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GROUP ANALYSIS OF THE ONE-DIMENSIONAL BOLTZMANN

EQUATION: III. CONDITION FOR THE MOMENT QUANTITIES TO

BE PHYSICALLY MEANINGFUL

K. S. Platonova∗ and A. V. Borovskikh∗

We present the group classification of the one-dimensional Boltzmann equation with respect to the function

F = F(t, x, c) characterizing an external force field under the assumption that the physically meaningful

constraints dx = c dt, dc = F dt, dt = 0, and dx = 0 are imposed on the variables. We show that for all

functions F , the algebra is finite-dimensional, and its maximum dimension is eight, which corresponds to

the equation with a zero F .
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1. Boltzmann equation

We perform a group analysis of the one-dimensional Boltzmann equation [1]

ft + cfx + Ffc = 0 (t, x, c ∈ R), (1)

which describes the evolution of a fluid particle distribution (here, t is the time, x is the spatial coordinate,
c is the momentum, and f(t, x, c) is the phase density of the particles). We assume that the function
F(t, x, c) responsible for the force field is given (but still arbitrary).

We first say a few words about the original statement of the problem and related problems. We are in
fact interested not in the symmetry groups of the Boltzmann equation itself but in their behavior in passing
from the Boltzmann equation to a system of equations for the moment functions

j(n)(t, x) =
∫ +∞

−∞
f(t, x, c)cn dc. (2)

Of course, it is most promising to consider the three-dimensional equation, but because we here start to
consider the statements of absolutely new problems, we first try to do this for the one-dimensional equation.

We stress that the group analysis is always related to a certain transformation of the problem, namely,
some arbitrary functions must be introduced. It is well known that equations for which some relations may
vary or even be empirical laws are often used in mechanics. These relations can be written analytically
only approximately starting from some hypotheses. In this case, the mathematical statements are usually
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based on using arbitrary functions (of course, constraints of the form of positivity, monotonicity, etc., can
be imposed on these functions, but they are arbitrary in their origin). In the group analysis, this is simply
a rule determined by the technique; this rule works most efficiently in the case of minimal constraints
on the class of functional relations that can be varied, while inappropriate, “excessive” assumptions can
seriously complicate the analysis. Moreover, using arbitrary functions sometimes results in the mechanical
classification of equations being replaced with their mathematical classification, for example, with symmetry
groups, as in Ovsyannikov’s famous work [2]. We therefore first consider the Boltzmann equation with an
arbitrary function F(t, x, c).

The second specific property of group analysis is a significant extension (compared with the physical
statement of the problem) of the class of changes of variables (changes of coordinate systems in the physical
language). This drastically simplifies the calculations but generates a problem of interpreting the results
from the standpoint of physical meaning. We are sometimes on the edge of this meaning and sometimes
even over the edge. The results of group analysis must therefore be constantly reviewed to determine
whether the physical meaning is lost, and if so, then why it is lost.

The group analysis of Eq. (1) conducted in [3] is a clearly convincing example of such problems. It is
easy to see that Eq. (1) is a linear homogeneous partial differential equation for the function f , which is
solved in the standard way consisting in finding a change of variables (t, x, c) converting (1) into the simplest
equation ft = 0. Therefore, at the first glance, the group analysis of such an equation is trivial: all equations
are equivalent to one another, and the symmetry groups of all equations are isomorphic to the symmetry
group of the simplest equation, which is easily found. But there is one oversight here. Admitting arbitrary
transformations of the variables (t, x, c), we can very easily lose the same physical meaning because c is the
velocity of a particle in a space where the coordinates are given by x and stretching the axis x (while time
does not vary) assumes also recalculating c.

We can give an analogous, more clearly convincing example in the three-dimensional case: how can
the coordinate system in the space of variables x be rotated without rotating it in the space of velocities?
But this is not written “in the equation,” and it is impossible to overcome this absurdity using purely
mathematical tools. A way out is to impose an additional condition of transformation invariance on the
additional relation dx = c dt (and simultaneously on the relation dc = F dt, with which it forms Newton’s
second law).

It thus turns out that a group analysis of Eq. (1) without the conditions

dx = c dt, dc = F dt (3)

(which, as shown in [3], gives a quite different result compared with the same analysis with these conditions
taken into account) is senseless from the physical standpoint (by the way, precisely this point was apparently
neglected by the authors of [4], where they reduced the left-hand side of the equation to the simplest form).

Similarly, one more condition now related to not the Boltzmann equation itself but moment func-
tions (2) appears “from nowhere” (from the mathematical standpoint). These quantities have physical
meanings in an appropriate medium (the function j(0) is interpreted as the mass density, j(1), as the mo-
mentum density, and j(2), as the energy density) and are calculated by integrating over the velocities of
the corresponding characteristic particles located at a given point of space at a given time, i.e., we formally
integrate over the straight line t = const, x = const. But for arbitrary changes of variables, this straight line
transforms into an unknown curve in the space (t, x, c), and the integral (together with the corresponding
quantity) becomes physically meaningless. To preserve the physical meaning, we must therefore supple-
ment the problem statement with the condition that these straight lines are invariant, i.e., introduce the
invariance condition for the relations

dt = 0, dx = 0. (4)
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There is another factor of physical nature. The quantity

f(t, x, c) dx dc (5)

also has the physical meaning of the number of particles located in the phase volume dx dc at time t, and
this quantity by assumption must be invariant under the change of variables (because a change of variables
is only a change of the coordinate system and the set of particles treated as a physical object does not
change in this case). One more condition thus arises.

As a result, the original problem becomes nontrivial. We note that some of the listed conditions simplify
the analysis, and some (e.g., the last one) strongly complicate it. To take this analysis to an effective result,
we must therefore manipulate the conditions, namely, use some of them, temporarily “forget” the others,
and return to them when some preliminary classification results are obtained.

Here, we consider Eq. (1) with only the set of conditions (3) and (4), and the situation where the
invariance condition for quantity (5) is added will considered in a separate paper.

2. Symmetry groups and equivalence groups of Eqs. (1) and (3)

We first recall the basic definitions and the results obtained in [3], [5].
The symmetry group of a differential equation Y = 0 is the group G of transformations taking the

equation Y = 0 to itself. We then say that the equation is invariant under the group G.
Each one-parameter subgroup of G is generated by a vector field ξ calculated as the derivative with

respect to the parameter of a one-parameter group at the zero value of this parameter. The one-parameter
group itself is reconstructed from the vector field as a solution of a system of ordinary differential equations
with the right-hand side equal to ξ.

We here deal with a transformation of the space of variables (t, x, c, f), and the corresponding compo-
nents of the vector field are denoted by (τ, ξ, α, η). A one-parameter subgroup is reconstructed from the
vector field as a solution of the system of equations

ṫ = τ(t, x, c, f), ẋ = ξ(t, x, c, f), ċ = α(t, x, c, f), ḟ = η(t, x, c, f) (6)

(the dot denotes differentiation with respect to the group parameter). With the vector field, we usually
associate the differential operator

Ξ = τ(t, x, c, f)∂t + ξ(t, x, c, f)∂x + α(t, x, c, f)∂c + η(t, x, c, f)∂f , (7)

in terms of which the invariance condition for the equation Y = 0 becomes succinct, i.e., ΞY |Y =0 = 0
(operator (7) can then be standardly continued to the space of variables that also contain the derivatives;
the derivatives are ft, fx, and fc in our case).

The set of all operators generating one-parameter groups forms a Lie algebra, i.e., a linear space
invariant under the operation of commutation of operators (satisfying the Jacobi condition). If this space is
finite-dimensional, then it can be used to reconstruct the connected component of the group, which contains
the identity transformation, as a locally parameterized set (manifold) of the same dimension. Here, we do
not construct the group itself (because we do not need this below) but classify the group, as usual, in terms
of the Lie algebra of operators (7).

The transformations taking any equation of form (1) to an equation of the same form but with another
function F form a group called the equivalence group of the family of equations of form (1). The equivalence
group permits dividing the original family into classes of mutually equivalent equations by reducing the
classification of all equations to the classification of the set of representatives of the corresponding classes.
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This group already acts in the space of five variables (t, x, c, f,F) and is generated, as the symmetry group,
by the algebra of operators

Σ̂ = τ(t, x, c, f)∂t + ξ(t, x, c, f)∂x + α(t, x, c, f)∂c + η(t, x, c, f)∂f + Φ(t, x, c, f,F)∂F .

As the starting point, we consider two main results in [3] and [5] about the symmetry group and the
equivalence group for Eq. (1) supplemented with relations (3).

We let
DF = ∂t + c∂x + F∂c (8)

denote the differential operator generating Eq. (1).

