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Abstract—A method for determining parameters of a dispersive optical potential is presented. This method
is aimed at calculating single-particle energies of neutron and proton states of magic and near-magic
nuclei. It is based on the use of global parameters of the imaginary part of the traditional-optical-model
potential and experimental data on single-particle energies in the vicinity of the Fermi surface that were
determined by simultaneously evaluating data on nucleon-stripping and nucleon-pickup reactions on
the same nucleus. The potential of the method for describing and predicting single-particle energies of
40 � A � 132 magic and near-magic nuclei is demonstrated.
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1. INTRODUCTION

The dispersive approach to determining the nu-
cleon mean field unified for positive and negative en-
ergies [1] has been successfully used to analyze data
on the scattering of nuclei and on their single-particle
properties. This approach is based on a physically
justified extrapolation of the parameters of the dis-
persive optical potential from the region E > 0 to the
region E < 0. The real part of the dispersive optical
potential consists of a component VHF belonging to
the Hartree–Fock type and depending smoothly on
energy and a dispersive component ∆V depending
sharply on energy in the vicinity of the Fermi energy
EF. The dispersive component is calculated on the
basis of data on the imaginary part of the potential;
this imaginary part may be assumed to be symmetric
with respect to EF (see [1]) and must be known over a
broad energy range. The parameters of the Hartree–
Fock component are determined from a fit of the re-
sults of respective calculations to the empirical value
of the energy EF and (i) to the experimental cross
sections for nucleon–nucleus scattering or (ii) to two
radial moments of the real part of the phenomeno-
logical potential of the traditional (nondispersive) op-
tical model (TOM). The first method is called the
dispersive optical-model analysis (DOMA) (see [2]).
The second is referred to as the variational moment
approach (VMA) (see [1, 3]).
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Both methods (VMA and DOMA) yield close re-
sults. In order to apply these methods, one needs
experimental data on nucleon scattering over a broad
energy range. It should be emphasized that the fact
that the mean field for E < 0 is found on the basis
data for E > 0, which are more extensive than data
for E < 0, is one of the advantages of the dispersive
approach. However, the range of nuclei for which
experimental data on the scattering of nucleons on
them are sufficient for implementing the DOMA and
VMA methods is quite narrow. In particular, it obvi-
ously does not include unstable nuclei appearing as
candidates for new magic nuclei, but investigations
of such nuclei are very topical in contemporary nu-
clear physics. Moreover, it turns out that, upon an
extrapolation of the component VHF from the region
E > 0 to the region E < 0, the error in the parameter
characterizing the slope of the dependence VHF(E)
grows to such an extent that it begins to affect the
calculation of single-particle energies Enlj of deep-
lying states.

In order to address the problem of studying single-
particle properties for a wide range of nuclei, including
unstable neutron-rich and neutron-deficient nuclei,
one needs a method that would make it possible to
construct a dispersive optical potential, but which
would not require the presence of experimental data
on nucleon scattering over a broad interval of energies
and within which one could determine the parameters
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of the component VHF on the basis of data on single-
particle properties of nuclei.

Until recently, the errors in the values of Enlj in
the vicinity of EF that were determined from data on
nucleon-stripping or nucleon-pickup reactions were
20 to 30%. At such errors, it was meaningless to
aim at developing a method for constructing a disper-
sive optical potential intended for calculating single-
particle properties of nuclei. The method developed
in [4] for matching data on nucleon-stripping and
nucleon-pickup reactions on the same nucleus (for
the sake of brevity, we will refer to it in the follow-
ing as the matching method)—a similar method was
independently proposed later in [5]—made it possible
to reduce the errors in Enlj near EF to 10%, thereby
opening new possibilities for developing the dispersive
approach to determining nuclear mean fields.

In this study, we present a method intended for
constructing a dispersive optical potential and aimed
at calculating single-particle properties of nuclei, in-
cluding unstable neutron-rich and neutron-deficient
nuclei. With the aid of this method, we calculate the
single-particle energies Enlj of 40 � A � 132 magic
and near-magic nuclei. In this way, experimental data
obtained by the matching method were well described
within their errors.

