields 

(Scheme 33) [110, 111]. The second Y–C bond (aryl, benzyl, 

hetaryl) remained intact even in the presence of a tenfold molar 

excess of PhSiH3. 

Rare-earth bis(alkyl) complexes with bulky amidopyridine 

ligands 266–269 were synthesized by the reactions of the 

tris(alkyl) derivatives with equimolar amounts of the 

corresponding aminopyridines (Fig. 18) [113]. According to the 

XRD data, complex 268 has distorted trigonal bipyramidal 

geometry. 

A bidentate monoanionic amido-imine ligand system was 

generated by the reaction of tris(alkyl) complexes 

Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y, Lu) with diimines 2,6-

R2C6H3N=CHCH=NC6H3R2-2,6 (R = Me, iPr). Bis(alkyl) 

derivatives [2,6-R2C6H3NCH2C(CH2SiMe3)=NC6H3R2-

2,6]Ln(CH2SiMe3)2(THF) (R = Me, Ln = Sc (270); R = Me, Ln 

= Y (271); R = Me, Ln = Lu (272); R = iPr, Ln = Sc (273), R = 

iPr, Ln = Y (274); R = iPr, Ln = Lu (275)) (Scheme 34) [114, 

115] were derived from the selective transfer of one alkyl group 

from the rare-earth metal atom to one of two C=N bonds 

followed by the intramolecular hydrogen migration. The 

interaction between less bulky diimine 4-

MeC6H4N=CHCH=NC6H4Me-4 with Sc(CH2SiMe3)3(THF)2 led 

to the alkylation of both C=N bonds, resulting in diamide alkyl 

complex [4-MeC6H4NCH(CH2SiMe3)]2ScCH2SiMe3(THF)2 

(276) [114]. 
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Heating of complex 273 in hexane at 70 °C promoted the 

intramolecular activation of one of the methyl C–H bonds in the 

isopropyl group of the ligand and afforded heteroalkyl complex 

[2-(CH2CH(Me))-6-iPrС6H3-N=C(CH2SiMe3)-CH2-NС6H3iPr2-

2,6]ScCH2SiMe3(THF) (277) (Scheme 35) [114]. 

Bis(alkyl) yttrium and lutetium species bearing an amido-

imino ligand system [(2,6- iPr2C6H3)N=C(Me)C(=CH2)N(C6H3-

2,6-iPr2)]Ln(CH2SiMe3)2THF (Ln = Y (278), Lu (279)) were 

synthesized by the reactions of amido lithium derivative [(2,6-

iPr2C6H3)N=C(Me)C(=CH2)N(C6H3-2,6-iPr2)]Li(OEt2) [116] 

with equimolar amounts of anhydrous LnCl3 (Ln = Y, Lu) 

followed by the alkylation with LiCH2SiMe3 (Scheme 36) [117]. 

Treatment of bis(alkyl) yttrium complex 278 with an excess 

of DME in hexane resulted in the cleavage of the C–O bond of 

DME and the loss of one alkyl group, affording methoxy-alkyl 

yttrium species {[(2,6-iPr2C6H3)N=C(Me)C(=CH2)N(C6H3-2,6-

iPr2)]Y(CH2SiMe3)-(μ-OMe)}2 (280) (Scheme 37) [117]. 

Bis(alkyl) rare-earth complexes [2-(2,6-

Me2C6H3N=CH)C4H3N]Ln(CH2SiMe3)2(THF)2 (Ln = Sc, n = 1 

(281); Lu, n = 2 (282)) [118] were synthesized by the reactions 

of 2-(iminomethyl)pyrrole with Ln(CH2SiMe3)3(THF)2 (Ln = 

Sc, Y) (Scheme 38). The most sterically hindered 2-

(iminomethyl)pyrrole with 2,6-diisopropylphenyl substituents 

afforded bis(pyrrolyl-aldiminate) mono(alkyl) complexes of 

lanthanides [2-(2,6-iPr2C6H3N=CH)-

C4H3N]2Ln(CH2SiMe3)(THF) (Ln = Sc (283), Lu (284)) [118]. 

The use of tBu-substituted 2-(imino)pyrrole 2-(2,6-

iPr2C6H3N=CH)C4H2NHtBu instead of 2-(2,6-

iPr2C6H3N=CH)C4H3N in the reaction with 

Ln(CH2SiMe3)3(THF)n (Ln = Y, n = 2; Ln = Sm, n = 3) led to 

the formation of bis(alkyl) complexes 2-(2,6-iPr2C6H3N=CH)-5-

tBuC4H2N]Ln(CH2SiMe3)2(THF)2 (Ln = Y (285); Sm (286)) 

(Scheme 38) [119]. 

However, in the case of yttrium, a bimetallic pyrrolyl-

aldiminate monoalkyl complex (287) was obtained in the 

reaction of Y(CH2SiMe3)3(THF)2 with 2-[(N-2,6-

diisopropylphenyl)iminomethyl)]pyrrole (Scheme 39) [120]. 

This reaction was accompanied by the deprotonation of the 

iminopyrrole by the alkyl group of the tris(alkyl) derivative, 

while the C=N bond inserted into the second YCH2SiMe3 bond. 

The dianionic ligand appeared to be bound with two metal 

centers in a η5/η1:κ1-mode [120]. A similar transformation of the 

ligand was observed in the reaction of iminopyrrole 2-(2-

CH3OC6H3N=CH)C4H3NH with Ln(CH2SiMe3)3(THF)2, 

resulting in bimetallic pyrrolyl-aldiminate monoalkyl complexes 

of [{2-(2-CH3OC6H3NCH(CH2SiMe2))C4H3N}LnCH2SiMe3]2 

(Ln = Y, Lu) [121]. 

The interaction between Ln(CH2SiMe3)3(THF)2 and 2-

dimethylaminomethylpyrrole yielded bimetallic bis(alkyl) 

complexes [(2-(Me2NCH2)-C4H3N)Ln(CH2SiMe3)2]2 (Ln = Sc 

(288), Y (289), Lu (290)) (Scheme 40) [118]. 

Bidentate N-R-quinolinyl-8-amide ligands (R = Ph, 

C6H3Me2-2,6, C6H2Me3-2,4,6, C6H3Et2-2,6, C6H3iPr2-2,6) were 

successfully used for the synthesis of extremely stable bis(alkyl) 

derivatives of rare-earth elements (Scheme 41) [122, 123]. 

Complexes 291–299 were obtained in good yields by the 

reactions of aminoquinolines with Ln(CH2SiMe3)3(THF)2 (Ln = 

Sc, Y, Lu). However, an attempt to synthesize a neodymium 

analog by the reaction of tris(alkyl) derivative 
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Nd(CH2SiMe3)3(THF)n with R-quinolinyl-8-amine (R = 

C6H3iPr2-2,6) afforded mono(alky) bis(amide) complex 

L2Nd(CH2SiMe3)(THF) (300) [123]. Cationic alkyl complex 

[LSc(CH2SiMe3)(DME)2][B(C6F5)4] (L = N-2,6-Me2C6H3-

quinolinyl-8-amide) was obtained upon treatment of compound 

291 with [HNMe2Ph][B(C6F5)4] [122]. 

A wide range of rare-earth (Sc, Y, La, Ce, Er) hydrocarbyl 

species coordinated by β-diketiminate ligands 

RNC(R')CHC(R')NR (R= C6H3iPr2-2,6, C6H3Me2-2,6, SiMe3; R' 

= CH3, tBu, Ph) have been published to date [93, 124–128]. 

Lappert and co-workers were the first who synthesized and 

structurally characterized a bis(alkyl) complex of lanthanide 

stabilized by β-diketiminate ligand {CH[C(Ph)NSiMe3]2}- 

Ce[CH(SiMe3)2]2 (301) [124]. This compound was the only 

product isolated from the alkylation of bis(β-diketiminate) 

chloride complex {CH[C(Ph)NSiMe3]2}2CeCl with one or two 

equivalents of Li[CH(SiMe3)2]2 (Scheme 42). 

A series of bis(alkyl) complexes of Sc, Y, La, and Er were 

synthesized by the alkane elimination or the reactions with 

alkyllithium reagents. Bis(alkyl) scandium complexes 

{CH[C(R)NR']2}ScR"2(THF)n (302–310, R = Me, tBu; R' = 

C6H3iPr2-2,6; R" = Me, Et, CH2Ph, CH2CMe3, CH2SiMe3) were 

obtained upon treatment of parent dichloride complexes 

{CH[C(R)NR']2}ScCl2(THF)n with two equivalents of 

organolithium or organomagnesium compounds in moderate and 

good yields (Fig. 19) [125]. Most of the alkyl scandium 

compounds stabilized by the tBu-substituted β-diketiminate 

ligand were isolated as solvent-free four-coordinate complexes. 

Only dimethyl derivative 302, containing Me-substituted β-

diketiminate ligand, has a THF molecule coordinated to the 

metal center (Fig. 19). Dibenzyl (303 and 308), bis(neopentyl) 

(304 and 309), and bis(trimethyl)silylmethyl derivatives (305 

and 310) have sufficient volumes to exclude the coordination of 

THF. In addition, the use of this tBu-substituted ligand enabled 

the isolation of diethyl complex 310. 

