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Abstract It is proved that the product of m complex variables can be represented as a sum of
m = 2" n powers of linear forms of n variables and for any m < 2"7! there is no such identity with
m summands being nth powers of linear forms
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The identity 2y = ((z+y)?— (z—y)?)/4 is widely known It allows one to perform multiplication providing
the table of squares is available This technique was used centuries ago as an alternative to application of
logarithms It is less known that, given a table of cubes, one can multiply three numbers by the formula

(GRS Ly s iy i )

This formula can be generalized to the case of multiplication of n variables with the use of addition, sub
traction, and raising to nth power For any field whose characteristic is greater than n (or equals to zero),
the following identity holds:

1 (o a. o g n
Tl Tn = o Z (1)t (g 4+ (=1)my + ...+ (=1)7 @)™
02=0,1,...0,=0,1

To prove it, note that each of 2"~ summands
(r1 + (=)0 + ...+ (—=1)7"z,)"

contains the monomial n!(—1)72" 9~z . x, which being multiplied by (—1)°2"T9» turns to the mono
mial n!z; ...x,, and after the calculation of the sum the monomial gets the coefficient 2"~ !n!. It remains to
verify that other monomials 27" ...z{'™, m < n, enter this sum with zero coefficients In fact, for any such
monomial there exists the variable x;, ¢ > 1, not entering it, or the variable x;, ¢ > 1, entering it squared
In both the cases the coefficient at this monomial in any summand (x; + (—1)%22z5 + ...+ (—1)7"x,)"™ does
not depend on the index ;. Therefore, after multiplication by (—1)°2%+9» the dependence of the index
o; under fixed other indices o, j # 1, results in the change of sign under the change of the value of o;.
Therefore, grouping together pairs of summands differing only in the values of the index o;, we obtain that
the sum of each such pair is equal to zero and hence the total sum of 2"~ ! summands is equal to zero, i e,
the coefficient at any monomial ="' ... x™, m < n, in the sum

(=172t (o + (1) 72wy + .+ (=1)7m2,)"

02=0,1,...0,=0,1

is equal to zero, which proves the identity considered here
This identity implies that in an arbitrary field of characteristic zero one can represent the monomial
Z1...T, as a linear combination of 27! linear forms I; of the same variables, i e,

2n,’—1

T1...Tp = E ol

i=1

o1
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Obviously, in the field C (or in any algebraically closed field) one can assume that «; = 1 in this identity, in
the field R one can use only the coefficients a; = £1, and for odd n only the coefficients «; = 1.
The following question arises: what is the least number m satisfying the identity

m

n

T1...%y = E oyl
i=1

where [; are linear forms of the variables x1,...,x,? The first of the authors encountered this problem in the
middle of 80s in the last century in connection with the following question: what is the least complexity of a
formula constructed over the basis B = {z + y,2%} U {az : a € R} consisting of the operations of addition,
squaring, and multiplication by an arbitrary scalar, and calculating the function z; ...z,?

The notions of a formula over the basis B and its complexity are defined inductively in a standard manner
(see,e g, [1 3]) By definition, any variable is a formula; if ®; are formulas, then ®; + @5 is also a formula,; if
® is a formula, then ®? and a® are also formulas for any a € R The complexity of a formula is the number
of all symbols of variables entering it (one can define the complexity of a formula as the number of basic
operations in it, but this definition coincides in essence with this one) The complexity of a function is the
minimal complexity of a formula realizing it

One can inductively construct a formula in the basis B having the complexity O(n?) and realizing the
product x7 ...x,. To do that, represent x; ...z, in the form of the product

Y1Y2, Y1 =T1..-T|n/2|, Y2 = T|n/2J+1---Tn,
represent y; by formulas ®; of complexity
O(n?)v ny = Ln/2J7 n2 = (n/2.|7 ny +ng =n,

and represent y;y2 by the formula
1
4
The complexities of formulas considered here relate as L(®) < 2(L(®1)+ L(P2)), which implies the inequality
L(n) < 2(L([n/2]) + L(|n/2])), where L(n) is the complexity of realization of the product ...z, by
formulas in the given basis B. It is easy to show by induction that L(n) = n? for n = 2¥. In the general

(@1 + @1)* — (21 — ©1)*).

case, one can verify by induction that L(n) < 9"28_1. The base of induction is obvious In order to justify
the inductive step, it is sufficient to check the inequalities