Theorem 1. The Lie algebra of the group of symmetries of Eq. (1) preserving differential relations (3)
comprises two terms: an infinite-dimensional subalgebra of transformations of an unknown function

Ξf = η(t, x, c, f)∂f , (9)

where η(t, x, c, f) is an arbitrary function satisfying the condition DFη = 0, and an infinite-dimensional

subalgebra of transformations of the independent variables

Ξt,x,c = τ∂t + (β + cτ)∂x + (DFβ + Fτ)∂c, (10)

where τ(t, x, c, f) is an arbitrary function and β(t, x, c) satisfies the condition

D2
Fβ −FcDFβ −Fxβ = 0. (11)

Theorem 2. The equivalence algebra of Eq. (1) preserving differential relations (3) comprises two

terms: an infinite-dimensional subalgebra of transformations Ξ̂f = η(f)∂f of the function f and an infinite-

dimensional subalgebra of transformations of the independent variables t, x, c, and F ,

Ξ̂t,x,c = −βc∂t + (β − cβc)∂x + (βt + cβx)∂c + D2
Fβ∂F , (12)

where β(t, x, c) is an arbitrary function.

3. Symmetry groups and equivalence groups
of Eqs. (1), (3), and (4)

We now present the main result.
The invariance condition for relations (4) implies the conditions τc dc+ τf df = ξc dc+ ξf df = 0 for any

dc and df for both the symmetry algebra and the equivalence algebra, which obviously implies τ = τ(t, x),
ξ = ξ(t, x).

Therefore, the symmetry subalgebra (10) under which condition (4) is invariant becomes Ξt,x,c =
τ∂t + ξ∂x + (DF (ξ − cτ) + Fτ)∂c, where τ(t, x) and ξ(t, x) are arbitrary functions satisfying the equation

−Ftτ −Fxξ −Fc(ξt + cξx − cτt − c2τx) + F(ξx − 2τt − 3cτx) +

+ ξtt + 2cξtx + c2ξxx − cτtt − 2c2τtx − c3τxx = 0, (13)

which is obtained from (11) by substituting β = ξ − cτ .
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For algebra (12), it turns out that βcc = 0, and the change β = ξ − cτ results in the subalgebra

Ξ̂t,x,c = τ∂t + ξ∂x + (ξt + c(ξx − τt) − c2τx)∂c + D2
F (ξ − cτ)∂F (14)

with arbitrary functions τ = τ(t, x) and ξ = ξ(t, x). As can be seen, this condition quite significantly
improves the situation: the equivalence group reduces to the group induced by diffeomorphisms in the
space (t, x), and the symmetry group is induced by a subgroup of the group of diffeomorphisms, which
is determined by Eq. (11). As is seen below, a sufficiently large equivalence group permits an efficient
classification of equations.

Table 1

Case F(t, x, c) Basis of the symmetry algebra

1 F = 0
Ξ1 = ∂t, Ξ2 = ∂x,
Ξ3 = t∂t, Ξ4 = x∂x,
Ξ5 = t2∂t + tx∂x, Ξ6 = tx∂t + x2∂x,
Ξ7 = x∂t, Ξ8 = t∂x

Representatives of classes of functions for which (1) has an eight-dimensional symmetry
group.

Table 2
Case F(t, x, c) Basis of the symmetry algebra

2.1 F = Aca Ξ1 = ∂t, Ξ2 = ∂x,

Ξ3 = t∂t +
a − 2
a − 1

x∂x

2.2 F = Aeac Ξ1 = ∂t, Ξ2 = ∂x,
Ξ3 = t∂t + (x − t/a)∂x

2.3 F = A exp
∫

3c + a

c2 + bc + d
dc

Ξ1 = ∂t, Ξ2 = ∂x,
Ξ3 = (x+(a−b)t)∂t + ((a−2b)x−dt)∂x

2.4 F =
A

x3

Ξ1 = ∂t, Ξ2 = t∂t +
x

2
∂x,

Ξ3 = t2∂t + tx∂x

2.5 F = A
(
1 +

(t + ac)2

t2 + 2ax

)3/2 Ξ1 = ∂t −
t

a
∂x, Ξ2 = t∂t + 2x∂x,

Ξ3 = −ax∂t + (3tx + t3/a)∂x

2.6 F = A
( (x − ct)2 + c2 + 1

x2 + t2 + 1

)3/2 Ξ1 = (t2 + 1)∂t + tx∂x,
Ξ2 = tx∂t + (x2 + 1)∂x,
Ξ3 = −x∂t + t∂x

Representatives of classes of functions for which (1) has a three-dimensional symmetry
group (here A is an arbitrary constant).

Theorem 3. The symmetry algebra of Eq. (1) preserving conditions (3) and (4) is finite-dimensional

for any function F(t, x, c). The finite-dimensional nontrivial symmetry algebras have equations with func-

tions F(t, x, c) belonging to the classes whose representatives are given in Tables 1–3 (up to transformations

from the equivalence group (14)). In each case 1–4 shown in the tables, it is assumed that the function

F does not belong to the preceding class. For other functions F(t, x, c), Eq. (1) does not have nontrivial

symmetries preserving conditions (3) and (4).
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Table 3
Case F(t, x, c) Basis of the symmetry algebra

3.1 F = F(c) Ξ1 = ∂t, Ξ2 = ∂x

3.2 F =
T (c)

t
Ξ1 = ∂x, Ξ2 = t∂t + x∂x

4
F = F(t, c)
F = F(x, c)

Ξ1 = ∂x

Ξ1 = ∂t

Representatives of classes of functions for which (1) has two- and one-dimensional sym-
metry groups (here F and T are arbitrary functions).

4. Proof of the theorem

A direct substitution in expression (13) verifies that all functions F(t, x, c) listed in the theorem cor-
respond to the indicated symmetry algebras. Therefore, we must in fact show that Eqs. (1) with the
corresponding functions do not have wider symmetry algebras than those presented in the theorem.

We first show that the first statement of the theorem holds: a symmetry algebra of Eq. (1) that
preserves (3) and (4) cannot be infinite-dimensional (even more, cannot have a dimension greater than
eight) for any function F(t, x, c).

We further use the Lie–Olver classical result, i.e., the classification of Lie algebras of groups of trans-
formations of a two-dimensional space. Lie obtained this result in [6] (for a complex space) and then refined
it to the real case in [7]. In fact, we need only a simple consequence of this result: all these Lie algebras
except one have two-dimensional subalgebras. The exception is the algebra with the structure so(3), which
we consider separately.

In what follows, we mainly focus on equations admitting two-dimensional symmetry groups, from which
we can distinguish the separate families given in Tables 1 and 2.

4.1. Finite dimensionality of the symmetry algebra. We assume that Eq. (1) with a certain
function F(t, x, c) has a symmetry algebra of dimension at least seven. We can then write at least seven
equations of form (13) for each operator Ξi = τ i∂t + ξi∂x, i = 1, . . . , 7. We can regard the obtained system
of equations as a linear homogeneous algebraic system for Ft, Fx, Fc, cFc, c2Fc − 3cF , F and the unity.
Because this system has a nontrivial solution, its determinant is zero:

∣∣∣∣∣∣∣∣

τ1 ξ1 ξ1
t ξ1

x − τ1
t −τ1

x ξ1
x −(ξ1

tt + c(2ξ1
tx − τ1

tt) + c2(ξ1
xx − 2τ1

tx) − c3τ1
xx)

...
...

...
...

...
...

...

τ7 ξ7 ξ7
t ξ7

x − τ7
t −τ7

x ξ7
x −(ξ7

tt + c(2ξ7
tx − τ7

tt) + c2(ξ7
xx − 2τ7

tx) − c3τ7
xx)

∣∣∣∣∣∣∣∣
= 0.

Because τ i and ξi are independent of c, this condition implies four different determinants each of which is
zero. We rewrite the condition that the columns in each of these determinants are linearly dependent as a
differential equation that must be satisfied by all pairs (τ i, ξi) (the last component ensures that the solution
of this system is nontrivial, and we can hence state that the last column can be expressed in terms of the
others). We obtain

ξtt = L1
11(τ, ξ), 2ξtx − τtt = L2

11(τ, ξ), ξxx − 2τtx = L3
11(τ, ξ), τxx = L4

11(τ, ξ), (15)

where Lk
ij(τ, ξ) denote linear differential operators (generally with variable coefficients) of the order i with

respect to derivatives of τ and of the order j with respect to derivatives of ξ, and these differential operators
are indexed by k.

891



The obtained system of differential equations has only a finite-dimensional space of solutions. This can
easily be verified as follows. Using the matching conditions for the derivatives of the function ξ in the first
three equations, we obtain the two relations

τttt = L5
21(τ, ξ), τttx = L6

21(τ, ξ).