2. METHOD FOR CONSTRUCTING
DISPERSIVE OPTICAL POTENTIALS

Since the dispersion component of the real part of
the dispersive optical potential is calculated on the
basis of data on its imaginary part, a determination
of this imaginary part is the first step in construct-
ing the dispersive optical potential. The fact that the
imaginary part of the dispersive optical potential is
symmetric with respect to the Fermi energy EF is its
important property justified empirically. Since the dis-
persive optical potential describes states of the A + 1
(particle states) and A − 1 (hole states) systems, the
energy EF of the n, p + A system can be represented
as the half-sum

EF = (E+ + E−)/2, (1)

where E+ is the energy of the first particle state (the
most strongly bound and predominantly unfilled or-
bit) and E− is the energy of the last hole state (the
most loosely bound and predominantly filled orbit).
For the energies E+ and E−, we take here the ex-
perimental values of Enlj that were obtained by the
matching method for the corresponding states. In
case where it is difficult to single out states that can
be treated as the first particle state and the last hole
state according to the terminology adopted above,
one can employ the respective formula of Bardeen–
Cooper–Schrieffer (BCS) theory in determining the

Fermi energy EF. This formula makes it possible to
describe the shape of the Fermi surface and has the
form

Nnlj =
1
2

⎛
⎝1 − (Enlj − EF)√

(Enlj − EF)2 + ∆2
BCS

⎞
⎠ , (2)

where ∆BCS is the gap parameter. For this, we take
here data obtained by the matching method for N

expt
nlj

and E
expt
nlj .

The method used here to construct the dispersive
optical potential is based on the possibility of fixing
a number of parameters of the potential (first of all,
its imaginary part) in accordance with the predictions
of systematics of global parameters of the traditional
optical model. At the present time, the systematics
proposed by Koning and Delaroche in [6] (in the
following, the KD systematics) is thought to be the
most reliable systematics of global parameters of the
traditional optical model. This systematics was de-
termined in analyzing a vast experimental database
of cross sections for the elastic scattering and po-
larization of protons and neutrons, as well as total
neutron-interaction cross sections. It is applicable
to evaluating data on the scattering of 1-keV to
200-MeV nucleons by spherical nuclei of mass num-
ber A between 24 and 209 and nuclei close to them.
The strength parameters of the potential components
depend smoothly on the energy, mass number, and
relative neutron excess. The imaginary part of the
potential depends on energy in the form that assumes
that it is symmetric with respect to the Fermi energy.
This makes it possible to use this imaginary part
directly in analytic calculations of dispersive compo-
nents.

The use of a more extensive experimental data-
base—first of all, data on total neutron-interaction
cross sections—distinguishes the KD systematics
from the СН89 systematics proposed in [7] and
employed earlier. In contrast to the KD systemat-
ics, the СН89 systematics requires changing the
diffuseness parameter of the imaginary part of the
potential, as = ad, in order to match the results of
the calculations with precision data obtained later for
total proton reaction cross sections σr [8]. In [9], it
was shown that agreement between the calculated
and measured values of σr is attained upon reducing
the value of aCH89

s = aCH89
d = 0.69 fm to the value

of aCH89∗
s = aCH89∗

d = 0.63 fm, these values being
averaged over the nuclei under study. For a large
number of nuclei, local (individual for a specific p + A

system) values of aCH89∗
s = aCH89∗

d , which correlated
with special features of the shell structure of nuclei
(the values of aCH89∗

s = aCH89∗
d were smaller for magic
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than for nonmagic nuclei), were also found in that
study. In addition, the statement that it is legitimate
to equate the diffuseness parameter of the imaginary
part of the neutron potential to the aCH89∗

s = aCH89∗
d

values found for protons was proven there.

The strength parameters of the volume (Ws) and
surface (Wd) components of the imaginary part of the
potential in the KD systematics depend on energy, the
exponent in this dependence being n = 2:

Ws(E) = w1
(E − EF)2

(E − EF)2 + w2
2

, (3)

Wd(E) = d1
(E − EF)2 exp[−d2(E − EF)]

(E − EF)2 + (d3)2
.