Four-coordinated bis(alkyl) complexes of scandium 303–
310 and 314 are not thermally stable in benzene. In all cases 

there were observed the activation of the C–H bond in the 

isopropyl group of C6H3iPr2-2,6 fragment and the formation of 

the R–H bond [125]. 

Yttrium complex {CH[C(Me)N(C6H3Me2-

2,6)]2}Y(CH2SiMe3)2(THF) (311) (Fig. 19) was synthesized by 

the reaction of Y(CH2SiMe3)3(THF)2 with a β-diketimine [126]. 

At the same time, compounds {CH[C(R)N(C6H3iPr2-

2,6)]2}YR'2(THF) (312–317; R = Me, tBu; R' = Me, CH2Ph, 

CH2SiMe2Ph) were obtained by the alkylation of the starting 

diiodides with organolithium or organopotassium reagents (Fig. 

19) [127]. Similarly to scandium compounds, complexes 

stabilized with the less bulky Me-substituted ligand can contain 

THF molecules in the metal coordination sphere during the 

alkylation process (for 313). Complexes 315–317 with a tBu-

substituted β-diketiminate ligand did not contain the coordinated 

Lewis-base molecules even when THF was used as a solvent. 

More bulky CH2SiMe2Ph groups excluded the coordination of 

THF molecules on the metal center (solvent-free complexes 314 

and 317). Bis(alkyl) yttrium compounds showed moderate 

thermal stability in aromatic solvents. They undergo 

intramolecular C–H bond activation of the methyl group in 2,6- 
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R' = CH2SiMe3, n = 0 (319)

 

Figure 19 

iPr2C6H3 fragment followed by the elimination of an alkane 

[127]. 

In addition, β-diketiminate ligands proved to be convenient 

coordination environments for the synthesis of bis(alkyl) 

complexes of lanthanides with large ionic radii. Lanthanum 
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complex {HC[C(Me)NC6H3iPr2-2,6]2}La(CH2Ph)2(THF) (318) 

(Fig. 19) was synthesized by the interaction of LaBr3(THF)4 and 

K{HC[C(Me)NC6H3iPr2-2,6]2} with subsequent treatment with 

two equivalents of PhCH2K (Fig. 19) [93]. The reaction of 

dimeric chloride complex {HC[C(Me)NC6H3iPr2-2,6]2}ErCl(μ-

Cl)3Er{HC[C(Me)NC6H3iPr2-2,6]2}(THF) with four equivalents 

of LiCH2SiMe3 resulted in a solvent-free four-coordinate 

bis(alkyl) complex {HC[C(Me)NC6H3iPr2-2,6]2}Er(CH2SiMe3)2 

(319) (Fig. 19) [128]. 

Heteroalkyl scandium derivative {CH[C(tBu)N(C6H3iPr2-

2,6)]2}Sc(CH3)CH2SiMe3 (321) was obtained by the exchange 

reaction between equimolar amounts of the corresponding 

dichloride and dimethyl complexes followed by the treatment 

with LiCH2SiMe3 (Scheme 43) [125]. 

W. E. Piers et al. proposed and successfully implemented a 

"remote steric bulk" strategy for stabilization of low-coordinate 

bis(alkyl) scandium complexes (322–325) [127]. A significant 

improvement in the thermal stabilities of neutral bis(alkyl) and 

cationic alkyl scandium complexes was achieved owing to the 

use of a new β-diketiminate ligand containing bulky ortho-

substituted aryl fragments at the nitrogen atoms (Fig. 20) [129]. 

Scandium complexes 315–318 appeared to be much more 

thermally stable than the bis(alkyl) derivatives containing 

{HC[C(Me)NC6H3iPr2-2,6]2} ligands (302–310). For example, 

complexes 305 and 307 begin to decompose at 60 °C in 15 min, 

while compounds 322–325 remain intact upon heating at 100 

°C. The decomposition of these complexes was detected only 

after heating at 120 °C for 5 h [129]. 

Potentially tetradentate bis(β-diketiminate) ligands m-

C6H4[NC(Me)CHC(Me)NHC6H3R2-2,6]2 (R = Me, Et, iPr) with 

a meta-phenylene bridge between two β-diketiminate fragments 

were used in the reactions with Ln(CH2SiMe3)3(THF)2 (Ln = Sc, 

Y, Lu), which resulted in binuclear bis(alkyl) complexes m-

C6H4{[NC(Me)CHC(Me)NC6H3R2-2,6]Ln(CH2SiMe3)2-

(THF)n}2 (R = Me, Ln = Y, n = 1 (326); R = Et, Ln = Sc, n = 0 

(327); R = Et, Ln = Y, n = 1 (328); R = Et, Ln = Lu, n = 1 (329); 

R = iPr, Ln = Y, n = 1 (330)) (Fig. 21) [130]. According to the 

X-ray analysis data, each β-diketiminate fragment is coordinated 

to the metal center in a κ2-N,N-fashion. 

Bis(alkyl) scandium derivatives 302–306 were used for the 

synthesis of cationic alkyl complexes [131–135]. The reaction of 

scandium dibenzylic complex 303 with the Lewis acid B(C6F5)3 

resulted in separated ion pair [{HC(C(Me)NC6H3iPr2-

2,6)2}Sc(CH2Ph)]+[PhCH2B(C6F5)3]
−(331) (Scheme 44) in 

which the aromatic ring of the benzyl group is coordinated to the 

metal atom in a η6-fashion [131]. 

The structures of cationic alkyl scandium complexes depend 

on the molar ratio of the reagents. Thus, the reaction of 

scandium dimethyl derivative 306 with B(C6F5)3 in a 1:0.5 ratio 

led to the formation of binuclear cationic complex 

[{[HC(C(tBu)NC6H3iPr2-2,6)2]ScMe}2(μ2-Me)]+[MeB(C6F5)3]
−  
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(332) (Scheme 45). In compound 332 two metal ions are 

connected by one μ-bridging methyl group [132]. Monomeric 

complex [{HC(C(tBu)NC6H3iPr2-2,6)2}ScMe]+[MeB(C6F5)3]
− 

(333) was obtained by the reaction of equimolar amounts of 306 

and B(C6F5)3 (Scheme 45). The counterions are bound by one μ-

bridging methyl group and the weak interaction between Sc and 

F atom located at the ortho-position of one of C6F5 rings [132]. 

Cationic complex [{HC(C(tBu)NC6H3iPr2-

2,6)2}Sc]2+[MeB(C6F5)3]
−

2 (334) was obtained upon treatment of 

compound 306 with two equivalents of B(C6F5)3 (Scheme 45) 

[132]. 

The reaction of dimethyl complex 302b with 

[Ph3C][B(C6F5)4] in a solution of bromobenzene led to solvent- 

separated ion pair [{HC(C(Me)NC6H3iPr2-

2,6)2}ScMe(C6H5Br)]+[B(C6F5)4]
− (335) (Scheme 46) [133]. 

Bromobenzene is coordinated to the Sc atom in a η6-mode; it 

can be easily replaced by other highly basic arenes (C6H6, 

C6H5Me, C6H3Me3) [133, 134]. 
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Complexes 305 and 310 react with nBuP=Te via Te 

insertion into the Sc–C bond to form bis(tellurate) derivatives 

{HC[C(R)NC6H3iPr2-2,6]2}Sc(TeCH2SiMe3)2 (R = Me (336), 

tBu (337)) (Scheme 47) [135]. 

A chiral bis(oxazoline) ligand (Box) containing a similar β-

diketimine skeleton was successfully used to synthesize 

bis(alkyl) lutetium complex [(4S)-tBuBox]Lu[CH(SiMe3)2]2 

(338) (Scheme 48) [136]. The structure of compound 338 was 

confirmed by XRD.  
Bis(alkyl) yttrium complexes 339 and 340 were obtained by 

the reaction of YCl3 with lithium anilide followed by the 

alkylation with two equivalents of RSiMe2CH2Li (R = Me, Ph) 

(Fig. 22) [137]. 

The reactions of equimolar amounts of 7-

{(NAr)iminomethyl)}indoles (Ar = C6H3Me2-2,6, C6H3iPr2-2,6) 

and Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Lu) afforded bis(alkyl) 

complexes [7-(2,6-R2C6H3NCH)C8H5N]Ln(CH2SiMe3)2(THF) 

(R = Me, Ln = Sc (341); R = Me, Ln = Lu (342); R = iPr, Ln = 

Sc (343); R = iPr, Ln = Lu (344)) (Fig. 23) [138]. The structure 

of lutetium complex 341 was confirmed by X-ray 

crystallography. Treatment of compound 341 with two 

equivalents of carbodiimide iPrN=C=NiPr yielded 

bis(amidinate) complex 7-(2,6-Me2-

C6H3NCH)C8H5N]Lu[(iPrN)2CCH2SiMe3]2 (345) [138]. 