Supplementing them with the relations

τtxx = L7
21(τ, ξ), τxxx = L8

21(τ, ξ),

which are obtained by differentiating the last equation in (15) and the first three equations in (15), we
obtain a linear system for the functions τ and ξ in normal form such that the dimension of its solution
space does not exceed the number of the initial conditions for τ and ξ and their derivatives (derivatives up
to the second order with respect to τ and up to the first order with respect to ξ). The total number of
such initial conditions is nine, but there are in fact eight of them because the last equation in (15) implies
that the initial condition for τxx is uniquely determined by the others. Therefore, the dimension of the
symmetry algebra considered here can be at most eight.

As previously noted, all finite groups of the plane transformations were classified in [6]. The refinement
of this classification in [7] showed that all finite real Lie algebras of the groups of transformations of the
plane R

2 either are one-dimensional or have a two-dimensional subalgebra or are equivalent to the rotation
algebra so(3, R). The functions F(t, x, c) associated with two-dimensional and one-dimensional algebras are
considered further below, and in the next section, we determine equations of form (1) associated with the
algebra with the structure so(3, R).

4.2. Equation admitting the symmetry algebra so(3, R). It is convenient to use the so(3)
realization

Ξ1 = −x∂t + t∂x, Ξ2 = tx∂t + (x2 + 1)∂x, Ξ3 = (t2 + 1)∂t + tx∂x. (16)

An advantage of this algebra is that Eq. (13) is homogeneous for it.
We now verify which functions F(t, x, c) have this algebra. Substituting the operators Ξ1, Ξ2, and Ξ3

in (13), we obtain the system of equations

xFt − tFx −Fc(1 + c2) + 3cF = 0,

txFt + (1 + x2)Fx + cFc(x − tc) + 3tcF = 0,

(1 + t2)Ft + txFx + Fc(x − tc) + 3tF = 0.

We construct a linear combination to reduce this system to the form

xFt − tFx −Fc(1 + c2) + 3cF = 0,

(1 + t2 + x2)Fx + Fc(t + cx) = 0,

(1 + t2 + x2)Ft + c(1 + t2 + x2)Fx + 3F(t + cx) = 0.

It follows from the last equation that F = Φ(x− ct, c)(1 + x2 + t2)−3/2, and substituting this expression in
the first equation yields

acΦa + (1 + c2)Φc − 3cΦ = 0,
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where a denotes the first argument of the function Φ. We hence have

Φ(a, c) = (1 + c2)3/2Ψ
(

a2

1 + c2

)
=⇒ F =

(1 + c2)3/2Ψ( (x−ct)2

1+c2 )
(1 + x2 + t2)3/2

.

Finally, substituting the obtained expression in the second equation in the system, we already obtain the
ordinary differential equation 2Ψ′(b)(1 + b) − 3Ψ = 0, which obviously implies Ψ = N(1 + b)3/2 and hence
the function

F = N
((x − ct)2 + 1 + c2)3/2

(1 + x2 + t2)3/2
,

given in the statement in the theorem.
Conversely, the substituting such a function F in expression (13) immediately implies that the constant

term is zero in this equation because of its irrational dependence on c, i.e.,

ξtt = 2ξtx − τtt = ξxx − 2τtx = τxx = 0,

whence τ = At2+Btx+. . . and ξ = Atx+Bx2+. . . , where the ellipsis denotes linear functions. Substituting
τ and ξ in (13) yields the abovementioned algebra. We note that the last reasoning is unnecessary because it
follows from the results in [6], [7] that the only finite-dimensional algebra of transformations of R

2 containing
so(3) is the algebra so(3) itself.

4.3. Equations with two-dimensional commutative symmetry algebras. As previously noted,
any finite-dimensional symmetry algebra except so(3) contains a two-dimensional subalgebra. Therefore,
we first determine all equations admitting a two-dimensional symmetry algebra and then seek equations
with algebras of greater dimensions among them.

Choosing an appropriate basis, we can reduce any two-dimensional algebra Ξ = AΞ1 + BΞ2 to one of
two canonical cases: [Ξ1, Ξ2] = 0 (commutative algebra) and [Ξ1, Ξ2] = Ξ2 (noncommutative algebra). We
further consider each of these two cases.

We first assume that the algebra is commutative. Without loss of generality, we can then assume that
it has the form Ξ = A∂x + B∂t. Indeed, one of the operators can be reduced to the form Ξ1 = ∂x by a
change of variables in the equivalence group, and the corresponding change t̄ = ϕ(t, x), x̄ = ψ(t, x) is then
determined as a solution of the system of equations Ξ1ϕ = 0, Ξ2ψ = 1. The commutation conditions for
the operator Ξ2 = τ2∂t + ξ2∂x then imply that τ2 = τ2(t) and ξ2 = ξ2(t). In this case, we can find a change
of variables in the equivalence group taking (τ2, ξ2) to (1, 0) and preserving the first vector field,

φ(t) =
∫

1
τ2(t)

dt, ψ(t, x) = x −
∫

ξ2(t)
τ2(t)

dt.

Hence, we can immediately assume that we have an algebra with the basis ∂t, ∂x. Substituting the basis
components in Eq. (13), we obtain F = F(c). Obviously, for any such function F , the corresponding
symmetry group contains at least the two-dimensional algebra chosen above. In the set of these functions,
we distinguish the functions whose algebra has at least two dimensions.

4.4. Large symmetry algebras containing a two-dimensional commutative algebra. We
substitute the function F(c) in Eq. (13) and simplify the result as

−Fc(ξt + c(ξx − τt) − c2τx) + F(ξx − 2τt − 3cτx) +

+ ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx = 0. (17)
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Further using the fact that the function F is independent of t and x to fix some values of these variables
in (17), we can hence solve the obtained ordinary differential equation, obtain the ansatz for F , substitute
this function back in Eq. (17), and obtain a system of differential equations for τ and ξ. As a result, there
are rather many branchings of the versions leading to the same functions in many cases. Therefore, to
reduce the reasoning, we first consider some function classes distinguished in advance and then show that
the symmetry algebra cannot have dimension greater than two for the functions that do not belong to these
classes.

We note several changes of variables (which are useful below) in the equivalence group of Eqs. (1), (3),
and (4) that permit “simplifying” F(t, x, c) (the words “change of variables takes F1 to F2” always mean
that the change takes Eq. (1) with F1 to Eq. (1) with F2):

1. The change t̄ = t, x̄ = x + at, c̄ = c + a takes F(t, x, c) to F(t̄, x̄ − at̄, c̄ − a).

2. The change t̄ = t, x̄ = x − at2/2, c̄ = c − at takes F = a to F = 0.

3. The change t̄ = x, x̄ = t, c̄ = 1/c takes F(t, x, c) to F(t̄, x̄, c̄) = −c̄3F(x̄, t̄, 1/c̄).

4. The change t̄ = x, x̄ = eat, c̄ = aeat/c takes F(c) = ac + bc2 to F(c̄) = −bc̄.

5. The change t̄ = sin(μt)eDx, x̄ = cos(μt)eDx, c̄ = D cos(μt)c−μ sin(μt)
D sin(μt)c+μ cos(μt) , where μ =

√
DG, takes F =

Dc2 + G with DG > 0 to F = 0.

Hence, we separately consider the symmetry algebras corresponding to Eq. (1) with F(c) in one of the six
classes listed below in Lemmas 1–6. We recall that all further results are formulated up to transformations
in the equivalence group.

Lemma 1. In the set of functions of the form F(c) = Qc5 + Ac4 + Bc3 + Dc2 + Ec + G, the following

functions have a symmetry algebra of dimension at least two:

• F(c) = Bc3 + Dc2 + Ec + G: Equations with any functions F of this form are equivalent to the

equation with F ≡ 0, whose algebra is eight-dimensional (see Table 1).

• F(c) = Qc5: The algebra is three-dimensional in this case, Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = t∂t + (3/4)x∂x.

• F(c) = Ac4: The algebra is three-dimensional in this case, Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = t∂t + (2/3)x∂x.

Proof. We substitute a function F of the prescribed form in Eq. (17):

−(5Qc4 + 4Ac3 + 3Bc2 + 2Dc + E)(ξt + c(ξx − τt) − c2τx) + ξtt + c(2ξtx − τtt) +

+ c2(ξxx − 2τtx) − c3τxx + (Qc5 + Ac4 + Bc3 + Dc2 + Ec + G)(ξx − 2τt − 3cτx) = 0.

We obtain a polynomial in c identically equal to zero, and all of its coefficients of powers of c are hence
zero,

2Qτx = 0, 4Qξx − 3Qτt − Aτx = 0, 5Qξt + 3Aξx − 2Aτt = 0,

4Aξt − Bτt + 2Bξx + Dτx + τxx = 0, 3Bξt + Dξx + 2Eτx − ξxx + 2τtx = 0,

2Dξt + Eτt + 3Gτx − 2ξtx + τtt = 0, Eξt − Gξx + 2Gτt − ξtt = 0.