We recall that the theory of infinite Fermi systems
predicts a quadratic dependence of the imaginary part
of the nuclear potential on energy. As was indicated
above, the imaginary part from the KD systemat-
ics may directly be used to calculate the dispersion
components of the dispersive optical potential. In the
present study, we nevertheless employ the depen-
dence (see [1])

JI,s(E) = α
(E − E0)n

(E − E0)n + βn
Is

, (4)

Jd(E) = JI(E) − Js(E),

where n = 4 and JI,s,d are the volume integrals of
(I) the total imaginary part of the dispersive optical
potential and of its (s) volume and (d) surface compo-
nents. The energy E0 determines the interval between
2EF −E0 and E0 within which it would be reasonable
to equate the imaginary part to zero. Frequently, the
value of E0 is equated to the Fermi energy EF. In
a number of cases, agreement between EDOP

nlj and

E
expt
nlj is improved in the case of E0 �= EF owing to

more precisely specifying the dependence JI(E). Our
experience shows that, in order to describe single-
particle energies, the value of n = 4 is preferable in
many cases to the value of n = 2. The most proba-
ble reason for this is that, in the vicinity of EF, the
dependence in (4) at n = 4 leads to smaller values of
the imaginary part than the respective dependence at
n = 2. This complies to a greater extent with the idea
that the imaginary part for states in the vicinity of EF
is close to zero.

Thus, a determination of the imaginary part of
the dispersive optical potential reduces to finding the
parameters α and βI,s, as well as the radius and
diffuseness parameters of the Woods–Saxon form of
its volume (rs and as) and surface (rd and ad) compo-
nents.

In the present study, the parameter α in the depen-
dence specified by Eq. (4) is determined with the aid
of the KD systematics, namely,

α =
〈
JKD

I

〉
40−60 MeV

, (5)

where
〈
JKD

I

〉
40−60 MeV

is the value obtained by aver-
aging, over the energy range between 40 and 60 MeV,
the volume integral of the total imaginary part of the
KD potential.

The parameter βs is determined from the condition
requiring that Js(Ek) in (4) be equal to JKD

s (Ek)
at an energy Ek such that JKD

s (Ek) = α/2 [that is,
when JKD

s reaches approximately half the height of
JKD

I (Е)]:

α

[
1 +

(
βs

(Ek − EF)

)4
]−1

=
α

2
. (6)

From here, we obtain

βs = Ek − EF. (7)

The parameter βI can be estimated by using the
empirical values of JI(Ek) in the range Ek < 20 MeV
or (in the case where such values are not available)
the values of JKD

I (E) in the range E < 20 MeV.
Within the method developed in the present study and
intended for calculating single-particle properties of
nuclei, the parameter βI is free. Its optimum value is
determined as that which minimizes the functional

χ2 =
1
N

∑ (EDOP
nlj − E

expt(ev)
nlj )2

∆2
, (8)

where EDOP
nlj are calculated single-particle energies,

E
expt(ev)
nlj are their experimental or evaluated (in the

absence of experimental data) counterparts, N is the
number of values of E

expt(ev)
nlj , and ∆ is the error in

E
expt(ev)
nlj . The optimum value of βI is found by the

mesh-search method.
Within the method used here, the parameters

rs, as, rd, and ad are borrowed from systematics of
global parameters of the traditional-optical-model
potential—namely, the KD systematics. Thus, the
parameter βI is the only free parameter of the imag-
inary part of the dispersive optical potential. The
strength parameter of the Hartree–Fock component
of the dispersive optical potential is assumed to be
smoothly dependent on energy. Its energy depen-
dence can be represented in the form of an exponential
function,

VHF(E) = VHF(EF) exp
(
−γ(E − EF)

VHF(EF)

)
, (9)
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or in the form of a superposition of a linear and an
exponential function,

VHF(E) = VHF(EF) − λ(E − EF), (10)

E � EF;

VHF(E) = V 1
HF(EF) + V 2

HF(EF) exp
[
−λ(E − EF)

V 2
HF(EF)

]
,

E � EF;

VHF(EF) = V 1
HF(EF) + V 2

HF(EF).

Thus, the Hartree–Fock component of the disper-
sive optical potential is determined by the parameters
VHF(EF) [V 1

HF(EF) and V 2
HF(EF)] and γ(λ) for the

dependence in (9) [or in (10)], the radius rHF, and the
diffuseness parameter aHF.