The interaction of Y(CH2SiMe3)3(THF)2 with 

aminopyridines 6-R-C5H3N-2[CHC(Me)NH(C6H3iPr2-2,6)] (R = 

SiMe3, Ph) did not lead to the expected bis(alkyl) derivatives, 

giving rise to mono(alkyl) complexes 346 and 347 containing 

new tridentate pyridyl-1-azaallyl dianionic ligands (Fig. 24) 

[139]. This indicates that the deprotanation of a β-diketimine 

framework was accompanied by the activation of the C(sp3)–H 

(346) or C(sp2)–H (347) bond of SiMe3 or Ph substituent, 

respectively. In addition, the use of less bulky aminopyridines 6-

Me-C5H3N-2[CHC(R')NH(C6H3R"2-2,6)] (R' = R" = Me; R' = 

Ph, R" = Me; R' = Ph, R" = iPr) with methyl groups at the sixth 

position of the pyridine ring in reactions with 

Y(CH2SiMe3)3(THF)2 led to the formation of a mixture of 

products [139]. 
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A series of phosphiniminoamines (2,6-iPr2-

C6H3NH)C(Me)CHPPh2(NAr) (Ar = C6H3iPr2-2,6, C6H3Et2-2,6, 

C6H3Me2-2,6, Ph, C6H4CF3-3) were used in the reactions of 

alkane elimination with Ln(CH2SiMe3)2(THF)2. The interaction 

of Sc(CH2SiMe3)2(THF)2 with (2,6-

iPr2C6H3NH)C(Me)CHPPh2(NC6H3Me2-2,6) resulted in solvent-

free complex (2,6-iPr2C6H3N)C(Me)CHPPh2(NC6H3Me2-

2,6)Sc(CH2SiMe3)2 (348) (Fig. 25) [140]. Li et al. demonstrated 

that the reaction of Y(CH2SiMe3)2(THF)2 with 

phosphiniminoamines (2,6-iPr2C6H3NH)C(Me)CHPPh2(NAr) 

strongly depends on the nature of the substituent at the imine 

nitrogen atom [141]. Bis(alkyl) complexes [2,6-iPr2-

C6H3N)C(Me)CHPPh2(NR)]Y(CH2SiMe3)2(THF) (R = Ph 

(349), C6H4CF3-3 (350) were obtained from the reactions of 

Y(CH2SiMe3)2(THF)2 with (2,6-

iPr2C6H3NH)C(Me)CHPPh2(NAr) (Ar = Ph, C6H4CF3-3) (Fig. 

25) [141]. In the case of phosphiniminoamines (2,6-

iPr2C6H3NH)C(Me)CHPPh2(NAr) (Ar = C6H3iPr2-2,6, 

C6H3Me2-2,6), the elimination of alkane was accompanied by 

the activation of the C–H bond of the methyl group in C6H3iPr2-

2,6 or C6H3Me2-2,6 fragments (351 and 352) (Fig. 25) [141]. 

Moreover, (2,6-iPr2C6H3NH)C(Me)CHPPh2(NC6H3Et2-2,6) 

underwent the C–H bond activation of one of the phenyl 

substituents in PPh2 group (353) (Fig. 25) [141]. 

Piers et al. described the syntheses, structures, and stabilities 

of a series of dimethyl scandium complexes stabilized by 

anilido-phosphinimide N,N-donor ligands [1-(2,6-iPr2C6H3N)-2-

(PPh2=NAr)C6H4]ScMe2 (Ar = C6H2Me3-2,4,6 (354), C6H4iPr-2 

(355), C6H3iPr2-2,6 (356)) (Fig. 26) [142]. Scandium complex 

with trimethylsilylmethyl groups 357 was synthesized by the 

reaction of equimolar amounts of Sc(CH2SiMe3)3(THF)2 and [1-

(PhCH2NH)-2-(PPh2=NC6H3Et2-2,6)C6H4] [142]. Unlike 

dimethyl derivatives, compound [1-(PhCH2N)-2-

(PPh2=NC6H3Et2-2,6)C6H4]Sc(CH2SiMe3)2(THF) (357) contains 

a THF molecule in the metal coordination sphere. Dimethyl 

complexes 354–356 are extremely stable in the crystalline state 

in an argon atmosphere, although in solution they undergo 

partial decomposition. Compound 354 bearing mesityl 

substituents rapidly decomposes at room temperature due to the 

activation of the methyl C–H bond in the mesityl substituent, 

resulting in complex 358 (Scheme 49). At the same time, 

bis(alkyl) derivative 355 does not undergo decomposition even 

upon heating in C6D6 at 65 °C for 24 h [142]. 

The use of ligand systems with the phenyl substituents at the 

phosphorus atom allowed for the preparation of bis(alkyl) 

scandium derivatives 354–356 by the reactions with MeLi. At 

the same time, ligand [1-(2,6-iPr2C6H3N)-2-(PMe2=NC6H3iPr2-

2,6)C6H4]
− containing PMe2 group afforded metallated product 

359 (Fig. 27) [142]. Complex 359 is a dimer in which two 

scandium atoms are connected by μ-bridging methyl groups. 

The interaction of Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with 

aniline-phosphinimine [1-(2,6-iPr2C6H3NH)-2-

(PPh2=NC6H2Me3-2,4,6)C6H4] was accompanied by the 

protonation of one Ln–CH2SiMe3 bond as well as the activation 

of the C–H bond of one of the phenyl substituents in PPh2 

groups, which afforded the corresponding alkyl-aryl derivatives 

(Ln = Y (360), Lu (361)) (Fig. 28) [143]. Liu et al. [143] studied 

the reactivity of complexes 360 and 361 towards PhSiH3, 

[Ph3C][B(C6F5)4], and AlMe3 and showed that only the Ln–
CH2SiMe3 bond was involved in the reactions, while the Ln–
CPhenyl bond remained intact. In contrast, treatment of compound 

361 with terminal acetylene PhC≡CH proceeded with the 

protonolysis of both of the Ln–C bonds and resulted in 
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bis(acetylide) complex [1-(2,6-iPr2C6H3N)-2-(PPh2=NC6H2Me3-

2,4,6)C6H4]Lu(C≡CPh)2(DME) (362) [144]. 

The reactions of analogous thiophenyl-substituted aniline-

phosphinimines [1-(MeC4H2SCH2NH)-2-(PPh2=NAr)C6H4] (Ar 

= C6H2Me3-2,4,6, C6H3Et2-2,6, C6H3iPr2-2,6) with 

Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y, Lu) furnished the 

corresponding bis(alkyl) derivatives 363–368 in quantitative 

yields (Fig. 29) [145]. According to the results of X-ray 

diffraction studies of complexes 364, 365, and 368, the 

thiophene sulfur atom is not coordinated to the metal atom in the 

solid state. 

Sulfur-containing ligands have not gained widespread use in 

the chemistry of organic derivatives of rare-earth elements due 

to very weak binding between sulfur and lanthanides compared 

to the Ln–N, Ln–O, and Ln–P bonds. There are only a few 

examples of the application of sulfur-containing ligands in the 

synthesis of bis(alkyl) rare-earth complexes. Cui et al. 

investigated the interaction of thiophene-amines 2,6-

iPr2C6H3NHCH2(C4H3S-2) with Ln(CH2SiMe3)3(THF)2 (Ln = 

Sc, Y, Lu) [146]. In the case of yttrium and lutetium, the 

reactions led to the formation of alkyl-heteroaryl complexes 

[2,6-iPr2C6H3NCH2(C4H2S-2)]Ln(CH2SiMe3)(THF)3 (Ln = Y 

(369), Lu (370)) due to the protonation of the Ln–CH2SiMe3 

bond and the activation of the C–H bond in the thiophenyl ring 

(Scheme 50) [146]. Unexpectedly, despite the ionic radius of Sc, 

the equimolar reaction of Sc(CH2SiMe3)3(THF)2 with 2,6-

iPr2C6H3NHCH2(C4H3S-2) afforded a heteroleptic complex with 

two coordinated thiophenyl amide ligands [2,6-

iPr2C6H3NCH2(C4H2S-2)][2,6-iPr2C6H3NCH2(C4H3S-

2)]Sc(THF) (371) (Scheme 50). One of the ligands is dianionic 

and is linked to the scandium ion via covalent Sc–C and Sc–N 

bonds, whereas the second ligand is monoanionic and is 

coordinated to the metal center through the covalent Sc–N and 

coordination Sc–S bonds [146]. 
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3.3. Rare-earth bis(alkyl) complexes with the 

tridentate N-containing ligands 

Tris(pyrazolylborates) (TpR,R') have found wide application 

as stabilizing ligands in the chemistry of rare-earth elements 

[147]. The steric properties of these ligand systems can be easily 

modified by variation of substituents at the third position of the 

pyrazole rings. Initially, bis(alkyl) derivatives of rare-earth 

elements containing TpR,R' ligands were synthesized by the 

alkane elimination or the exchange reactions with alkyllithium 

reagents. Yttrium complexes (TpMe2)YR2(THF) (R = Ph (372), 

CH2SiMe3 (373) [148], CH2Ph (374) [149]) (Scheme 51) were 

prepared by the alkylation of (TpMe2)YCl2(THF) with LiR (R = 

Ph, CH2SiMe3) or KR (R = CH2Ph). 