(18)
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1. If Q �= 0, then F is a polynomial of degree five and always has a real root, denoted here by c = M .
We change the variables t̄ = t, x̄ = x − Mt, and c̄ = c − M , which takes F to a function of the form
F = Qc5 + Ac4 + Bc3 + Dc2 + Ec (with new coefficients). System (18) then becomes

τx = 0, 4Qξx − 3Qτt − Aτx = 0, 5Qξt + 3Aξx − 2Aτt = 0,

4Aξt − Bτt + 2Bξx + Dτx + τxx = 0, 3Bξt + Dξx + 2Eτx − ξxx + 2τtx = 0,

2Dξt + Eτt − 2ξtx + τtt = 0, Eξt − ξtt = 0.

The first relation implies τ = τ(t), and then

ξ =
3
4
τtx + n, 15Qτttx + 20Qnt + Aτt = 0 =⇒ τtt = 0, n = −Akt

20Q
+ n2.

The remaining four equations are k(5QB−2A2) = 0, k(5QD−AB) = 0, k(10QE−AD) = 0, and AEk = 0.
The case k = 0 leads to a two-dimensional algebra. If k �= 0, then

B =
2A2

5Q
, D =

2A3

25Q2
, E =

2A4

250Q3
.

The equation AEk = 0 implies A = 0, i.e., τ = kt + m, ξ = 3kx/4 + n2 is a three-dimensional algebra for
F = Qc5.

2. Let Q = 0 and A �= 0. Then (18) implies the equation τx = 0 and the system

A(3ξx − 2τt) = 0, 4Aξt − Bτt + 2Bξx = 0, 3Bξt + Dξx − ξxx = 0,

2Dξt + Eτt − 2ξtx + τtt = 0, Eξt − Gξx + 2Gτt − ξtt = 0.

It follows from the first equation in this system that ξ = 2τtx/3+n. Substituting this expression in the next
equation, we obtain 8Aτttx+12Ant+Bτt = 0, which implies τ = kt+m and n = −Bkt/12A+n2. The other
equations reduce to the algebraic equations k(8AD − 3B2) = k(6AE − BD) = 0 and k(16AG − BE) = 0.

If k = 0, then the algebra is two-dimensional. If k �= 0, then

D =
3B2

8A
, E =

B3

16A2
, G =

B4

256A3
.

For the function F = A(c + B/4A)4, we hence find that τ = kt + m, ξ = k(2x/3 − Bt/12A) + n2 is a
three-dimensional algebra. A change of variables of form 1 reduces this function to a function of the form
F = Ac4 for which τ = kt + m, ξ = 2kx/3 + n2 is a three-dimensional symmetry algebra.

3. We now consider the case Q = A = 0, B �= 0. A change of variables of form 1 reduces the polynomial
to the case G = 0. We use a change of variables of form 3 to reduce F = Bc3 + Dc2 + Ec to the form
F = B + Dc + Ec2, i.e., to cases 4–6 considered below.

4. Let Q = A = B = 0 and D �= 0. The change of variables t̄ = t, x̄ = x + Et/2D, c̄ = c + E/2D

reduces F to the form F = Dc2 + G. Further, we have the following cases:

a. Let DG < 0. Then we can shift the variable c to reduce F to the form F = Ec + Dc2. We use a
change of form 4 and obtain F = −Dc. We then apply change 4 repeatedly and obtain F = 0.

b. Let G = 0. Then changes of forms 3 and 4 reduce this case to the case F = 0.
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c. Let DG > 0. Then a change of form 5 reduces this case to the case F = 0.

5. Let Q = A = B = D = 0 and E �= 0. With regard to a change of variables of form 1, we can assume
that F = Ec. By a change of variables of form 4, a function of this form reduces to F = 0.

6. Let Q = A = B = D = E = 0. Then F = G, and a change of variables of form 2 reduces this
function to the case F = 0.

7. Let F ≡ 0. System (18) is simplified to τxx = 0, ξxx = 2τtx, 2ξtx = τtt, and ξtt = 0 in this case. The
solution of this system has the form τ = k1tx + k2x + m1t

2 + m2t + m3, ξ = k1x
2 + m1tx + n1x + l1t + l2

and determines the algebra given in Table 1.

The lemma is proved.

Lemma 2. For functions of the form

F(c) = Ac4 + Bc3 + Dc2 + Ec + G +
K

c + M
, K �= 0, (19)

the symmetry algebra is two-dimensional (except the cases equivalent to those listed in Lemma 1).

Proof. We first change the variables t̄ = t, x̄ = x + Mt, and c̄ = c + M . This change belongs to the
equivalence group and takes F of form (19) to the form

F(c) = Ac4 + Bc3 + Dc2 + Ec + G +
K

c
. (20)

Substituting this function in (17) and multiplying by c2, we obtain

−(4Ac3 + 3Bc2 + 2Dc + E)(ξt + c(ξx − τt) − c2τx)c2 + K(ξt + c(ξx − τt) − c2τx) +

+ Kc(ξx − 2τt − 3cτx) + (ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx)c2 +

+ (Ac4 + Bc3 + Dc2 + Ec + G)(ξx − 2τt − 3cτx)c2 = 0. (21)

This polynomial is zero for all c. In particular, we obtain Kξt = 0 for c = 0. The derivative of the
polynomial at c = 0 is also zero, K(2ξx − 3τt) = 0. Because K �= 0, we have ξt = 0 and 2ξx = 3τt.
Differentiating the second relation with respect to t, we obtain τtt = 0, i.e., τ = k(x)+ tm(x), which implies
ξ = (3/2)

∫
m(x) dx + l. Substituting these formulas in (21), we obtain

m′

2
c2 + (5Ac4 + 4Bc3 + 3Dc2 + 2Ec + G)

m

2
+ (k′′ + tm′′)c3 +

+ (−Ac5 + Dc3 + 2Ec2 + 3Gc + 4K)(k′ + tm′) = 0,

and equate the coefficients of powers of c to zero. The obtained system consists of six equations

A(k′ + tm′) = 0, Am = 0, 2Bm + (k′′ + tm′′) + D(k′ + tm′) = 0,

3Dm + m′ + 4E(k′ + tm′) = 0, Em + 3G(k′ + tm′) = 0, Gm + 8K(k′ + tm′) = 0.

If A �= 0, then m = 0, k = const, and the algebra is two-dimensional for any function of form (20). We
hence assume that A = 0.
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The last of the six equations in this system is a polynomial in t identically equal to zero, and (because
K �= 0) its coefficients are hence zero, i.e., m = const and k = −(Gm/8K)x + k1. We substitute the
obtained formulas for k and m in the remaining equations of the system:

2Bm =
DGm

8K
, 3Dm =

4EGm

8K
, Em =

3G2m

8K
, A

(
5m

2
+

Gm

8K

)
= 0.

If m = 0, then all these relations hold for any function of the form F(c) = Bc3 + Dc2 + Ec + G + K/c, but
the algebra is two-dimensional. But if m �= 0, then

E =
3G2

8K
, D =

EG

6K
=

G3

16K2
, B =

DG

16K
=

G4

256K3
.

We substitute the obtained coefficients in F(c) and simplify the results. We see that the symmetry algebra
is three-dimensional and has the form τ = −Mmx + 2mt + k1, ξ = 3mx + l for

F(c) =
K

c

(
1 +

Gc

4K

)
4

=
K

c
(1 + Mc)4.

The obtained function F is indeed equivalent to the polynomial function considered in Lemma 1. To
verify this, we use the abovementioned change of variables t̄ = x, x̄ = t, c̄ = 1/c of form 3 and reduce F to
the form F = K(c + M)4. Using the change of variables t̄ = t, x̄ = x + Mt, c̄ = c + M of form 1, we then
transform F to the function F = Kc4. The lemma is proved.

Lemma 3. For functions of the form F(c) = (c − a)5/c2 with a �= 0, the symmetry algebra is three-

dimensional, and its basis is Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = (3at + x)∂t + 4ax∂x. An equation with this function

is equivalent to the equation with the polynomial function F(c).

Proof. Substituting F(c) of the prescribed form in Eq. (17) and multiplying it by c3, we obtain

−5c(c − a)4(ξt + c(ξx − τt) − c2τx) + 2(c − a)5(ξt + c(ξx − τt) − c2τx) +

+ (c − a)5(ξx − 2τt − 3cτx)c + (ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx)c3 = 0. (22)

For c = 0, we have a5ξt = 0. Because a �= 0 by the conditions of the lemma, we derive ξ = ξ(x).
We differentiate Eq. (22) with respect to c and again substitute c = 0, which implies 3ξx = 4τt whence
τ = 3ξxt/4 + k(x). Substituting the obtained ξ and τ in (22) and simplifying the results, we obtain

5(c − a)4
(

c
ξx

4
− c2 3ξxxt

4
− c2kx

)
− 2(c − a)5

(
ξx

4
− c

3ξxxt

4
− ckx

)
+

+ (c − a)5
(

ξx

2
+ c

9ξxxt

4
+ 3ckx

)
+

(
c2 ξxx

2
+ c3 3ξxxxt

4
+ c3kxx

)
c2 = 0.

