

Typical LC-MS metabolomics workflow for profiling urine samples of patients with colorectal cancer Ivan Plyushchenko¹, Timofey Bolotnik¹, Dmitry Shakhmatov², Sergey Achkasov², Oleg Sushkov², Oleg Shpigun¹, Igor Rodin¹

¹ Lomonosov Moscow State University, Moscow, Russia

² State Scientific Center of Coloproctology, Moscow, Russia

plyushchenko.ivan@gmail.com

Design of experiment & run order

Test samples + IS	
	blank SST QC five test samples blank five test samples QC blank
QC	900
sample+ IS	Run order sequence

- \succ Dilute & shoot for sample preparation as most universal and reliable approach
- \geq QC samples as SST (by controlling reproducibility of retention) times, signal intensities and mass accuracy in terms of CV and Pearson's correlation coefficients) and for optimization of

Short overview of experimental part

- > LC-MS/MS QQQ instruments ("Agilent Technologies", USA)
- \succ Waters Acquity UPLC BEH; 1.7 µm column ("Waters", USA) with guard column
- \geq 60' long chromatographic gradient for high resolution
- \succ The divert value was opened to the waste line during first 0.5 and after 45 min
- \succ Creatinine in urine was determined by the kinetic method of Jaffe
- > 40 urine samples from 3 groups of patients Software

preprocessing procedure.

- > Replicates for checking stability (similarly as for QC)
- > Blanks controlling contaminations, carry-over and flushing column
- Randomization to ensure that no bias is introduced
- MS tuning and ion source washing after each batch
- \geq IS (papaverine) for choosing both time alignment and integration parameters; also for determination of quality control metabolites (with high correlation coefficients for IS)

- "ProteoWizard" converting raw data
- "iMet-Q" integration and peak table construction
- \succ "MetaboAnalyst" for missing values imputation, univariate, unsupervised statistical analysis and PLS-DA
- > "NOREVA" and "NormalizeMets" (R package) for utilization of different signal drift correction methods
- > "Rattle" (GUI for R language) for supervised statistical analysis
- > "Excel" and "MassHunter" basic operations

Optimization of preprocessing algorithm

- ✓ 2 normalization methods by creatinine, MSTUS
- \checkmark 9 methods of signal drift correction Contrast, Cubic Spline, Cyclic Loess, EigenMS, Quantile,

all combinations

Evaluation was carried out by:

1) CV criterion for all peaks in all QC samples from all

VSN Total from Sum, and 2 types "NormalizeMets": RUVrand & RUVrandclast

 \checkmark 3 methods of missing values imputation – KNN, Median, Half Minimum

batches (maximum number of features in 50% cut-off)

Maximum values for classification accuracy from 2) different unsupervised methods (Random Forest, Decision Tree, SVM with Linear and Gaussian Radial Basis kernel functions)

The best preprocessing algorithm: HM for MSI, Creatinine normalization, no correction

%, of all features	%, CV cut-off	Tree	RF	SVM(rbf)	SVM (lin)	Method
87	50	75.1	91.7	66.6	66.6	Classif. accuracy

Results

for verification of the result, data with chosen combination of preprocessed methods were put to the following procedure:

 \succ Top features with VIP values > 3 from PLS-DA and p-value < 0.001 were extracted from data

> New data with only selected features were subjected to unsupervised statistical analysis (Hierarchical Cluster Analysis; PCA) \succ All results were obtained with log transformation

Left side (a, b) – results from raw data in chosen combination, right side (c, d) – data with only selected features

Conclusion

This pragmatic decision procedure for selection and evaluation of preprocessing methods in metabolomics studies can be used in other relatively short studies such as: clinical research, examination of the metabolism of drugs, plant metabolomics, pharmacokinetics, etc.