Attempts to synthesize analogous scandium complexes by 

the reactions of (TpMe2)ScCl2(THF) and (TptBu,Me)ScCl2 with 

RLi (R = Me, CH2SiMe3, CH(SiMe3)2) led to lithium 

tris(pyrazolylborates) as the main products. The interaction of 

HTpR,R' with Sc(CH2SiMe3)3(THF)2 allowed for the isolation of 

the corresponding bis(alkyl) complexes 

[(TpMe2)Sc(CH2SiMe3)2(THF)] (375) and 

[(TptBu,Me)Sc(CH2SiMe3)2] (381) in high yields (Scheme 52) 

[150]. This approach was successfully used for the synthesis of 

bis(alkyl) derivatives of other rare-earth elements 

(TpR,R')Ln(CH2SiMe3)2(THF)n (R = R' = Me, n = 1: Ln = Y 

(376) [149, 151], Yb (377), Lu (378) [151]; R = R' = iPr, n = 1: 

Ln = Y (379), Lu (380) [152]; R = tBu, R' = Me, n = 0: Ln = Y 

(382), Yb (383), Lu (384) [151]) (Scheme 52). 
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An unusual synthetic approach was proposed by Takats et 

al. [151]. They synthesized bis(alkyl) complexes of Y, Yb, and 

Lu with tris(pyrazolylborate) ligands 

(TpR,R’)Ln(CH2SiMe3)2(THF) (R = R' = H: Ln = Y (385), Yb 

(386), Lu (387) [151]; R = R' = Me: Ln = Y (388) [151, 152], 

Yb (389), Lu (390) [152]) (Scheme 53) by the reactions of 

Ln(CH2SiMe3)3(THF)2 (Ln = Y, Yb, Lu) with Tl(TpR,R'). In the 

case of lanthanides having large ionic radii, such as Sm and Nd, 

treatment of the freshly prepared tris(alkyl) complexes with 

Tl(TpMe2) afforded bis(alkyl) derivatives 

(TpMe2)Ln(CH2SiMe3)2(THF) (Ln = Nd (391), Sm (392)) [151]. 

Unlike Tl(TpMe2), only bis(alkyl) derivative of lutetium (393) 

was isolated from the reaction with Tl(TptBu,Me) [151]. 

It was demonstrated that monomeric low-coordinated 

lutetium dimethyl complex (TptBu,Me)LuMe2 (394) (Scheme 54) 

can be obtained by the reaction of Lu(GaMe4)3 with bulky 

(TptBu,Me)H followed by the removal of GaMe3 [153]. 

It is noteworthy that bulky TptBu,Me ligand prevents the 

coordination of THF molecules to the metal center, resulting in 

the five-coordinated complexes, whereas TpH2, TpMe2, and TpiPr2 

afford six-coordinated derivatives with one THF molecule on 

the lanthanide atom. 

Hydride clusters (395–405) were synthesized by the 

reactions of complexes 379–380, 385–387, and 388–402 with 

H2 at high pressure (75 atm, room temperature) (Scheme 55) 

[151, 152, 154]. It was noted that the number of metal atoms 

included into the central framework of a cluster strongly 

depends on the volume of a tris(pyrazolylborate) ligand. For the 

less bulky TpH2 ligand, six-nuclear dodecahydride complexes 

[(TpH2)LnH2]6 (Ln = Y (395) [151], Yb (396) [154], Lu (397) 

[151]) were isolated. The use of methyl-substituted 

tris(pyrazolylborate) led to polyhydride tetrameric clusters 

[(TpMe2)LnH2]4 (Ln = Y (398) [151], Sm (399) [151], Yb (400) 

[154], Lu (401) [151], Nd (402) [151]) (Scheme 55). In the case 

of even more bulky TpiPr2, trinuclear hexahydride complexes 

[(TpiPr2)LnH2]3 (Ln = Y (404), Lu (405) [152]) were obtained 

(Scheme 55). The nature of the solvent used at the 

hydrogenation step also influenced the structures of the resulting 

clusters. Thus, tetranuclear octahydride clusters 398–402 were 

formed in toluene, while trinuclear hexahydride complex 

[(TpMe2)YH2]3(THF)2–3 (403) was isolated from THF [151]. 

Takats et. al. investigated the reactivity of bis(alkyl) 

complexes 376, 378, 382, and 384 towards substituted 

acetylenes HC≡CR" (R" = Ph, SiMe3, tBu, Ad, Trit* (Trit* = 

tris(3,5-di-tert-butylphenyl)methyl)). It was found that the 

interaction of 376 and 378 with HC≡CR" (R" = Ph, SiMe3, tBu, 

Ad) leads to the protonolysis of both alkyl groups to form 

binuclear acetylenide complexes [(TpMe2)Ln(μ-C≡CR")]2(μ-

R"C4R") (Ln = Y, R" = Ph (406), SiMe3 (407), tBu (408), Ad 

(409); Ln = Lu, R" = Ph (410), SiMe3 (411), tBu (412)) (Scheme 

56) with two alkynyl and one R"C=C-C≡CR" bridging ligands 

[155]. The use of more bulky acetylene HC≡CTrit* in the 

presence of the chelate Lewis base (2,2'-bipyridyl) excluded 

alkynyl dimerization and provided monomeric bis(acetylide) 

complexes [(TpMe2)Ln(μ-C≡CR")2(Solv)n] (R" = Trit*, Solv = 

THF, Ln = Y (413), Lu (414); R" = tBu, Solv = 2,2'-bipyridine, 

Ln = Lu (415)) (Scheme 56) [155]. The reaction of bis(alkyl) 

complexes 382 and 384 containing more bulky TptBu,Me ligand, 

with phenylacetylene yielded yttrium and lutetium derivatives 

with two terminal alkynyl groups (TptBu)Ln(C≡CPh)2 (Ln = Y 

(416), Lu (417)) (Scheme 56) [155]. 

Yi et al. [149] studied the reactivity of dibenzylic yttrium 

complex 374 towards bis(2,6-diisopropylphenyl)carbodiimide, 

phenylisocyanate, and phenylisothiocyanate. The interaction of 

374 with an equimolar amount of 2,6-iPr2C6H3N=C=NC6H3iPr2-

2,6 led to the expected insertion of the carbodiimide into the Y–
C bond to form benzyl-amidinate complex 

(TpMe2)Y(CH2Ph)[(2,6-iPr2C6H3N)2C(CH2Ph)] (418) (Scheme 

57) [149]. The reaction of 374 with PhN=C=O was 

accompanied by the addition of the Y–CH2Ph bond to the 

N=C=O fragment followed by the deprotonation of the leaving 

benzyl group and the formation of binuclear complex 

[(TpMe2)Y(THF){μ-η1:η3-OC(CHPh)NPh}{μ-η3:η2-

OC(CHPh)NPh}Y(TpMe2)] (419) (Scheme 57) [149]. The 

treatment of 374 with PhN=C=S resulted in the C=S bond 

cleavage, the elimination of PhN=C(CH2Ph)2, and the formation 

of cubic cluster [(TpMe2)Y(μ3-S)]4 (420) (Scheme 57) [149]. 

Hexanuclear 24-membered metallomacrocycle [(TpMe2)Y(μ-

N,C-Im)(η2-N,C-Im)]6 (Im = 1-methylimidazolyl, 421) was 

synthesized by the reaction of (TpMe2)Y(CH2Ph)2(THF) (374) 

with 1-methylimidazole in a 1:2 ratio (Scheme 58) [156]. This 

compound resulted from the activation of the C–H bonds at C2 

and C5 carbon atoms of the imidazole ring. At the same time, 

the interaction of 374 with two equivalents of 1-

methylbenzimidazole was accompanied by the C–H bond 

activation and opening of the imidazole ring followed by the 

formation of the new C–C bond, giving rise to non-classical 

ionic-type complex [(TpMe2)Y{η3-(N,N,N)-N-

(Me)C6H4NHCH=C(Ph)-CN(Me)C6H4NH}] (422) (Scheme 58) 

[156]. Further studies showed that treatment of complex 374 

with one or two equivalents of benzothiazole also proceeds 

through the opening of the cycle and affords dimeric yttrium 

complex {(TpMe2)Y[μ-η2:η1-SC6H4N(CH=CHPh)](THF)}2 (423) 

(Scheme 58) [156]. 
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Bis(alkyl) yttrium complex [Y(κ3-ToM)(CH2SiMe3)2(THF)] 

(424) was obtained by the reaction of Y(CH2SiMe3)(THF)2 with 

an equimolar amount of tris(4,4-dimethyl-2-oxazolinyl)phenyl 

borate ToM (Fig. 30) [157]. 