The calculations show that the energy EDOP
1s1/2

is

highly sensitive to the choice of values for the param-
eter γ(λ), which characterizes the slope of the depen-
dence VHF(E) in (9) [or in (10)]. If we determined this
parameter on the basis of data on nucleon scattering
for E > 0 and data on E

expt(ev)
nlj in the vicinity of EF,

the error in it would lead to a sizable deviation of
EDOP

1s1/2
from the respective experimental values. This

is the reason why, within the method developed here
in order to construct the dispersive optical potential,
the parameters γ and λ are found on the basis of data
on E

expt,ev
1s1/2

:

γ =
VHF(EF)

EF − E1s1/2

ln

[
VHF(E1s1/2

)
VHF(EF)

]
, (11)

λ =
VHF(E1s1/2

) − VHF(EF)

EF − E1s1/2

. (12)

For E
expt
1s1/2

, we use here experimental data obtained

in [10, 11] for relevant (p, pn) and (p, 2p) reactions.
High-precision experimental information about the
energies and widths of deep-lying neutron and proton
states is presented in those articles for a large number
of nuclei, including 40Са, 90Zr, and 208Pb. In con-
structing the dispersive optical potential of nuclei for
which there are no data on E

expt
1s1/2

, use is made of the

evaluated energy of the 1s1/2 state. Frequently, this
evaluation is performed by the extrapolation method,
in which case the regularities of the mass dependence
of E1s1/2

that are predicted by the calculations in [12]
on the basis of the relativistic mean-field model are
taken into account.

The parameter VHF(EF) is found from a fit to EF;
it can be represented in the form of the half-sum

VHF(EF) =
V (E+) + V (E−)

2
, (13)

where V (E+) and V (E−) are the strength parameters
of the real potential, which describe the experimental
values of the energies E+ and E−.

In the dispersive approach, the entire energy de-
pendence of the potential components is concentrated
in their strength parameters, the geometric param-
eters being energy-independent. This simplifies the
calculation of the dispersive components and com-
plies with the modern ideas of the dependence of
the optical-potential parameters on the energy, mass
number, and relative neutron excess (see, for exam-
ple, the KD systematics). Therefore, averaged values
are used for the parameters rHF and aHF within the
DOMA and VMA methods and within the method
proposed in the present study, since data on nucleon–
nucleus scattering, empirical data on the volume in-
tegrals of the optical potential, and data on single-
particle energies are described most precisely with
them.

The spin–orbit potential is the most uncertain part
of the optical potential. Calculations revealed that,
without a significant loss of accuracy in EDOP

nlj , we
can take, for the average parameters rso and aso, the
corresponding average parameters from the KD or the
CH89 systematics and treat the parameter Vso as an
adjustable one. The range parameter of the Coulomb
potential in the form of that for a uniformly charged
sphere can also be borrowed from the aforementioned
systematics.

In practice, the procedure used here to construct
the dispersive optical potential reduces to the follow-
ing steps:

(i) On the basis of available experimental data, one
determines the Fermi energy EF.

(ii) With the aid of the KD (or CH89*) systemat-
ics, one determines the parameters α, βs, rs, as, rd,
ad, rso, aso, and rС and fixes them as average ones.

(iii) With some chosen trial values of the parame-
ters βI and Vso and the input values of the parameters
rHF and aHF for the states of energy E+, E−, and
E

expt,ev
1s1/2

, one solves the Schrödinger equation with the

potential

−V (r,Enlj) = VHF(r,Enlj) (14)

+ ∆Vs(r,Enlj) + ∆Vd(r,Enlj)
+ Vso(r,Enlj) − VС(r).

From the conditions Enlj = Е+, E−, and E
expt,ev
1s1/2

, one

finds the values of VHF(EF) (12) and VHF(E1s1/2
) and

then determines the parameter γ(λ).
(iv) With the values found for the parameters

VHF(EF) and γ(λ), one again solves the Schrödinger
equation for states for which there are experimental
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data on E
expt
nlj . For the energy-dependent real part of

the dispersive optical potential, one selects a value of
E such that the absolute value |Enlj(E) − E|, where
Enlj(E) is a solution to the respective eigenvalue
problem, does not exceed 10 keV. After that, one
calculates the value of χ2 in (8) with values found
for the energies EDOP

nlj = Enlj(E).

(v) Following the procedure of the mesh-search
method, one then chooses different values of the pa-
rameters rHF and aHF and repeats the calculations
outlined in items (iii) and (iv). The analogous proce-
dure [items (iii) and (iv)] is also repeated at different
values of βI and Vso. As a result, one arrives at op-
timum values of the parameters βI , VHF(EF), γ(λ),
rHF, aHF, and Vso, those that minimize the functional
χ2 in (8).