This is a polynomial in t, and its coefficients are equal to zero,

(c − a)4(3c + 2a)
(

ξx

4
− ckx

)
+ (c − a)5

(
ξx

2
+ 3ckx

)
+

(
c2 ξxx

2
+ c3kxx

)
c2 = 0,

5a(c − a)4ξxx − c4ξxxx = 0.

We obtain ξ = nx + l from the last equation for c = 0. We then have k = k1x + k2 and n = 4ak1 from
the first equation for c = a. As a result, the symmetry algebra τ = k1(3at + x) + k2, ξ = 4k1ax + l is
three-dimensional up to changes of variables in the equivalence group.

It remains to note that a change of form 3 takes our function to F(c) = (ac − 1)5, and a subsequent
change of form 1 takes it to a polynomial function of degree five. The lemma is proved.
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Lemma 4. For functions of the form

F(c) = A exp
∫

3c + a

c2 + bc + d
dc, A �= 0,

in the case where F(c) is not a function given in Lemmas 1–3, the symmetry algebra is three-dimensional,

and its basis is Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = (x + (a − b)t)∂t + ((a − 2b)x − dt)∂x.

Proof. Using (c2 + bc + d)Fc = F(3c + a) and substituting this relation in Eq. (17), we obtain

F(−(a + 3c)(ξt + c(ξx − τt) − c2τx) + (ξx − 2τt − 3cτx)(d + bc + c2)) +

+ (ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx)(d + bc + c2) = 0.

The following two cases are possible.

1. If the multiplier of F is nonzero, then F is a ratio of polynomials: the polynomial in the numerator
is of degree five at most, and the polynomial in the denominator is of degree two at most. This is possible
only if the denominator in the integrand for the function F has two real and distinct roots (otherwise, F
is a transcendental function). We obtain F under the assumption that c2 + bc + d = (c − m)(c − n):

F = A(c − n)
a+3n
n−m (c − m)−

(a+3m)
n−m .

Because the roots are distinct, the degrees of the polynomials must be integer. The sum of the degrees is
equal to three, and hence only three variants are possible: the degree of one of the polynomials is equal to
zero and the degree of the other is equal to three (then b = (2a/3) + 1, d = a(a + 3)/9 or b = (2a/3) − 1,
d = a(a − 3)/9); the degree of one of the polynomials is −1 and the degree of the other is four (then
b = −a − 5n, d = n(a + 4n), n �= −a/3); the degree of one of the polynomials is −2 and the degree of the
other is five (then b = −(a + 7n)/2, d = n(a + 5n)/2, n �= −a/3). An algebra with such relations between
the degrees was already studied in Lemmas 1–3 (the last case reduces to the case described in Lemma 3 by
the change t̄ = t, x̄ = x − nt, c̄ = c − n).

2. We assume that the coefficient of F is zero, i.e.,

(3c + a)(ξt + c(ξx − τt) − c2τx) = (ξx − 2τt − 3cτx)(c2 + bc + d). (23)

Expanding and equating the coefficients of like powers of c to zero, we obtain the equations

2ξx − (a − 3b)τx = τt, 3ξt + (a − b)ξx = (a − 2b)τt − 3dτx, aξt = dξx − 2dτt.

We express the derivatives of ξ in terms of the derivatives of τ as

ξx =
(a − 3b)τx + τt

2
, ξt =

a − 3b

6
((b − a)τx + τt) − dτx, aξt =

d(a − 3b)τx − 3dτt

2
.

We obtain aξt from the second and third relations and equate the obtained expressions to each other.
Reducing to a common denominator and grouping, we obtain the equation (a(a−3b)+9d)((b−a)τx+τt) = 0.

Because a(a − 3b) + 9d �= 0 (otherwise, F is a polynomial), we obtain (b − a)τx + τt = 0, i.e., τ =
τ(x + (a − b)t). In this case, the relations for the derivatives become ξx = (a − 2b)τx, ξt = −dτx.

It follows from the consistency condition that the equation

((a − 2b)(a − b) + d)τxx = 0
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must be satisfied. If the coefficient of τxx is zero, then the denominator in the integrand, which determines F
in the condition of the lemma, has two distinct roots, and F(c) is a polynomial. But if (a−2b)(a−b)+d �= 0,
then τxx = 0. In this case, τtx = (a − b)τxx = 0 and τtt = (a − b)2τxx = 0. These relations imply
τ = m(x + (a − b)t) + k, ξ = m((a − 2b)x − dt) + l.

We return to formula (17). If m = 0, then we obtain the two-dimensional translation algebra for all
F . If m �= 0, then the equation becomes the trivial identity 0 = 0, and the algebra τ = m(x+ (a− b)t) + k,
ξ = m((a − 2b)x − dt) + l turns out to be three-dimensional. The lemma is proved.

Lemma 5. For functions of the form F(c) = Aca with A �= 0 and a �= −1, 0, . . . , 5, the symmetry

algebra is three-dimensional, and its basis is Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = t∂t + ((a − 2)(a − 1)−1x)∂x.

Proof. Substituting F(c) of the given form in Eq. (17), we obtain

aAca−1(ξt + c(ξx − τt) − c2τx) − Aca(ξx − 2τt − 3cτx) − ξtt −

− c(2ξtx − τtt) − c2(ξxx − 2τtx) + c3τxx = 0.

We have a polynomial in the variable c identically equal to zero, and all its coefficients are therefore zero,
including the coefficients of ca+1 and ca, and as a result, τx = 0 and (a − 2)τt = (a − 1)ξx. This implies
τ = τ(t) and ξ = (a − 2)(a − 1)−1τtx + n(t).

We again substitute the obtained formulas for τ and ξ in (17) and equate the coefficients of the
remaining powers of c to zero for a �= −1, 0, . . . , 5, which implies τ = mt+k and ξ = m(a−2)(a−1)−1x+n.
The obtained algebra is three-dimensional for any function F(c) = Aca with a �= −1, . . . , 5. We note that
the cases a = 0, 1, . . . , 5 were already considered in Lemma 1 and the case a = −1 was considered in
Lemma 2. The lemma is proved.

Lemma 6. For functions of the form F(c) = Aeac with A �= 0 and a �= 0, the symmetry algebra is

three-dimensional, and its basis is Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = t∂t + (x − t/a)∂x.

Proof. Using the relation Fc = aF and substituting it in Eq. (17), we obtain

F(ξx − 2τt − aξt − c(aξx − aτt + 3τx) + c2aτx) +

+ ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx = 0.

Because the function eac cannot be represented as a ratio of polynomials, we have A �= 0 and a �= 0. We
have the relations τ = τ(t) and ξ = τtx + l(t) and the equations τt + aξt = 0, ξtt = 0, and 2ξtx − τtt = 0.
From the first equation, we derive τ = kt+m, l = −kt/a+ l1. The second and third equations are satisfied,
i.e., the algebra τ = kt + m, ξ = kx − kt/a + l1 is three-dimensional. The lemma is proved.

4.5. Proof that the symmetry algebra is precisely two-dimensional in other cases. Because
for F = F(c), Eq. (13) is satisfied for any constant τ and ξ, the symmetry algebra contains a two-dimensional
commutative algebra. To complete the consideration of the algebras containing a two-dimensional commu-
tative subalgebra, we must show that the dimension of the symmetry algebra is precisely equal to two in
the cases other than the cases considered in the lemmas in the preceding section. For this, we assume that
Eq. (17) is satisfied for some nonconstant functions τ(t, x) and ξ(t, x). We substitute them in the equation
that we take as an equation for F :

−FcA + FB + D = 0. (24)
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1. We first assume that A = 0. We then have τx = ξt = 0 and τt = ξx = const, and this constant is
nonzero by the assumption that at least one of the functions τ and ξ is nonconstant. But it then turns out
that B is equal to this constant, D = 0, hence F = 0, and the symmetry algebra was already obtained in
this case in Lemma 1.

2. We now assume that A �= 0. Differentiating (24) with respect to x and t, we obtain the system of
three equations for F and Fc

−FcA + FB + D = 0, −FcAx + FBx + Dx = 0, −FcAt + FBt + Dt = 0. (25)

The following three cases are possible: system (25) is inconsistent, all three equations are equivalent to each
other, and there are at least two equations nonproportional to each other. We are not interested further
in the first case, because there are no functions F(c) satisfying such a system. We therefore consider the
remaining two cases.