According to the XRD analysis, ToM, as well as 

tris(pyrazolyl)borate ligands, is coordinated to the metal ion in a 

κ3-N,N,N-fashion. In the crystalline state, complex 424 is very 

stable at room temperature and does not undergo decomposition 

even in a week, but in solution this compound completely 

decomposes within a day. A THF molecule can be easily 

substituted upon treatment with Ph3P=O to form bis(alkyl) 

complex [Y(κ3-ToM)(CH2SiMe3)2(Ph3PO)] (425) [157]. 

The monoanionic ligands based on bis(pyrazolyl)methane 

containing functional groups at the methine carbon atom 

("heteroscorpionates") can bind covalently to the metal ion. 

Thus, Mountfond et al. reported that five-coordinated complex 

[(Me2pz)2CHSi(Me)2NiPr]Sc(CH2SiMe3)2 (426) (pz = pyrazole) 

can be obtained by the reaction of (Me2pz)2CHSi(Me)2N(H)iPr 

with Sc(CH2SiMe3)3(THF)2. In the case of yttrium, six-

coordinated complex 

[(Me2pz)2CHSi(Me)2NiPr]Y(CH2SiMe3)2(THF) (427) was 

derived (Scheme 59) [158]. These bis(alkyl) derivatives are 

stable in solution in an inert atmosphere for several days. 

Treatment of compound 426 with [Ph3C][B(C6F5)4] in the 

presence of THF yielded cationic alkyl complex 

[{(Me2pz)2CHSi(Me)2NiPr}Sc(CH2SiMe3)(THF)]+[B(C6F5)4]
− 

(428) [158]. 

Treatment of Y(CH2SiMe3)2(THF)2 with an amidine that 

contained a quinoline substituent led to the formation of 

bis(alkyl) yttrium complex [NC9H6-8-NC(tBu)NC6H3iPr2-

2,6]Y(CH2SiMe3)2(THF) (429) (Fig. 31) in 47% yield [159]. 

Accoridng to the X-ray diffraction analysis of complex 429, the 

nitrogen atom of the quinoline fragment is coordinated to the 

metal atom. Bis(alkyl) derivative 429 exhibits high stability: no 

evidence of decomposition was detected in C6D6 at room 

temperature during a week [159]. Bis(alkyl) complexes 
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PhC(NSiMe3)N(CH2)nNMe2]Y[CH(SiMe3)2]2 (n = 2 (430), 3 

(431)) were synthesized by the reactions of YCl3(THF)3.5 with 

[PhC(NSiMe3)N(CH2)nNMe2]Li (n = 2, 3) followed by the 

alkylation with two equivalents of LiCH(SiMe3)2 (Fig. 31) [63]. 

The XRD study of compound 430 showed that in this case the 

nitrogen atom of NMe2 group was coordinated to the metal 

center. 

The interaction between tridentate β-diketimine ligand 

bearing a pendant pyridyl group (2,6-

iPr2C6H3N=C(Me)CH=C(Me)-(NHCH2C5H4N) with one 

equivalent of Sc(CH2SiMe3)3(THF)2 at room temperature 

afforded bis(alkyl) complex Sc(CH2SiMe3)2 (432) in high yield 

(Scheme 60) [160]. In the case of Y(CH2SiMe3)3(THF)2, the 

reaction under similar conditions gave rise to dimeric complex 

433. In compound 433 the yttrium atom is coordinated by the 

new trianionic ligand, and no alkyl groups are retained. The 

formation of this ligand occurs as a result of the deprotonation 

of the methyl group in the β-diketiminate ligand and the 

methylene group attached to the pyridyl ring (Scheme 60) [160]. 

The same reaction performed at –35 °C afforded a mixture of 

bis(alkyl) (L−H)Y(CH2SiMe3)2 (434) and monoalkyl 

(L−2H)Y(CH2SiMe3)(THF)2 (435) complexes (Scheme 60) [160]. 

A dianionic ligand (L–2H) in compound 435 is the product of 

deprotonation of the methylene group attached to the pyridyl 

ring. The coordination of the pyridyl fragment in complexes 432 

and 435 was established by X-ray crystallography. Compound 

434 decomposes at room temperature to form complex 435 

[160]. 

N,N,N-tridentate β-diketimines [(2,6-

iPr2C6H3N)C(Me)CHC(Me)(N(CH2)2NR2)]
− (R = Me, Et; R−R 

= −(CH2)5) are excellent ligands for the synthesis and isolation 

of bis(alkyl) complexes of rare-earth elements, including metals 

with large ionic radii, such as neodymium and samarium. The 

interaction of freshly prepared tris(alkyl) derivatives 

Ln(CH2SiMe3)3(THF)n with equimolar amounts of β-diketimines 

led to the formation of five-coordinated bis(alkyl) lanthanide 

complexes [(2,6-

iPr2C6H3N)C(Me)CHC(Me)(N(CH2)2NR2)]Ln(CH2SiMe3)2 (R = 

Me: Ln = Y (436), Lu (437), Sm (438), Nd (439); R = Et, Ln = 

Y (440); R−R = −(CH2)5, Ln = Y (441)) (Fig. 32) [161]. X-ray 

diffraction studies of the compounds revealed the coordination 

of one of side donor groups. This coordination is also retained in  

[(2,6-iPr2C6H3NH)C(Me)CHC(Me)(N(CH2)2N(Me)-

(CH2)2NMe2)]Sc(CH2SiMe3)2 (442) was synthesized by the 

reaction of Sc(CH2SiMe3)3(THF)2 with (2,6-

iPr2C6H3NH)C(Me)CHC(Me)(N(CH2)2N(Me)(CH2)2NMe2) 

solution [161]. Bis(alkyl) scandium complex (Fig. 32) [162]. 

According to the data of X-ray diffraction analysis, the 

potentially tetradentate N,N,N,N-β-diketiminate ligand is 

coordinated to the scandium atom in a monoanionic tridentate 

fashion. No contact between NMe2 group and the metal center 

was detected [162]. 
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Chen et al. showed that bis(alkyl) scandium complex 442 

can be used as a precursor for the synthesis of terminal amido 

derivative containing the double Sc=N bond [(2,6-

iPr2C6H3NH)C(Me)CHC(Me)(N(CH2)2N(Me)-

(CH2)2NMe2)]Sc=NC6H3iPr2-2,6 (444). This complex was 

formed by the protonolysis of 442 with NH2C6H3iPr2-2,6 

followed by the thermal decomposition of alkyl-anilide 

compound 443 in hexane at 50 °C (Scheme 61) [163]. It is 

important to note that the conversion of the starting bis(alkyl) 

complex 442 and alkyl-anilide derivative 443 to compound 444 

proceeds with a change in the type of ligand coordination. Thus, 

in complexes 442 and 443 the β-diketiminate ligand is bound to 

the scandium atom in a κ3-N,N,N-mode, while in complex 444 

the ligand is tetradentate. The interaction between in situ 

generated dimethyl scandium complex [(2,6-

iPr2C6H3N)C(Me)CHC(Me)(N(CH2)2NMe2)]ScMe2 (445) and 

NH2C6H3iPr2-2,6 led to the formation of expected methyl-

anilide derivative [(2,6-

iPr2C6H3N)C(Me)CHC(Me)(N(CH2)2NMe2)]ScMe(NHC6H3iPr2

-2,6) (446) (Scheme 61) [163]. No transformations were 

observed upon heating of complex 446 in C6D6 at 70 °C for two 

days. However, terminal imido complex [(2,6-

iPr2C6H3N)C(Me)CHC(Me)(N(CH2)2NMe2)]Sc=NC6H3iPr2-

2,6(NC5H4NMe2-4) (447) was obtained by the reaction with the 

Lewis base N,N-dimethylaminopyridine (DMAP) (Scheme 61) 

[163]. 

N,N,N-tridentate anilideimine ligand with 8-quinoline 

substituent was used for the synthesis of bis(alkyl) complexes of 

rare-earth elements (o-C6H4N-(C9H6N)CH=NC6H3iPr2-

2,6)Ln(CH2SiMe3)2(THF)n (Ln = Sc, n = 0 (448); Ln = Y, n = 1 

(449); Ln = Lu, n = 0 (450)) (Fig. 33) [164]. 

Treatment of a tridentate ligand having a seven-membered 

6-imino-6-methyl-1,4-diazepine skeleton and imine substituent, 

PhCH=NCMe[(CH2NMeCH2)2], with Y(CH2SiMe3)3(THF)2 led 

to the addition of one alkyl group across the C=N bond and the 

formation of the corresponding bis(alkyl) complex 

{PhCH(CH2SiMe3)NCMe- 

[(CH2NMeCH2)2]}Y(CH2SiMe3)2(THF) (451) (Scheme 62) 

[165]. 