In relation to the DOMA and VMA approaches,
the method proposed here for determining the param-
eters of the dispersive optical potential is aimed to a
greater extent at describing single-particle energies,
since some of its parameters are determined by mini-
mizing the functional χ2 in (8) with respect to them.

In single-particle spectra, the particle–hole en-
ergy gap ∆ between the first particle state and the
last hole state is wider in traditional magic nuclei
than in their neighbors. A large gap ∆ is also ex-
pected for new magic nuclei. The method developed
for constructing the dispersive optical potential is
used here to analyze the dynamics of single-particle
spectra in the n + 40,42,44,46,48,50,52,54,56Са, 46,48,50Ti,
50,52,54Cr, 54,56,58Fe, 56Ni, 84,86,88Sr, 90,92,94,96Zr, and
100,112,116,118,120,124,132Sn and p + 50,52Cr, 54,56Fe,
and 90,92,94,96Zr systems in response to changes in
N and Z. Below, we present results obtained by
means of the method proposed for determining the
parameters of the dispersive optical potential.

3. RESULTS

n + 40,42,46,48,50,52,54,56Са Systems

The doubly magic nucleus 40Са is one of the nuclei
used as a testing ground for developing various proce-
dures for constructing the dispersive optical potential
via analyzing data on scattering and single-particle
properties (see [13]). The addition of eight neutrons
to 40Са leads to the formation of another traditional
doubly magic isotope, 48Са. For this calcium isotope,
which is the last stable one, the excitation energy
of the 2+

1 state—one of the magicity signatures—
is 3.832 MeV. After decreasing to 1.026 MeV for
50Са, the energy E2+

1
, begins to grow again, reaching

2.563 MeV for 52Са. Within the multiparticle shell
model (MSM) [14], it is predicted that, in the isotope
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Fig. 1. Single-particle energies of neutron states in
40,42,44,46,48,50,52,54,56 Са nuclei: (solid curve) EMSM

nlj ,

(closed circles) Eexpt
nlj , and (open boxes) EDOP

nlj .

54Са, the energy E2+
1

reaches a maximum value (ap-

proximately equal to that in 48Са). In that nucleus,
the 2p3/2 and 2p1/2 neutron states are filled; also, a
rather wide gap ∆ between the 2p1/2 and 1f5/2 levels
is formed. These properties of 54Са give sufficient
grounds to believe that this nucleus is a candidate for
a doubly magic nucleus.

In order to construct the neutron dispersive optical
potential for nuclei of the isotopic chain
40,42,46,48,50,52,54,56Са, we used data obtained by the
matching method for E

expt
nlj in the vicinity of the Fermi

energy EF for neutron states of the stable isotopes
40,42,44,46,48Са [15] and the values of E

expt
1s1/2

[10] for
40Са. For all isotopes under study, the energy of the
1s1/2 state was evaluated as E

expt
1s1/2

for 40Са; that is,

Eev
1s1/2

= −61.5 MeV. The values calculated for the

energy of this state within the relativistic mean-field
model [12], which change insignificantly in response
to a change in the mass number A of the isotopes
under study, furnished a sufficient motivation for this.
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The calculations revealed that an increase in the
gap ∆ between the 2p1/2 and 1f5/2 neutron subshells
of 54Са in agreement with the predictions of the mul-
tiparticle shell model can be obtained via an increase
of about 10% in the parameters aHF and Vso in re-
lation to the neighboring isotopes. Figure 1 shows
the mass dependences of the energies E

expt
nlj , EMSM

nlj ,

and EDOP
nlj in the vicinity of EF for the 1f7/2,5/2 and

2p3/2,1/2 neutron states of the 40,42,46,48,50,52,54,56Са
nuclei. From this figure, one can see that the values
of EDOP

nlj agree with E
expt
nlj within the errors in them

for stable isotopes, as well as with the predictions
EMSM

nlj for unstable isotopes. This figure shows clearly
the formation of the maximum gaps ∆ between the
1f7/2 and 2p3/2 states in the doubly magic nucleus
48Са and between the 1f5/2 and 2p1/2 states in the
54Са nucleus, which is a candidate for a doubly magic
nucleus.

Below, we illustrate the potential of the proposed
method for determining the parameters of the disper-
sive optical potential in describing the dynamics of the
formation of single-particle spectra of 20 � Z � 28
nuclei in response to the change in the number of
neutrons around the magic number of N = 28 (1f-
to 2p-shell nuclei).