2.1. Let BAx = BxA and BAt = BtA. Then the function B is proportional to A with a coefficient
depending only on c:

φ(c)(ξt + c(ξx − τt) − c2τx) = ξx − 2τt − 3cτx. (26)

2.1.1. Let τx �≡ 0. Then we fix the corresponding values (t, x) and obtain

φ(c) =
3c + a

c2 + bc + d
,

where a, b, and d are constants. Substituting the obtained expression in (26),

(3c + a)(ξt + c(ξx − τt) − c2τx) = (ξx − 2τt − 3cτx)(c2 + bc + d),

expanding, equating the coefficients of like powers of c, and expressing the derivatives of ξ in terms of
derivatives of τ , we obtain

ξx =
(a − 3b)τx + τt

2
, ξt =

(a − 3b)
6

((b − a)τx + τt) − dτx, aξt =
d(a − 3b)τx − 3dτt

2
.

We can determine aξt from the second and third relations and equate the obtained expressions to each
other. Reducing to a common denominator and grouping, we obtain the equation

(a(a − 3b) + 9d)((b − a)τx + τt) = 0.

2.1.1a. We first assume that a(a − 3b) + 9d = 0. If 3b = a and consequently d = 0, then 2ξx = τt,
3ξt + 2bξx = bτt, and aξt = 0. Subtracting the first equation multiplied by b from the second, we obtain
ξt = 0, which implies the third equation. As a result, we have ξ = ξ(x) and τ = 2ξxt + C(x). Substituting
these formulas in Eq. (17), we obtain

cFc(ξx + 2cξxxt + cCx) − 3F(ξx + 2cξxxt + cCx) − 3c2ξxx − 2c3ξxxxt − c3Cxx = 0.

The left-hand side contains a polynomial in t. We equate its coefficients to zero,

cFcξxx − 3Fξxx − c2ξxxx = 0, cFc(ξx + cCx) − 3F(ξx + cCx) − 3c2ξxx − c3Cxx = 0.

If the coefficients of Fc are zero in both equations, then ξ = const, C = const, and the algebra is two-
dimensional. If at least one of them is nonzero, then the solution of the equation has the form F =
Mc3 − Pc2, which was already considered in Lemma 1.
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If 3b �= a, then we change the variables t̄ = t, x̄ = x − (3b − a)t/3, and c̄ = c − (3b − a)/3. We obtain
φ(c) = 3/c, while (17) with the new functions τ̄ (t̄, x̄) = τ(t, x) and ξ̄(t̄, x̄) = ξ − (3b − a)τ/3 is taken to
itself. Up to changes of variables, we again obtain F = Mc3 − Pc2 from the equivalence algebra,

2.1.1b. We now assume that a(a − 3b) + 9d �= 0 and (b − a)τx + τt = 0, i.e., τ = τ(x + (a − b)t).
We then have ξx = (a − 2b)τx and ξt = −dτx. It follows from the consistency condition that the equation
((a−2b)(a−b)+d)τxx = 0 must be satisfied. If the coefficient of τxx is zero, then ξ = (a−2b)τ(x+(a−b)t)+C.
We change the variables k = a−b to simplify the expressions. Then τ = τ(x+kt) and ξ = (k−b)τ(x+kt)+C.
Substituting the obtained expressions in Eq. (17), we obtain

Fc(d + cb + c2)τ ′ −F(a + 3c)τ ′ − (a − b + c)(d + cb + c2)τ ′′ = 0,

F = exp
( ∫

a + 3c

(c − a + 2b)(c − b + a)
dc

)(
M +

∫
Q(a − b + c) e−

� (a+3c)
(c−a+2b)(c−b+a) dc dc

)
.

We apply the change of variables t̄ = t, x̄ = x + (a − b)t, c̄ = c + a − b, which belongs to the equivalence
group and takes F to the form F(c) = (M(c + a − b) − Q)c(c + a − b), i.e., F is a polynomial. This case
was considered in Lemma 1.

If (a − 2b)(a − b) + d �= 0, then τxx = 0, and we have the equations τtx = (a − b)τxx = 0 and
τtt = (a − b)2τxx = 0, which implies τ = m(x + (a − b)t) + K, ξ = m((a − 2b)x − dt) + C.

We now return to relation (17). If m = 0, then we obtain a two-dimensional translation algebra for all
F . If m �= 0, then the equation is simplified to Fc(d + bc + c2) −F(a + 3c) = 0. Solving this equation, we
obtain

F = M exp
∫

a + 3c

d + bc + c2
dc.

The symmetry algebra for such a function F was studied in Lemma 4.
2.1.2. Let τx ≡ 0, ξt �≡ 0. Then fixing the values (t, x), we see that Eq. (26) implies φ(c) = a/(1 + bc)

and

a(ξt + c(ξx − τt)) = (ξx − 2τt)(1 + bc).

Equating the coefficients of powers of c to zero, we obtain

(b − a)ξx + (a − 2b)τt = 0, aξt = ξx − 2τt.

From the second equation, we derive 2τt = ξx − aξt. Substituting this in the first equation, we obtain
a(ξx + (a − 2b)ξt) = 0.

2.1.2a. In the case a = 0, we obtain τ = τ(t) and ξ = 2τtx + C(t). Substituting these relations in
Eq. (17), we obtain

−Fc(2τttx + Ct + cτt) + 2τtttx + Ctt + 3cτtt = 0.

The left-hand side contains a polynomial in x that is identically zero. This implies Fcτtt = τttt and
Fc(Ct + cτt) = Ctt +3cτtt. Because F = F(c), we obtain F = Kc+M from these two equations. This case
was already studied in Lemma 1.

2.1.2b. In the case a �= 0, we obtain τt = (b− a)ξ′ and ξ = ξ(t + (2b− a)x). Because τ = τ(t), we have
(b − a)(2b − a)ξ′′ = 0.

2.1.2b(1). In the case b = a, we obtain τ = C and ξ = ξ(t + bx) and have

−Fc(1 + cb)ξ′ + bFξ′ + (1 + cb)2ξ′′ = 0.
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If ξ′ = 0, then the algebra is two-dimensional. Otherwise, separation of variables in this equation gives
ξ′′ = Kξ′ and F = (1 + cb)(Kc + M + B), i.e., F is a polynomial. This case was already considered in
Lemma 1.

2.1.2b(2). In the case 2b = a, we obtain τ = −bξ(t) + C and ξ = ξ(t) and have

−Fc(1 + cb)ξt + 2bFξt + (1 + cb)ξtt = 0.

If the algebra is not two-dimensional, then separation of variables gives ξ′′ = Kξ′ as before, and F(c) is
consequently a quadratic trinomial.

2.1.2b(3). Let ξ′′ = 0, i.e., let τ = (b − a)mt + k and ξ = m(t + (2b − a)x) + l. Substituting these
relations in Eq. (17), we obtain m[Fc(1 + cb)−Fa] = 0. The case m = 0 corresponds to a two-dimensional
algebra. If m �= 0, then we obtain F = M(1+ cb)a/b for b �= 0 (a change of variables of form 1 can take this
function to F = Mca considered in Lemma 5). For b = 0, the function reduces to F = Peac considered in
Lemma 6.

2.1.3. We assume that τx ≡ 0, ξt ≡ 0. We use the assumption that A �≡ 0 in (24) and A is the left-hand
side of Eq. (26). The condition ξx − τt �≡ 0 must then be satisfied, and we obtain φ(c) = a/c with regard
to (26). Hence, (a − 1)ξx = (a − 2)τt = const.

If a = 2, then ξ = l and τ = τ(t) �= const. Substituting these relations in Eq. (17), we obtain
cFcτt − 2Fτt − cτtt = 0. Because τt �= 0, we have τtt = Qτt and F = Dc2 − Qc. The symmetry algebra for
such a function F was studied in Lemma 1.

Similarly, if a = 1, then τ = b and ξ = ξ(x). Substituting these relations in Eq. (17), we obtain
cFcξx −Fξx − c2ξxx = 0 and again have F = Dc2 − Qc.

If a �= 1 and a �= 2, then we obtain an algebra of the form τ = (a − 1)kt + b, ξ = (a − 2)kx + l and
see that k �= 0 (as previously noted, ξx − τt �≡ 0). We return to the original relation, which now becomes
k(cFc − aF) = 0. This relation obviously implies F = Mca, and this case was studied in Lemmas 1 and 5.