21 2m)2 — 1 21 2 12 -1 4 12 -1
4, 9m <9(m) ,2(49771 +9(m+) >S9(m+)

8 - 8 8 8 ’

8 8 8

Note that the proof of this estimate coincides in essence with the proof of the complexity estimate for
realization of the linear Boolean function =1 @ ... ® x,, by formulas in the basis {&, V, =} or by sequentially
parallel circuits (see [4]) The lower bound Lg v —~(n) > n? for the latter problem was proved in [5]

It is natural to suppose that such lower bound can be also proved for the case of realization of the product
T1...x, by formulas in the basis B = {z + y,2%} U {ax : a € R}

In the case of realization by circuits this is not true because we obviously have Lg(n) = O(n).

A similar problem can be considered for an arbitrary basis By, = {z +y, 2"}U {ax : a € R}. For example,
the estimate Lp,(n) = O(n'°8:12) is valid for k = 3 One may also study similar problems for the basis
{z +y,1} U{az : a € R} consisting of an arbitrary nonlinear polynomial and the set of linear functions (it
is proved that any polynomial can be represented in this basis)

The problem for the least number of linear forms /; such that a certain linear combination of their nth
powers is equal to x7 ...z, appeared in the attempt to solve the problem on the complexity of calculation
of the product zj ...z, by formulas in the basis B = {z + y,2?} U {ax : a € R} In modern terminology,
the representation in the form of a sum of powers of linear forms is the realization by circuits (formulas) of
depth two in the basis B.

The first author considered the problem of representation of products by sums of powers as a competition
one and presented its particular cases for student and school mathematical contests, but had not proved the

2 2 2 _
2<49(m+1) 1+9(2m—|—1) 1>§9(4m+3) 1.
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lower bound in the general form The second author proved it in the end of 1980s The problem occurred to
be too difficult for competitions and the authors had not seen any sense in its publication

Recently, the first author have known that this (and a bit more general) problem was considered in [6]
and, in particular, it was also proved that the number of summands in any identity

xl...xn:l‘f—l—...—l—lg,

where [; are affine forms, is not less than 2" /(d + 1), and it was proved in [7] that the number of summands
in any identity
T T = Q7 + ...+ QF,

where @Q; are polynomials of degree not exceeding d, satisfies the inequality Ins = Q(n/2%) + O(dIlnn) In
particular, the lower bound s > 2" was obtained for d = 1 Papers [6, 7| refer to [8] where the family of
27~ linear forms such that the sum of their nth powers with alternating signs is equal to the product of n
variables was indicated (probably, this family coincides with that mentioned above in this paper)

Therefore, the first author decided to write this note We had to restore the proof because it was not
recorded at that time Apparently, it is close to the proof found more than thirty years ago by the second
author

Theorem. Given an arbitrary field whose characteristic is greater than n or equal to zero, the minimal
number of linear forms l; of the variables x1,. .., x, whose linear combination of nth powers coincides with
the product 1 . ..x, is equal to 271,

Proof The upper estimate was presented above Prove the lower estimate Let

S
XT1...%p ZZOQUL, l; =011+ ...+ An i Tn, i=1,...,s,
i=1
be a linear combination of nth powers of linear forms over an arbitrary field F and a; € F. Prove that
s > 2"~!. Suppose s < 2"~! and get a contradiction Consider the vectors vy, = (ag1,...,axs) € F*, k =
1,...,n. Applying the operation of component wise multiplication of vectors, introduce into consideration
the 27~ vectors

n n—1 n—1 n—2 n—2 2 2
U1, Uy V2,y...,0Uq Un, V1 VU3, ...,V Up—1Uny ..., V]V2 ... Up—1,...,0]V3...Up,V1...VUp,

where the cofactors vs, . .., v, enter every summand with the power not exceeding one, and all other vectors

1 .v”j, 1< <...<im<n, pr+...+pm=n, m<n.

Uil RN

For an arbitrary vector w = (w1, ...,ws) € F*, denote >.._, ayw; by |w|. Obviously,

m m
D Njej| =D Ajlel
j=1 j=1

for any vectors e; and coeflicients A;.
Removing the parentheses in the formula for z; ...z, and equating the coefficients, we get [v" ... v}'"
0 for m <n —1 Assuming

Hm | __

n—m
Wiy iy = V1 Vi e Vi

71/771
this fact, in particular, implies |w;, ... ;.| = 0 for m < n — 1, but |ws, . »| = 1/n! In fact, the coeflicient
at zj ...zf™ in the summand o;l} is equal (up to a multiplier) to ajv}' ... v} (i), where v'" ... v/ (i) is
the ith component of the vector v}:' ... v}'". Summing, we get that the coefficient at ="' ...z} in the sum
Zle oyl7 is equal to |UZ1 .. vf:ﬂ It equals zero in all the cases except for m = n, where it is distinct from
zero
Prove that the vector ws, ., is a linear combination of the vectors

Moo l=d1< ... <im<n, m<n.