20 � Z � 28 Nuclei in Which N Is Close to 28
A systematic investigation of isotopic and isotonic

dependences of the experimental values E
expt
nlj ob-

tained by the matching method for neutron and pro-
ton states of 48Ca, 46,48,50Ti, 50,52,54Cr, and 54,56,58Fe
was performed in [16]. A similar investigation was
performed there for such states in the 56Ni nucleus
that were determined from the scheme of decay of
neighboring nuclei [17]. In particular, it was found
that the isotonic dependences for the 1f7/2, 2p3/2,
2p1/2, and 1f5/2 states in the nuclei subjected to
study and characterized by N = 26 and N = 28 can
be described by a linear function featuring a coefficient
that depends on a specific state, but which does not
depend on N . For the nuclei being studied, single-
particle energies of a number of states for which these
energies could not be determined by the matching
method because of the shortage of data on nucleon-
stripping and nucleon-pickup reactions were evalu-
ated with the aid of the aforementioned dependences.
The energies evaluated in this way and used as a
supplement to the experimental energy values made it
possible to trace the pattern of changes in the single-
particle spectra in response to changes in N and Z—
in particular, the formation of maximum gaps ∆ as the
numbers N and Z reach their magic value of 28.

Data on E
expt,ev
nlj were analyzed on the basis of

the mean-field model featuring the dispersive optical
potential by using the method for determining its pa-
rameters that was proposed in the present study. The
evaluated energy of Eev

1s1/2
= −62 MeV for neutron

states and the evaluated energy of Eev
1s1/2

= −54 MeV

for proton states in 20 � Z � 28 nuclei in which N is
close to 28 were obtained by using experimental data
from [10] and results based on the relativistic mean-
field model [12]. The energies EDOP

nlj calculated with
the values found for the parameters of the dispersive
optical potential could be matched with E

expt,ev
nlj within

the errors in the latter. The energies EDOP
nlj for neutron

and proton states of nuclei from the region 20 � Z �
28 at N in the vicinity of 28 are given in, respectively,
Tables 5 and 6 from [16] along with E

expt,ev
nlj .

n + 84,86,88Sr and n, p + 90,92,94,96Zr Systems

In the isotopic chains 84,86,88Sr and 90,92,94,96Zr,
the 88Sr and 90Zr nuclei are traditional nuclei that
are magic in the number of neutrons and in which
N = 50. Investigation of single-particle spectra for
the isotopic chains of strontium and zirconium makes
it possible to trace the dynamics of the formation of
the energy gap ∆ for N = 50 nuclei. Data obtained
for E

expt
nlj and N

expt
nlj in [18, 19] by the matching method

for the n + 84,86,88Sr and n, p + 90,92,94,96Zr systems
demonstrated this dynamics and made it possible to
discover magic properties of the 96Zr nucleus, con-
solidating the status of this nucleus as a candidate for
new nuclei that are magic in the number of neutrons.
Data on E

expt
nlj for neutron states in the 84,86,88Sr iso-

topic chain are indicative of an increase in the energy
gap ∆ between the 1g9/2 state, which is the last hole
neutron state, and the 2d5/2 state, which is the first
particle neutron state, as one approaches the magic
nucleus 88

38Sr50. According to the results obtained by
the matching method, the occupation probabilities for
the 1g9/2 and 2d5/2 states are 0.97(3) and 0.04(2),
respectively. Thus, the 1g9/2 state is almost filled,
while the 2d5/2 state is nearly free. In the isotopes
84Sr and 86Sr, the 1g9/2 state is filled incompletely, its

occupation probabilities being N
expt
1g9/2

= 0.58(6) and

0.78(8), respectively. In determining the Fermi energy
EF for these nuclei, we therefore used formula (2) of
Bardeen–Cooper–Schrieffer theory. Agreement be-
tween the energies EDOP

nlj calculated with the values
found for the parameters of the dispersive optical po-
tential and respective experimental data within the
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errors in them was attained in [18] for the 84,86,88Sr
nuclei.