2.2. We now assume that at least two equations in system (25) are nonproportional to each other
(one of the relations BAx = BxA and BAt = BtA is not satisfied identically). We can then obtain our
ansatz for F(c). Because A �= 0, it follows from the corresponding pair of equations that F is a ratio of two
polynomials for some fixed values (t, x) (a polynomial of degree five is in the numerator, and a polynomial
of degree two is in the denominator). Because B �= 0, it follows from the same pair of equations that Fc is a
ratio of two polynomials for appropriate values (t, x) (a polynomial of degree four is in the numerator, and a
polynomial of degree two is in the denominator). Differentiating the expression for F with respect to c and
comparing it with the form of Fc, we see that only the following two cases are possible: the denominators
of both functions contain a constant or the fraction is canceled after separation of the integral part, i.e.,
the possible F are

F(c) = Qc5 + Ac4 + Bc3 + Dc2 + Ec + G,

F(c) = Ac4 + Bc3 + Dc2 + Ec + G +
K

c + M
.

The algebras corresponding to these functions were studied in Lemmas 1 and 2.

We have thus considered all possible functions F(c) to which there corresponds an algebra containing
a two-dimensional commutative subalgebra. We showed that all cases where this algebra is wider than a
two-dimensional one were already considered in Lemmas 1–5 and presented in Tables 1 and 2.
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4.6. Equations with two-dimensional noncommutative symmetry algebras. We assume that
Eq. (1) with a function F(t, x, c) is associated with a two-dimensional noncommutative symmetry algebra
with the basis Ξ1 = τ1∂t + ξ1∂x, Ξ2 = τ2∂t + ξ2∂x. Then, as in the case of a commutative algebra, we find a
change of variables t̄ = ϕ(t, x), x̄ = ψ(t, x) in the equivalence group such that the relations τ1 = 0 and ξ1 = 1
hold in the new variables. It follows from the commutation relation that τ2 = τ2(t) and ξ2 = −x + D(t).
We then use the change

ϕ(t) = exp
(
−

∫
tdt

τ2(t)

)
, ψ(x) = x + ψ1(t), (ψ1)tτ + D(t) + ψ1(t) = 0,

which belongs to the equivalence group and does not change (τ1, ξ1), to reduce the pair of functions (τ2, ξ2)
to the form (−t,−x). Substituting this in (13), we then see that this group is associated with the function
F(t, c) = T (c)/t. We must determine the τ and ξ that correspond to F of this form. We first express
F(t, c) in (13) in terms of T (c). Reducing it to a common denominator, we obtain

−Tct(ξt + cξx − cτt − c2τx) + T (t(ξx − 2τt − 3cτx) + τ) +

+ t2(ξtt + 2cξtx + c2ξxx − cτtt − 2c2τtx − c3τxx) = 0. (27)

We further use Eq. (27) together with (13) and discuss the problem in terms of the function T (c).

4.7. Equations with large symmetry algebras containing a two-dimensional noncommuta-
tive subalgebra. As in the commutative case, we separately consider the symmetry algebras correspond-
ing to Eq. (1) with functions T (c) in some classes. All further results are formulated up to transformations
in the equivalence group.

In this case, we also use changes of variables that belong to the equivalence group of Eqs. (1), (3),
and (4) and permit “simplifying” the function F(t, x, c):

1. The change t̄ = t, x̄ = x + at, c̄ = c + a takes F(t, x, c) to F(t̄, x̄ − at̄, c̄ − a).

2. The change t̄ = ta+1/(a+1), x̄ = x, c̄ = ct−a takes the affine family of functions F(t, c) = (Mcq+ac)/t

to a linear family of functions F(t̄, c̄) = Mc̄q((a + 1)t̄ )
(q−2)a−1

a+1 .

3. The change t̄ = t, x̄ = x+(t− t log t)/m, c̄ = c− log t/m takes F(t, c) = Memc

t + 1
mt to F(c̄) = Memc̄.

4. The change t̄ = x, x̄ = t, c̄ = 1/c takes F(t, x, c) to F(t̄, x̄, c̄) = −c̄3F(x̄, t̄, 1/c̄).

5. The change t̄ = t, x̄ = x − at2/2, c̄ = c − at takes F = a to F = 0.

Lemma 7. Functions of the form T (c) = Qc5 + Ac4 + Bc3 + Dc2 + Ec + G that are reducible by a

change of variables to those described in Lemma 1 have a symmetry algebra of dimension greater than two.

The function T (c) = Bc3 − c/2 (corresponding to F = T (c)/t) is reducible to F(x) = A/x3, whose algebra

is three-dimensional; its basis is Ξ1 = ∂t, Ξ2 = t∂t + (x/2)∂x, Ξ3 = t2∂t + tx∂x.

Proof. We substitute the ansatz T (c) in (27):

−(5Qc4 + 4Ac3 + 3Bc2 + 2Dc + E)tξt −

− (5Qc5 + 4Ac4 + 3Bc3 + 2Dc2 + Ec)(tξx − tτt) +

+ (2Qc6 + Ac5 − Dc3 − 2Ec2 − 3Gc)tτx +

+ (Qc5 + Ac4 + Bc3 + Dc2 + Ec + G)(tξx − 2tτt + τ) +

+ t2(ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx) = 0.
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Equating the coefficients of all powers of c to zero, we obtain the equations

Qτx = 0, Q(3tτt − 4tξx + τ) + Atτx = 0, 5Qtξt + A(3tξx − 2tτt − τ) = 0,

4Atξt + B(2tξx − tτt − τ) + Dtτx + t2τxx = 0,

3Btξt + D(tξx − τ) + 2Etτx − t2(ξxx − 2τtx) = 0,

2Dtξt + E(tτt − τ) + 3Gtτx − t2(2ξtx − τtt) = 0,

Etξt + G(−tξx + 2tτt − τ) − t2ξtt = 0.

(28)

1. Let Q �= 0. Any polynomial of degree five always has a real root. We assume that T (M) = 0
and M ∈ R. We apply the change of variables t̄ = t, x̄ = x − Mt, c̄ = c − M of form 1, which takes
the equation with a function T (c) of the form given in the conditions of the lemma to the equation with
T = Qc5 + Ac4 + Bc3 + Dc2 + Ec. For such a T (c), the system of equations becomes

τx = 0, 3tτt − 4tξx + τ = 0, 5Qtξt + A(3tξx − 2tτt − τ) = 0,

4Atξt + B(2tξx − tτt − τ) = 0, 3Btξt + D(tξx − τ) − t2ξxx = 0,

2Dtξt + E(tτt − τ) − t2(2ξtx − τtt) = 0, Eξt − tξtt = 0.

The first two equations imply τ = τ(t) and ξ = (3τt/4 + τ/4t)x + C(t). From the third, fourth, fifth, and
sixth equations, we derive 3tτtt + τt − τ/t = 0, i.e., τ = kt + mt−1/3 and ξ = kx + C(t). Moreover, we have
the equations

15Qt4/3Ct = Am, 6At4/3Ct = Bm, 3Bt4/3Ct = Dm, 9Dt4/3Ct = 2m(3E − 1).

Expressing C from the first of these equations, we obtain C = −Amt−1/3/5Q+C1. The others then become

m

(
2A2

5Q
− B

)
= 0, m

(
BA

5Q
− D

)
= 0, m

(
3DA

5Q
− 2(3E − 1)

)
= 0.

For m = 0, we obtain a two-dimensional algebra, and we therefore assume that m �= 0. Then

B =
2A2

5Q
, D =

BA

5Q
=

2A3

25Q2
, E =

A4

125Q3
+

1
3
. (29)

With regard to these relations, we can reduce the expression for T to the form

T (c) = Q

(
c +

A

5Q

)
5

+
1
3

(
c +

A

5Q

)
− A

5Q

(
A4

54Q3
+

1
3

)
.

Substituting τ and ξ in the last equation in system (28), we obtain (3E+4)A = 0. If A = 0, then B = D = 0,
E = 1/3, C = const, and the symmetry algebra τ = kt + mt−1/3, ξ = kx + C1 is three-dimensional for
T (c) = Qc5 + c/3. If A �= 0, then

E = −4
3
, T = Q

(
c +

A

5Q

)5

+
1
3

(
c +

A

5Q

)
,

and we derive 3A4 + 54Q3 = 0 from (29). After a similar change of variables, we obtain the function
T (c) = Qc5 + c/3, and the corresponding symmetry algebra has the same form as above. A change of
variables of form 2 (with q = 5 and a = 1/3) permits reducing Eq. (1) to the equation with F = Qc5.
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2. Let Q = 0 and A �= 0. Then τ = τ(t) and ξ = (2τt/3 + τ/3t)x + C(t), and we have the equations

12Atξt + B(tτt − τ) = 0, 9Btξt + 2D(tτt − τ) = 0,

6Dtξt + 3E(tτt − τ) − t2τtt − 2tτt + 2τ = 0, 3Etξt + 4G(tτt − τ) − 3t2ξtt = 0.