Bis(alkyl) scandium complexes stabilized by monoanionic 

3-tridentate ligand {6-RNCMe[(CH2NMeCH2)2]}- 

Sc(CH2SiMe3)2(THF) (R = Me (452), SiMe2Ph (453)) were 

synthesized by the reactions of Sc(CH2SiMe3)3(THF)2 with 6-

RNH-1,4,6-trimethyl-1,4-diazepine (R = Me; R = SiMe2Ph) 

(Scheme 63) [166]. 
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The stability and reactivity of these compounds strongly 

depend on the nature of the substituents at the amido group. In 

toluene at room temperature, the metal–THF coordination bond 

dissociates, and the metallation of the amide fragment results in 

{[CH2(µ-N)-CMe[(CH2NMeCH2)2]}Sc(CH2SiMe3)}2 (454) and 

one equivalent of SiMe4 (Scheme 64) [166]. In contrast, upon 

elimination of a THF molecule, scandium complex 453 gives 

stable THF-free bis(alkyl) derivative {6-

PhMe2SiNCMe[(CH2NMeCH2)2]}Sc(CH2SiMe3)2 (455) 

(Scheme 64) [166]. Cationic alkyl complexes [{6-

RNCMe[(CH2NMeCH2)2]}Sc(CH2SiMe3)(THF)2][BPh4] (R = 

Me (456), SiMe2Ph (457)) were synthesized by the reactions of 

bis(alkyl) complexes 452 and 453 with [HNMe2Ph][BPh4] 

(Scheme 64) [166]. 

A tridentate iminoamidopyridinate ligand was also used to 

synthesize bis(alkyl) complexes of rare-earth elements [167, 

168]. Thus, the interaction between 2-{(2,6-iPr2C6H3)N=CMe}-

6-{(2,6-iPr2C6H3)NHCMe2}C5H3N and Ln(CH2SiMe3)3(THF)2 

(Ln = Sc, Y, Lu) led to the formation of solvent-free complexes 

[2-{(2,6-iPr2C6H3)N=CMe}-6-{(2,6-iPr2C6H3)NCMe2}C5H3N]-

Ln(CH2SiMe3)2 (Ln= Sc (458) [168], Y (459) [168], Lu (460) 

[167]) (Fig. 34). The reaction was accompanied by the 

formation of SiMe4 and the elimination of two THF molecules. 
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At room temperature, complexes 458–460 undergo slow 

decomposition with the formation of the free ligand and SiMe4. 

The interaction between lutetium derivative 460 and B(C6F5)3 in 

a CD2Cl2/THF mixture resulted in cationic alkyl complex [2-

{(2,6-iPr2C6H3)N=CMe}-6-{(2,6-iPr2C6H3)NCMe2}C5H3N]-

Lu(CH2SiMe2CH2SiMe3)(THF)][MeB(C6F5)3] (461) (Scheme 

65) [167]. The reaction of 460 with N-

[tris(pentafluorophenyl)borane]-3H-indole yielded compound 

462 (Scheme 65) [168]. Cationic alkyl complex 463 was derived 

upon treatment of 460 with [Ph3C][B(C6F5)4] and 

[HNMe2Ph][B(C6F5)4] (Scheme 65) [168]. 

The reactions of Lu(CH2SiMe3)3(THF)2 with equimolar 

amounts of 2,2':6',2"-terpyridine or 4,4',4"-tritert-butyl-

2,2':6',2"-terpyridine were accompanied by 1,3-migration of one 

alkyl group to the ortho-position of the central pyridine ring to 

form bis(alkyl) derivatives 464 and 465 in quantitative yields 

(Scheme 66) [169]. In these complexes, the lutetium atom is 

coordinated by the monoanionic ligands due to the loss of 

aromaticity of the heterocycle. 

Polydentate amidineaminopyridines {HNMe2NNMe2CMeNR2} 

(R = Me, iPr) were introduced in σ-bond metatheses with 

tris(alkyl) (Ln(CH2SiMe3)3(THF)2, Ln = Sc, Y) and 

tris(aminobenzyl) (Y(CH2C6H4NMe2-o)3) derivatives of rare- 

earth elements (Fig. 35) [170, 171]. As a result, the following 

bis(alkyl) scandium and yttrium complexes coordinated by the 

N,N,N-tridentate ligands were obtained: 

{NMe2NNMe2CMeNR2}Ln(CH2SiMe3)2(THF) (R = Me, Ln = Y 

(466) [170]; R = iPr, Ln = Sc (467); R = iPr, Ln = Y (468) 

[171]) and {NMe2NNMe2CMeNMe2}Y(CH2C6H4NMe2-o)2 (469) 

[170]. 

Complex 466 is unstable at –30°C in toluene and undergoes 

selective intramolecular activation of the methyl group C(sp3)–H 

bond in 2,6-Me-C6H3 substituent at the imine nitrogen atom, 

resulting in complex 

{NMe2NNMe2CMeNMeCH2}YCH2SiMe3(THF) (470) (Scheme 67) 

[170]. Complexes 467 and 468 with diisopropylphenyl 

substituents at the imine nitrogen atom showed high thermal 

stability: no evidence of decomposition was observed upon 

heating in hydrocarbon solvents at 60 °C for several days [171]. 

Bis(alkyl) rare-earth complexes stabilized by N,N,N-pincer 

monoanionic bis(iminophenyl)amido {[2,6-

iPr2C6H3N=CHC6H4]2N}Ln(CH2SiMe3)2 (471–473) [172] and 

bis(oxazolinylphenyl)amido [(4-RC3NOC6H4)2N]- 

Ln(CH2SiMe2R')2 (474–478) [173, 174] ligands were 

synthesized by the alkane elimination from the corresponding 

tris(alkyl) compounds (Fig. 36). 

It should be noted that bis(alkyl) complexes with CH2SiMe3 

groups can be prepared only for the scandium and lutetium 

aatoms (compounds 474 and 475, respectively). In the case of 

yttrium and thulium, dimeric monoalkyl compounds of a general 

formula [({4-

iPrC3NOC6H4}{OCH2C(iPr)N=C(CH2SiMe3)C6H4}N)- 

Ln(CH2SiMe3)]2 (Ln = Y (479), Tm (480)) were formed 

(Scheme 68) [173]. According to the X-ray diffraction analysis, 

complexes 479 and 480 resulted from the migration of one 

trimethylsilylmethyl group from the metal atom to the oxazoline 

ring followed by the ring opening and the formation of the Ln–O 

bond. 
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Cui et al. demonstrated that pincer bis(aryl) phosphazene 

ligands [N(PPh2NAr)2]
− (Ar = Ph, C6H3Me2-2,6, C6H3iPr2-2,6) 

are suitable coordination environments for the synthesis and 

isolation of bis(alkyl) complexes of rare-earth elements. The 

interaction of HN(PPh2NAr)2 with Ln(CH2SiMe3)3(THF)2 (Ln = 

Sc, Y, Lu) led to solvent-free complexes [N(PPh2NC6H3R2-

2,6)2]Ln(CH2SiMe3)2 (R = H: Ln = Sc (481), Y (482), Lu 

(483)); R = Me, Ln = Sc (484); R = iPr: Ln = Y (485), Lu (486)) 

(Fig. 37) [175]. Complexes 481–486 feature κ3-type 

coordination mode of the ligands. 

Bis(alkyl) scandium derivative 481 was successfully 

employed for the synthesis of a terminal imide complex. Alkyl-

anilide compound [N(PPh2NPh)2]Sc(CH2SiMe3)(NHC6H3iPr2-

2,6) (487) was obtained by the reaction of 481 with an 

equimolar amount of 2,6-iPr2C6H3NH2 in toluene at –30 оС. The 

subsequent treatment with 4-dimethylaminopyridine (DMAP) 

afforded imide complex [N(PPh2NPh)2]Sc=NC6H3iPr2-2,6 (488) 

(Scheme 69) [176]. 

The reactions of pyrazolyl-substituted carbazoles 3,6-Me2-

1,8-(C3H2N2-R-2)2-CarbH (R = Me, iPr) with 

Lu(CH2SiMe3)3(THF)2 in toluene at room temperature resulted 

in the corresponding bis(alkyl) complexes [3,6-Me2-1,8-

(C3H2N2-R-2)2-Carb]Lu(CH2SiMe3)2 (R = Me (489), iPr (490)) 

in high yields (Fig. 38) [177]. Complexes 489 and 490 

demonstrated high thermal stability at room temperature both in 

solution and in the crystalline state. No signs of decomposition 

were observed upon heating of these compounds in C6D6 at 70 

°C for 12 hours. Trinuclear hydride complex 

{[(CzPziPr)Lu]2[(CzPziPr−H)Lu](µ-H)5} (491) was synthesized 

by the hydrogenation of 490 with H2 (4 atm) in toluene at 50 оС 

(Fig. 39) [177]. XRD study showed that two lutetium atoms are 

coordinated by the monoanionic carbazole ligand, while the 

third lutetium atom is bound to the dianionic ligand, which 

results from the intramolecular metallation of one pyrazole 

substituent. Three metal atoms are linked together by three μ2-H 

and two μ3-H hydride ligands. 