In just the same way as 40Са, the 90
40Zr50 nucleus,

which is a traditional magic nucleus in the num-
ber of neutrons, was also used as a testing ground
for demonstrating the potential of the dispersive ap-
proach in determining the mean field (see, for exam-
ple, [20]). Experimental data obtained in [19] by the
matching method demonstrate how the filling of the
2d5/2 neutron subshell occurs as the number of neu-
trons increases in the 90,92,94,96Zr isotopic chain. In
accord with the predictions of the single-particle shell
model, this subshell proves to be completely filled in
the 96Zr nucleus. Concurrently, the 2d5/2 subshell
goes down, and this leads to an increase in the energy
gap ∆ between it and the free subshell 3s1/2. As a
result, the structure of an individual shell, 2d5/2, is
formed. This fact can be considered as a signature
of the magicity of the 96Zr nucleus (so-called magic
pair of numbers N = 56 and Z = 40). It is noteworthy
that the process of separation of the 2d5/2 subshell in
the 96Zr nucleus is similar to the process involving the
separation of the 1f7/2 subshell in calcium isotopes
and leading to the emergence of the traditional magic
number N = 28.

The filling of the 2d5/2 neutron subshell in the
96Zr nucleus is accompanied by the rearrangement
of the proton structure of the nucleus. As a result,
the occupation probability Nnlj for the 2p1/2 state,
which is the last hole state, increases to 0.81(5) in
96Zr, while the occupation probability for the 1g9/2

state, which is the first particle state, decreases to
0.1 in 90,92,94Zr and to zero in 96Zr. This is how the
change in the neutron structure of zirconium isotopes
in response to an increase in N affects their proton
structure.

In constructing the neutron and proton dispersive
optical potential for the isotopes 90,92,94,96Zr in order
to determine the parameters γ and λ for the n, p +
92,94,96Zr systems, we took here the values E

expt
1s1/2

from [11] for 90Zr, since the calculations of single-
particle energies of nucleon states in Z ≈ 50 nuclei
on the basis of the relativistic mean-field model [12]
showed that, in response to the change of six in
the number of neutrons in a fixed-Z nucleus, the
energy E1s1/2

changes within 1 MeV. This value of

E
expt
1s1/2

is within the experimental errors for 90Zr [11].

Agreement between the energies EDOP
nlj calculated for

neutron and proton states in 90,92,94,96Zr with the val-
ues found for the parameters of the dispersive optical
potential and relevant experimental data within the
errors in these data was attained in [19]. By way of
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Fig. 2. Single-particle energies of neutron states of
the 90,92,94,96Zr nuclei: (closed symbols, connected by
dashed lines in order to guide the eye) experimental data
and (open symbols) results of the calculations with the
dispersive optical potential.

illustration, the EDOP
nlj values are contrasted in Fig. 2

against E
expt
nlj in the vicinity of EF for neutron states of

90,92,94,96Zr.

n + 100,112,116,118,120,124,132Sn Systems

Tin has ten stable isotopes—the largest number in
relation to other isotopes. Therefore, the tin isotopes
that are magic in protons (Z = 50) are a unique object
for studying changes in the parameters of the nuclear
structure as the number of neutrons in a nucleus
increases.

To a high precision, the experimental values E
expt
nlj

obtained in [21, 22] by the matching method for neu-
tron states in the vicinity of the Fermi energy EF in the
stable isotopes 112,116,118,120,124Sn depend linearly on
the mass number A. In [23], this circumstance was
used to perform a linear extrapolation of the data in
question and to obtain the evaluated energies Eev

nlj

for neutron states of the unstable nuclei 100,132Sn
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Fig. 3. Single-particle energies of neutron states in the 100,112,116,118,120,124,132 Sn nuclei: (closed circles) experimental data
obtained by the matching method, (closed squares) data from [24, 25], and (open circles) results of the calculation with the
dispersive optical potential. The solid line represents a linear extrapolation.

featuring the traditional magic numbers of N = 50,
82 and Z = 50. The evaluated energies Eev

nlj proved to

be close to data obtained in [24, 25] for the 100,132Sn
nuclei from the schemes of decay of neighboring nu-
clei. We used the energies E

expt
nlj and Eev

nlj to con-
struct the neutron dispersive optical potential for the
100,112,116,118,120,124,132Sn nuclei, which make it pos-
sible to demonstrate the potential of the method for
determining the parameters of the dispersive optical
potential of our present study for the isotopic chain as
the number of neutrons N increases by 32.