Uil Sl

In this case, according to the equalities indicated above and the linear property ‘ Z;nzl Aj€j

=>im1 Ajlesl,
we obtain |ws, . »| = 0, which leads to contradiction and proves the theorem

It remains to prove the existence of a linear combination possessing this property To do that, consider
two possible cases Let all the vectors wy, .. ;, € F*°, where m < n — 1, be linearly independent In this case
their number satisfies the inequality 2"~ — 1 > s, therefore, these vectors form a basis in the space F'* and
we actually have 2771 — 1 = s and the vector W ... p is their linear combination, which was required
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We have to consider the second (more complicated) case where the set of vectors w;, .. ;,., m <n—1,1is
linearly dependent Take their nontrivial linear combination equal to the zero vector We can consider only
the vectors with nonzero factors A; in it Select the vector wj, . ;. with the maximal m = M <n —1 (or
one of such vectors) from them It can be represented as a linear combination of other vectors of the form
Wiy . i > M < M If the ith coordinate of the vector v; is equal to zero, vy () = 0, then the ith coordinates
of all considered vectors are also equal to zero Remove such coordinates from those vectors The vector
w’ . shortened this way can be represented through the shortened vectors wy m < M, as the
linear combination with the same coefficients Dividing each jth component in the considered vectors by

v M () # 0, we obtain the vectors wj, , m < M, whose components are expressed as

B

7"'!i77L
v T ()i (5) - - v (3)-

The vector w} . = is expressed through the vectors wj, ;. m < M, as the linear combination with
the same coefficients Restore removed zero components in each of these vectors Denote the vectors of
dimension s obtained this way by w;’ ,m < M, as before The vector w},  is expressed through the
vectors wj, ;. m < M, as the linear combination with the same coefficients Consider the set of numbers
1="Fk <...<kp_p not equal to any number ji, ..., ja. Multiply all the vectors w;’l m < M, by the

vector vk, ... v, . We get the vector

yeenslm
sereslm?

/!

Uky + - Uk g Wiy, in

=V1...Unp =W2,...n

and the vectors (distinct from it)

Vky + o Uk Wiy =00 00 =1, t <.
This vector wo,... , is expressed through the vectors indicated here as the linear combination with the same
coefficients Therefore, we have also constructed the required linear combination in the second case considered
here As above, its existence implies a contradiction The theorem is proved
I S Sergeev noted that we have actually proved that the number of occurrences of symbols of a given
variable in the formula

n
xlxn:l?—i——l—l%, li:li(ml,...,xn):Zai7jxj
j=1

is not less than 2"~!, which implies that the complexity of a formula of such form is not less than 2"~ 'n and
all these bounds are attainable The assertion formulated above is in some sense an analogue of the theorem
that the complexity of realization of the linear Boolean function 1 & ... @& x,, by disjunctive normal forms
(DNF) is equal to 2"~ !n, and the number of conjunctions in the shortest DNF for this linear function is
equal to 2"~ !. The analogy becomes more explicit if we notice that for 2; = 1 one can represent z; in the
form (—1)¥, y; € {0,1}, and then

Ty ... xy = (—1)NE O,

Give some further remarks In the case of fields with the characteristic comparatively small with respect
to n, the identity ;1 ...z, =17 + ...+ 17, where [; are linear polynomials, may not exist (for example, for
n equal to the order of field)

It is interesting to solve a similar problem for an arbitrary monomial, arbitrary homogeneous polynomial,
and an arbitrary polynomial in general, for example, over a field of characteristic zero It is obvious that any
monomial of degree n of m variables can be represented for any d > n as a sum of linear combinations of
not more than 2¢~! affine forms raised to the power d. This implies that any homogeneous polynomial of
degree n of m variables is representable in the form of linear combination of not more than 2"~ ("7~
linear forms raised to the power n The estimate for the number of linear forms can be improved if we
notice, for example, that 27 . .. xi/Q can be represented as a linear combination of (3"/2~! —1)/2 linear forms
1 * X1 T wo Twa ... £ 3y £ 1,/ raised to the power n. For example,

(z122)% = (1/12) (21 + 22)* + (21 — 22)* — 227 — 223).