Bis(alkyl) complexes of rare-earth elements 

(CzxR)Ln(CH2SiMe3)2 (Ln = Y (492), Er (493), Yb (494)) 

stabilized by bis(oxazolyl)-substituted 1,8-bis(4',4'-

dimethyloxazolin-2'-yl)-3,6-di-tert-butylcarbazole (CzxH) were 

obtained by the protonolysis of the corresponding tris(alkyl) 

derivatives (Scheme 70) [178]. Compounds 492–494 can also be 

synthesized by the alkylation of dichloride compounds 

(Czx)LnCl2(THF) with two equivalents of LiCH2SiMe3. 

Treatment of yttrium bis(alkyl) complex 492 with 

[Ph3C][B(C6F5)4] afforded cationic alkyl compound 

[(Czx)Y(CH2SiMe3)]
+[B(C6F5)4]

− (495) [178]. 

Unlike pyrazolyl- and oxazolyl-substituted carbazoles, 

bis(phosphinimine)-functionalized carbazole ligands HCzPNAr 

are not suitable for synthesis and isolation of bis(alkyl) 

complexes of rare-earth elements. Lutetium bis(alkyl) 

derivatives (CzPNAr)Lu(CH2SiMe3)2 (Ar = Ph (496), C6H4iPr-4 

(497)) were prepared by the reactions of Lu(CH2SiMe3)3(THF)2 

with HCzPNAr at –78 oC in C7D8. Complexes 496 and 497 are 

highly unstable and readily undergo double metallation of the 

C–H bonds at the ortho-position of the phenyl rings at the 

phosphorus atom, resulting in bis(aryl) compounds (Ar = Ph 

(499), C6H4iPr-4 (500)) (Scheme 71) [179]. The interaction 

between 3,6-Me2-1,8-(Ph2P=NAr)2-carbazole (Ar = C6H2Me3-

2,4,6) with the mesityl substituent at the nitrogen atoms and 

Y(CH2SiMe3)3(THF)2 led to the formation of similar unstable 

bis(alkyl) derivative (CzPNAr)Y(CH2SiMe3)2 (Ar = C6H2Me3-

2,4,6 (498)), which rapidly converted to cyclometallated yttrium 

complex (501) (Scheme 71) [180]. 
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The use of bis(phosphinimine)pyrrole allowed one to avoid 

side processes of ortho-metallation. Solvent-free bis(alkyl) 

complexes [2,5-(Ph2P=NC6H4iPr-4)2C4H2N]Ln(CH2SiMe3)2 (Ln 

= Sc (502), Er (503), Lu (504) [181], Y (505) [182]) were 

synthesized by the reactions of Ln(CH2SiMe3)3(THF)2 (Ln = Sc, 

Er, Lu, Y) with 2,5-(Ph2P=NC6H4iPr-4)2C4H2NH in high yields 

(Fig. 40). 

Lutetium complex 504 demonstrated high stability in 

solution. No traces of decomposition were observed even upon 

heating at 60 °C for 4.5 h. An attempt to synthesize a similar 

compound of rare-earth element with the larger ionic radius 

(Sm3+) afforded cyclometalled adduct 507 (Scheme 72) [182]. 

The authors noted that bis(alkyl) complex 506 is extremely 

unstable and rapidly undergoes cyclometallation at one of the 

aryl substituents on the nitrogen atom to form four-membered 

azamacrocycle κ4-[2,5-(Ph2P=NC6H3iPr-

4)2C4H2N]Sm(CH2SiMe3)(THF)2 (507). Monoalkyl derivative 

507 is stable at low temperature in the solid state, but in solution 

it slowly undergoes the intramolecular C–H bond activation 

followed by the dimerization which results in complex [κ1:κ2:μ2-

LBSm(THF)]2 (508) [182]. 

Treatment of complex 504 with one equivalent of oxonic 

acid [H(OEt2)2]
+[B(C6F5)4]

− yielded cationic alkyl derivative 

{[2,5-(Ph2P=NC6H4iPr-4)2C4H2N]Lu(CH2SiMe3)(OEt2)2}
+ 

{B(C6F5)4}
− (509) [181]. Alkyl-anilide complex [2,5-

(Ph2P=NC6H4iPr-4)2C4H2N]Lu(CH2SiMe3)(NHC6H2tBu3-

2,4,6)(DMAP) (510) was obtained by the reaction of 504 with 

2,4,6-tBu3C6H2NH2 in the presence of DMAP at 100 оС [181]. 

The reactions of N,N,N-tridentate 2,5-bis((pyrrolidine-1-

yl)methylene)-1H-pyrrole and 2,5-bis((piperidine)methylene)-

1H-pyrrole with Ln(CH2SiMe3)3(THF)2 (Ln = Sc, Y, Lu) led to 

bis(alkyl) complexes [2,5-

(C4H8NCH2)2C4H2N]Ln(CH2SiMe3)2(THF)n (Ln = Sc, n = 0 

(511); Ln = Y, n = 1 (512); Ln = Lu, n = 1 (513)) and [2,5-

(C5H10NCH2)2C4H2N]Sc(CH2SiMe3)2 (514) in moderate and 

good yields (Fig. 41) [183]. Unlike the complexes of yttrium 

N
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and lutetium (512 and 513), bis(alkyl) derivative of scandium 

511 does not contain a coordinated THF molecule. Dimeric 

tetra(alkyl) complexes [2,5-

(C5H10NCH2)2C4H2N]2Ln2(CH2SiMe3)4 (Ln = Y (515), Lu 

(516)) (Fig. 41) were also synthesized. In complexes 515 and 

516 two metal atoms are bound by the anionic pyrrole fragments 

featuring η5:η5/κ1:κ1-coordination mode [183]. 

3.4. Rare-earth bis(alkyl) complexes with the 

tetradentate N-containing ligands 

The synthesis of bis(alkyl) complexes of rare-earth elements 

was also accomplished using 12-membered N,N,N,N-

macrocyclic amine, namely, 1,4,7-trimethyl-1,4,7,10-

tetraazacyclododecane. Treatment of (Me3TACD)H with an 

equimolar amount of Ln(CH2SiMe3)3(THF)2 led to the 

corresponding bis(alkyl) derivatives 

(Me3TACD)Ln(CH2SiMe3)2 (Ln = Sc (517) [184], Y (518), Ho 

(519), Lu (520) [185]) in moderate and good yields (Scheme 

73). 

Trinuclear hexahydride clusters [(Me3TACD)Ln(μ2-H)2]3 

(Ln = Y (521), Ho (522), Lu (523)) were synthesized by the 

reactions of (Me3TACD)Ln(CH2SiMe3)2 518–520 with PhSiH3 

(Fig. 42) [185]. 

Hessen et al. reported the synthesis of a series of bis(alkyl) 

rare-earth complexes 524–538 containing 9-membered 

macrocyclic triazacyclononanes (TACN) with various 

substituents at the nitrogen atoms (Fig. 43) [186–189]. 

Solvent-free bis(alkyl) complexes 

[R1
2TACN(CH2)2NR2]Y(CH2SiMe3)2 (524 [186], 527, 528 

[189], 530 [186]) and [R1
2TACNSiMe2NR2]Y(CH2SiMe3)2 

(533, 534 [189], 537 [188]) were obtained by the reactions of 

Y(CH2SiMe3)3(THF)2 with disubstituted 

triazacyclononanamines R1
2TACN-(B)-NHR2 having 

dimethylene (B = (CH2)2, R
1 = Me, R2 = tBu, secBu, nBu; R1 = 

iPr, R2 = tBu) or dimethylsilyl (B = SiMe2, R
1 = Me, R2 = tBu, 

secBu; R1 = iPr, R2 = tBu) linkers between the macrocyclic 

fragment and the amine group (Fig. 43). The related scandium 

complexes [Me2TACNSiMe2NR]Sc(CH2SiMe3)2 (R = tBu 

(532), secBu (535)) were also reported (Fig. 43) [189]. The 

interaction between Y(CH2SiMe3)3(THF)2 and 

Me2TACN(CH2)2NHtBu in pentane led to the formation of 

hardly soluble binuclear complex {[η3:η1-

Me2TACN(CH2)2NtBu]Y(CH2SiMe3)}{η3:µ-η1-

[Me2TACN(CH2)2NtBu]Y(CH2SiMe3)3} (539) (Scheme 74) 

[189]. According to the XRD analysis data, one of the TACN-

amido ligands is coordinated to one metal center through three 

nitrogen atoms, while the amido group is covalently bound to 

the other metal atom. In order to exclude the formation of this 

adduct, the reaction of the tris(alkyl) yttrium complex with 

triazacyclononanamine was carried out in THF. 