In order to evaluate the energies of the 1s1/2 neu-
tron states in the 100Sn and 132Sn nuclei, we used the
following information. The energy of the 1s1/2 neu-
tron state is known from experiments for the 90

40Zr50
nucleus, which is the nearest neighbor in Z: E1s1/2

=
−70.0 ± 2.3 MeV [11]. Since 100

50 Sn50 also contains
50 neutrons, the energy of the 1s1/2 state in 100

50 Sn50

can be estimated by comparing the neutron single-

particle energies for 100
50 Sn50 and 90

40Zr50. The mean

shift in energy between Eev
nlj in 100Sn and E

expt
nlj in

90Zr is about 4 MeV. Therefore, we estimated the
neutron-state energy in 100

50 Sn50 at –75 MeV. In order
to estimate E1s1/2

in the 132
50 Sn82 nucleus, we made

use of regularities in the results of the calculations
of E1s1/2

for tin isotopes from 100Sn to 132Sn within
the relativistic mean-field model. According to [12],
the energies of the 1s1/2 neutron states in the 100Sn
and 132Sn nuclei differ by 3.5 MeV. Therefore, we set
the value of E1s1/2

for the 132Sn nucleus to –72 MeV.

In order to estimate E1s1/2
for the 112,116,118,120,124Sn

nuclei, we assumed that the energy E1s1/2
is a linear

function of the number of neutrons in nuclei and
changes from –75 MeV for 100Sn to –72 MeV for
132Sn.

The Fermi energy EF for the doubly magic nu-
cleus 100Sn was determined as the half-sum of the
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energies of the 1g7/2 and 2d5/2 states, while the Fer-
mi energy for the doubly magic nucleus 132Sn was
determined as the half-sum of the energies of the
2d3/2 and 2f7/2 states. The experimental occupa-

tion numbers N
expt
nlj [21, 22] for neutron states in the

112,116,118,120,124Sn nuclei exhibit a strongly smeared
Fermi surface; because of correlation effects, their
values differ markedly from zero and one, which are
characteristic of the single-particle shell model. In
order to determine the Fermi energy EF in these nu-
clei, we made use of formula (2) of Bardeen–Cooper–
Schrieffer theory. The parameters of the dispersive
optical potential (see [21–23]) that were found by
the method used in our present study change in-
significantly with increasing N in nuclei. Figure 3
shows that the calculated energies EDOP

nlj are in good

agreement with the experimental values E
expt
nlj and

with the evaluated data Eev
nlj for neutron states of the

100,112,116,118,120,124,132Sn nuclei.

4. CONCLUSIONS

In order to investigate the single-particle shell
structure of magic and near-magic spherical nuclei
and nuclei close to them, both stable and unstable
ones, a general method has been proposed for con-
structing a dispersive optical potential. The method
is aimed at calculating single-particle properties of
spherical nuclei and nuclei close to them, including
unstable neutron-rich and neutron-deficient nuclei.

The proposed method has been applied to de-
termining the dispersive optical potential for the
n + 40,42,44,46,48Ca,46,48,50Ti, 50,52,54Cr, 54,56,58Fe,
56,58,60,62,64,68Ni, 84,86,88Sr, 90,92,94,96Zr, and
100,112,116,118,120,124,132Sn and the p + 46,48,50Ti,
50,52Cr, 54,56Fe, and 92,94,96Zr systems, and single-
particle energies have been calculated on the basis
of this method. The results have been found to be in
agreement with experimental data within the errors in
them.

The experimental isotonic and isotopic depen-
dences of single-particle energies have been deter-
mined for 20 � Z � 28 nuclei in which the number of
neutrons N was close to 28, as well as for Z = 50
nuclei. The use of these dependences has made it
possible to evaluate the energies Enlj for several
neutron states in stable titanium, chromium, and
iron isotopes and in the unstable nuclei of 68Ni and
100,132Sn and to find the dispersive optical potential
for these nuclei.

We have shown that magic properties of stable nu-
clei having previously known magic numbers of neu-
trons N = 20, 28, 50 (40,48Ca, 50Ti, 52Cr 54Fe, 56Ni,

88Sr); unstable N = 50 and 82 nuclei (100,132Sn);
and nuclei that are candidates for new magic nuclei
having N = 34 and Z = 20 (54Ca), N = 40 and Z =
28 (68Ni), and N = 56 and Z = 40 (96Zr) manifest
themselves in the dynamics of single-particle spectra
of neutron states. On the basis of the method devel-
oped here for constructing a dispersive optical po-
tential, the observed regularities have been described
within the experimental errors.
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