It was shown in [9] (see also [10]) that such representation consisting of (n+ 1) linear forms exists In [11],
another proof of the same estimate was given (the problem was presented in a student mathematical contest
without a requirement to obtain the bound for the number of summands)

For m = Q(n) the bound 2"~ ("7~} is better, and for small m the bound (n + 1)™ is better
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For n = 2 this problem coincides with the problem of representation of a quadratic form of m variables
as a sum of squares As is known, the number of summands in such representation is not greater than m
and this bound is attainable

For m = 1 it is easy to prove that any polynomial of degree n of a single variable x can be represented
as a linear combination of binomials (z + k)", k =0, 1,...,n. It is sufficient to notice that the difference of
kth order for the monomial " equal to

" — (T) (2 4+1)" 4 ...+ (=D + k)"

is a polynomial of degree n — k, in particular, the constant n! (and any constant) is representable as a
linear combination of binomials (z + k)™, k = 0,1,...,n, therefore, any polynomial of the first degree is
representable in the form of a linear combination of those binomials, any polynomial of the second degree is
also representable, etc , i e , the linear space of polynomials of degree n has the basis (z+ k)", k =0,1,...,n.

Since the representation
S

fla) =) (aw+by)"
i=1
contains 2s parameters a;, b; and the polynomial f(x) is determined by n+ 1 coefficients, then for 2s < n+1
the representation in the form indicated above exists only for polynomials with coefficients from R forming
a set of zero measure in the space of all polynomials of degree n over R. Therefore, the lower bound for s is
(n+1)/2 in this case For odd n Sylvester proved in XIXth century (see [10]) that for almost all polynomials
f(z) of degree n there exists a representation in the form of a linear combination

(n+1)/2
fle)= > alz+b)",
i=1

and there exist polynomials having the minimal number of summands s > (n + 1)/2 in such representation

All the problems considered here are of certain interest in the case of finite fields

Note in conclusion that the classic problem of the number theory on representation of a natural number
as a sum of minimal number of powers of natural numbers and its variants (Waring’s problem) has a similar
formulation

ACKNOWLEDGMENTS
The work was supported by the Russian Foundation for Basic Research (projects no 11 01 00508, 11
01 00792a)

REFERENCES

1 S B Gashkov, “A Method for Calculation of Lower Bounds for the Complexity of Monotone Calculation of
Polynomials,” Vestn Mosk Univ, Matem Mekhan , No 5, 7 (1987)

2 S B Gashkov, “Complexity of Calculation of Certain Classes of Polynomials of Several Variables,” Vestn Mosk
Univ , Matem Mekhan , No 1, 89 (1988)

3 S B Gashkov, “Parallel Calculation of Certain Classes of Polynomials with the Growing Number of Variables,”
Vestn Mosk Univ, Matem Mekhan , No 2, 88 (1990)

4 S V Yablonskii, “Realization of a Linear Function in the Class of II Circuits,” Doklady Akad Nauk SSSR 94
(5), 805 (1954)

5 V M Khrapchenko “Complexity of Realization of a Linear Function in the Class of IT Circuits,” Matem Zametki
10 (1), 83 (1971)

6 X Chen, N Kayal, and A Wigderson, “Partial Derivatives in Arithmetic Complexity,” Foundations and Trends
in Theoretical Computer Science 6 (1, 2), 2010

7 N Kayal, “An Exponential Lower Bound for the Sum of Powers of Bounded Degree Polynomials,” in Electronic
Colloquium on Computational Complezity, Report 81, 2012

8 I Fisher, “Sums of Like Powers of Multivariant Linear Forms,” Math Mag 67 (1), 59 (1994)

9 H Sonnenschein, “A Representation for Polynomials in Several Variables,” Amer Math Monthly 78 (1), 45
(1971)

10 V V Prasolov, Polynomials (MCCME, Moscow, 2000) [in Russian]

11 Student’s Mathematical Competitions in Algebra in Mathematical and Mechanical Department of MSU in 2006
2011 (MCCME, Moscow, 2012) [in Russian]

Translated by V Valedinskii

MOSCOW UNIVERSITY MATHEMATICS BULLETIN Vol 69 No 2 2014