In addition it should be noted that the ligand systems based 

on triazacyclononane are perfectly suitable for the stabilization 

of bis(alkyl) derivatives of rare-earth elements with large ionic 

radii. Treatment of in situ generated [La(CH2SiMe3)3] with 

R1
2TACN-(B)-NHtBu at room temperature in THF resulted in 

bis(alkyl) complexes [R1
2TACN-(B)-NtBu]La(CH2SiMe3)2 (B = 

(CH2)2, R
1 = Me (525) [187], R1 = iPr (531) [188]; B = SiMe2, 

R1 = iPr (538) [188]) (Fig. 43). In the case of 4,7-dimethyl 

substituted ligand Me2TACNSiMe2NHtBu, the bis(alkyl) 

complex underwent rapid metallation of the NMe group to form  
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binuclear compound {[Me(µ-CH2)TACN-

(SiMe2)NtBu]La(CH2SiMe3)}2 (540) [188]. In contrast, 

lanthanum dibenzyl complex 

[Me2TACNSiMe2NtBu]La(CH2Ph)2 (541) was isolated from the 

reaction of La(CH2Ph)3(THF)3 and Me2TACNSiMe2NHtBu in 

65% yield (Fig. 44) [188]. 

Bis(alkyl) neodymium complexes 

[Me2TACN(B)NR2]Nd(CH2SiMe3)2 (B = (CH2)2, R2 = tBu 

(526), nBu (529); B = SiMe2, R2 = tBu (534)) (Fig. 43) were 

synthesized by the reactions of NdCl3(THF)3 with three 

equivalents of Me3SiCH2Li followed by the treatment with 

Me2TACN-(B)-NHR2 in THF at room temperature [189]. 

Ccomplexes [iPr2TACN-(B)-NtBu]Ln(CH2SiMe3)2 530, 531, 

537, and 538 slowly decompose in C6D6 at room temperature. 

Compound 531 is the least stable complex with a half-life of 30 

min at 35 °C. Its decomposition is accompanied by the 

elimination of an equivalent of SiMe4 and propene. In the case 

of bis(alkyl) derivatives [Me2TACN-(B)-NR2]Ln(CH2SiMe3)2 

526–529, 532–536 (B = (CH2)2, SiMe2; R
2 = tBu, secBu, nBu; 

Ln = Sc, Y, Nd) (Fig. 43), no signs of decomposition were 

observed in solution at room temperature during one day [189]. 

The reaction of complex 525 with two equivalents of 

phenylacetylene yielded binuclear bis(alkynyl) complex 

[Me2TACN(CH2)2NtBu]La(C≡CPh)(µ-C≡CPh)}2 (542) [187]. 

Cationic alkyl complexes {[R1
2TACN-(B)-

NR2]Ln(CH2SiMe3)(THF)n}
+{BAr4}

− were obtained upon 

treatment of bis(alkyl) yttrium (524, 527, 528, 530, and 533) and 

lanthanum (525, 531, and 538) complexes with the Brönsted 

acids ([HNMe2Ph][B(C6F5)4], [HNMe2Ph][BPh4], and 

[Ph3C][B(C6F5)4]) [184–187]. 

Monoanionic tridentate ligand 1,4,6-trimethyl-N-(2-

pyrrolidine-1-yl-ethyl)-1,4-diazepane-6-amine (LH) with a 

seven-membered ring was used for the synthesis of bis(alkyl) 

complexes of rare-earth elements [190]. Solvent-free 

compounds (L)Ln(CH2R)2 (R = SiMe3, Ln = Y (543) [190]; R = 

Ph, Ln = Sc (544), Y (545), La (546) [191]) resulted from the 

alkane elimination during the reaction between LH and 

Ln(CH2R)3(THF)n (R = SiMe3, Ph; Ln = Sc, Y, La) in toluene or 

THF (Fig. 45). 

Compounds 544–546 are very thermally stable and can be 

stored in solution or in the solid state without decomposition for 

several months. In contrast, yttrium complex 543 bearing 

CH2SiMe3 alkyl groups gradually decomposes in C6D6 at room 

temperature with the release of SiMe4. In all the compounds 

explored, the azepine fragment of the ligand is coordinated to 

the metal center. Complexes 543–546 can be converted to the 

corresponding cationic derivatives [(L)Ln(CH2R)]+[B(C6F5)4]
− 

by the reactions with [HNMe2Ph][B(C6F5)4] in C6D5Br. The 

treatment of 544 with two equivalents of phenylacetylene 

resulted in monomeric bis(alkynyl) complex (L)Sc(CCPh)2 

(547), while yttrium (545) and lanthanum (546) compounds 

afforded dimeric products [(L)Ln(CCPh)(μ-CCPh)]2 (Ln = Y 

(548), La (549)) (Scheme 75) [191]. 

Bambirra et al. [192] synthesized bis(alkyl) yttrium 

complexes [(Me2NCH2CH2)2N-(B)-NtBu)]Y(CH2SiMe3)2 (B = 

(CH2)2, SiMe2) containing monoanionic tetradentate 

triaminoimide ligands. Complex 

[(Me2NCH2CH2)2N(CH2)2NtBu]Y(CH2SiMe3)2 (550) (Scheme 

76) was isolated in 68% yield. The structure of 550 was 

confirmed by X-ray crystallography. Compound 550 is unstable 

at room temperature. Its decomposition is accompanied by the 

metallation of the methyl group of the NMe2 fragment and leads 

to the formation of 

[{(CH2)MeN(CH2)2}{Me2N(CH2)2}N(CH2)2NtBu] 

Y(CH2SiMe3) (551) (Scheme 76) [192]. In the case of the 

triamine-amido ligand containing Me2Si-linker, the metallation 

proceeds very rapidly, resulting in 

[{(CH2)MeN(CH2)2}{Me2N(CH2)2}NSiMe2NtBu]Y(CH2SiMe3) 

(552) (Scheme 76) [192]. 
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Two Y–C bonds, YCH2SiMe3 and YCH2N, in complex 551 

demonstrated different reactivities. Thus, compound 551 

underwent CH2=CH2 insertion and reacted with C5H5N and 

[HNMe2Ph][B(C6F5)4] only via YCH2N fragment, while the 

YCH2SiMe3 bond remained inactive. Complex 551 reacted very 

slowly with a stoichiometric amount of ethylene, which inserted 

into the YCH2N bond to afford 

[{(CH2)3MeN(CH2)2}{Me2N(CH2)2}N(CH2)2NtBu]- 

Y(CH2SiMe3) (553) (Scheme 77) [192]. Treatment of 551 with 

pyridine led to the rapid 1,2-addition across the YCH2N bond to 

form [{(NC5H5CH2)MeN(CH2)2}-

{Me2N(CH2)2}N(CH2)2NtBu]Y(CH2SiMe3) (554) (Scheme 77) 

[192]. The reaction of metallated product 552 with pyridine 

afforded a mixture of two diastereomeres 

[{(NC5H5CH2)MeN(CH2)2}{Me2N(CH2)2}- 

N(CH2)2NtBu]Y(CH2SiMe3) (555a,b) (Scheme 77) in 1:1 ratio 

[192]. Cationic alkyl complex 

[{(Me2NCH2CH2)2N(CH2)2NtBu)}Y(CH2SiMe3)(THF)n]
+[B(C6

F5)4]
− (556) (Scheme 77) was obtained by the reaction of 551 

with the Brönsted acid [HNMe2Ph][B(C6F5)4] in deuterated THF 

[192]. 

Tetradentate β-diketiminate N,N,N,N-([MeC(NC6H3iPr2-

2,6)CHC(Me)N(CH2)2N(Me)(CH2)2NMe2], 

[HC{CMe(N(CH2)2NEt2}2]) ligands containing additional donor 

groups at one or both of the nitrogen atoms of the β-diketiminate 

fragment were used to synthesize bis(alkyl) complexes of 

yttrium and terbium [MeC(NC6H3iPr2-

2,6)CHC(Me)N(CH2)2N(Me)(CH2)2NMe2]YMe2 (557) [193], 

[HC{CMe(N(CH2)2NEt2}2]Tb(CH2SiMe3)2 (558) (Fig. 46). 

Compounds 557 and 558 were obtained by the reactions of the 

corresponding dichloride or dibromide derivatives with 

alkyllithium reagents (MeLi and LiCH2SiMe3) [193, 194]. 

According to the results of X-ray diffraction analyses, the atoms 

of rare-earth elements in complexes 557 and 558 have pseudo-

octahedral coordination environments with the tetradentate β-

diketiminate ligands in the equatorial planes. Two alkyl groups 

are located above and below these planes. 
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4. Conclusions 

The data summarized in the present review clearly 

demonstrate that nitrogen-containing ligand systems of variable 

denticity are suitable coordination environments for organo-

rare-earth metal species. The application of N-donor ligands 

provides stabilization of highly reactive rare-earth alkyl, 

bis(alkyl), cationic alkyl, and hydrido complexes. Owing to the 

high energy of the rare-earth–nitrogen bond, N-containing 

organic molecules are excellent frameworks for creating mono- 

and dianionic ligand systems that tightly bind the metal center. 

The availability of a variety of synthetic methods for the design 

of ligand systems and modification of their denticity ensures 

fine-tuning of the geometry of the central rare-earth metal ion, 

which, in turn, is an important task for homogeneous catalysis. 

The high catalytic potential of alkyl and bis(alkyl) complexes of 

rare-earth elements attract increasing interest of many research 

groups. 
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