Substituting ξ in these equations, we obtain polynomials in x. The first equation implies 2τtt +τt/t−τ/t2 =
0, i.e., τ = kt + mt−1/2 ξt = kx + C(t). We simplify these relations to

8ACt = Bmt−3/2, 3BCt = Dmt−3/2,

8DCt = 3mt−3/2(2E − 1), ECt = 2Gmt−3/2 + tCtt.

This implies C = −Bmt−1/2/4A + C1, and because m = 0 leads to a two-dimensional algebra, we can
assume that m �= 0, and hence D = 3B2/8A, 2E − 1 = DB/3A = B3/8A2, and 6G = 3B(2E + 3)/16A.
Therefore,

τ = kt + mt−1/2, ξ = kx − Bmt−1/2

4A
+ C1

is a three-dimensional algebra for the function T = A(c+B/4A)4 +(c+B/4A)/2, which is reducible to the
form T = Ac4 + c/2 by a change of variables in the equivalence group. The three-dimensional symmetry
algebra has the form τ = kt + mt−1/2, ξ = kx + C1 in this case. A change of variables of form 2 can also
reduce the corresponding equations to the equation with F = Ac4.

3. Let Q = A = 0 and B �= 0. Then we obtain a polynomial of degree three, which always has a real
root. Let T (M) = 0, M ∈ R. We change the variables t̄ = t, x̄ = x − Mt, and c̄ = c − M . This change
belongs to the equivalence group and takes T to a function of the form T = Bc3 + Dc2 + Ec. The system
then becomes

B(2tξx − tτt − τ) + Dtτx + t2τxx = 0,

3Btξt + D(tξx − τ) + 2Etτx − t2(ξxx − 2τtx) = 0,

2Dtξt + E(tτt − τ) − t2(2ξtx − τtt) = 0, Eξt − tξtt = 0.

(30)

3.1. Let E �= −1,−1/2, 0. From the two last equations in the system, we then obtain

ξ = n(x)
tE+1

E + 1
+ l(x), τ = k(x)t−E + m(x)t + nx

tE+2

(E + 1)2
− n(x)

2DtE+1

E(2E + 1)
.

Substituting these functions in the second equation in system (30), we obtain

D(lx − m)t + (2(E + 1)mx − lxx)t2 − Dkt−E +
(

3B +
2D2

E(2E + 1)

)
ntE+1 −

− D(E + 2)(3E + 2)
3E(E + 1)2

nxtE+2 +
3

E + 1
nxxtE+3 = 0. (31)

3.1.1. If E �= −2,−3/2, 1, then the powers of the variable t in Eq. (31) are not repeated. Equating the
coefficients of distinct powers to zero, we obtain the system

D(lx − m) = 0, 2(E + 1)mx − lxx = 0, Dk = 0,

n

(
3B +

2D2

E(2E + 1)

)
= 0, Dnx(3E + 2) = 0, nxx = 0.
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3.1.1a. Let D = 0. Then n = 0 and lx = 2(E + 1)m + l1. Substituting these relations in the first
equation in system (30), we obtain

2B((2E + 1)m + l1)t + B(E − 1)kt−E + kxxt2−E + mxxt3 = 0.

3.1.1a(1). If E = −3, then k = 0, m = l1/5, and hence l = l1x/5 + l2, and the algebra is two-dimen-
sional.

3.1.1a(2). If E �= −3, then all powers of the variable t are distinct, and hence k = 0, m = m1x + m2,
and (2E + 1)m1x + (2E + 1)m2 + l1 = 0. Because E �= −1/2, we have m1 = 0 and l = m2x + l2 and again
obtain a two-dimensional algebra.

3.1.1b. Now let D �= 0. Then k = 0, m = m2, l = m2x + l1, n = n1x + n2, and

n

(
3B +

2D2

E(2E + 1)

)
= 0, n1(3E + 2) = 0.

3.1.1b(1). If n = 0, then the symmetry algebra τ = m2t, ξ = m2x+ l1 is two-dimensional, and the last
equation is satisfied automatically.

3.1.1b(2). If n �= 0 and n1 = 0, then B = −2D2/(3E(2E + 1)) and

τ = m2t −
2Dn2t

E+1

E(2E + 1)
, ξ =

n2t
E+1

E + 1
+ m2x + l1.

Substituting these relations in the first equation in system (30), we obtain E = −2, which is impossible.
3.1.1b(3). Let n1 �= 0, n2 �= 0, E = −2/3, and B = −3D2. Substituting these conditions in the first

equation in system (30), we obtain

D2n1

(
−3(E − 1)

(E + 1)2
− 2

E(2E + 1)

)
tE+2 + 2BD

E + 2
E(2E + 1)

(n1x + n2)tE+1 = 0.

This implies n1 = 0, which contradicts the above assumption.
3.1.2. We consider the remaining cases.
3.1.2a. For E = −2, the last two equations in system (30) imply

ξ = −n(x)
t

+ l(x), τ = k(x)t2 + m(x)t + nx − Dn(x)
3t

.

Equation (31) becomes

(D(lx − m) − 3nxx)t − (2mx + lxx + Dk)t2 +
(

3B +
D2

3

)
n

t
= 0.

Equating the coefficients of powers of t to zero, we obtain the following two cases.
3.1.2a(1). If D = 0, then n = 0 and lx = −2m + l1. Substituting these relations in the first equation

in system (30), we obtain k = 0, m = l1/3, and l = l1x/3 + l2, and the algebra is two-dimensional.
3.1.2a(2). If D �= 0 and n = 0, then m = lx and k = −3lxx/D. Substituting these relations in the first

equation in system (30), we obtain

(
9B

D
+ D

)
lxxt2 − 2lxxxt3 − 3

D
lxxxxt4 = 0.
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This implies l = l1x
2 + l2x + l3 or l1 = 0 (the algebra is two-dimensional) or B = −D2/9 and T (c) =

−D2c3/9 + Dc2 − 2c. The change of variables t̄ = t, x̄ = x − 3t/d, c̄ = c − 3/D reduces the equation with
this function T (c) to the case T (c) = −D2c3/9 + c. Further, we can again use a change of form 2 (with
q = 3 and a = 1) to reduce it to F = Mc3.

3.1.2a(3). If D �= 0 and n �= 0, then B = −D2/9. A function of such a form was considered above.
3.1.2b. If E = −3/2, then Eq. (31) becomes

D(lx − m)t + (−mx − lxx)t2 + (−6nxx − Dk)t3/2 +
(

3B +
2D2

3

)
nt−1/2 − 10D

3
nxt1/2 = 0.

3.1.2b(1). Let D = 0. Then n = 0 and lx = −m + l1. Substituting these relations in the first equation
in system (30), we obtain

2B(−2m + l2)t −
5B

2
k(x)t3/2 + kxxt7/2 + mxxt3 = 0.

Then m = l1/2, k = 0, and l = l1x/2 + l2 is a two-dimensional algebra.
3.1.2b(2). Now let D �= 0. Then n = n1, k = 0, m = m1, l = m1x + l1, and n1(9B + 2D2) = 0.

If n1 = 0, then the algebra is two-dimensional. We therefore assume that B = −2D2/9. We have τ =
m1t − 2Dn1t

−1/2/3 and ξ = −2n1t
−1/2 + m1x + l1 in this case. Substituting these formulas in the last

equation in system (30), we obtain n1 = 0. The algebra is two-dimensional in this case.
3.1.2c. If E = 1, then Eq. (31) becomes

D(lx − m)t +
(

4mx − lxx + 3Bn +
2D2n

3

)
t2 − Dkt−1 − 5D

4
nxt3 +

3
2
nxxt4 = 0.

3.1.2c(1). Let D = 0. Then T (c) = Bc3 + c. A function of such a form is equivalent (if a change of
form 2 is used) to F = Bc3.

3.1.c(2). Let D �= 0. Then lx = m, k = 0, n = n1, and lxx = −n1(B + 2D2/9), i.e.,

l = −n1

(
B +

2D2

9

)
x2

2
+ l1x + l2, m = −n1

(
B +

2D2

9

)
x + l1.

Substituting these relations in the first equation in system (30), we obtain n1(B − 2D2/9) = 0. If n1 = 0,
then the algebra is two-dimensional, and we hence assume that n1 �= 0. Then B = 2D2/9. For the function
T (c) = 2D2c3/9 + Dc2 + c, the symmetry algebra

τ =
2
3
Dn1t

(
−2

3
Dx − t

)
+ l1t, ξ = n1

(
t2

2
− 2

9
D2x2

)
+ l1x + l2

is three-dimensional. The change of variables t̄ = t, x̄ = x + 3t/2D, c̄ = c + 3/2D reduces T (c) to the form
T (c) = 2D2c3/9 − c/2. This is the only case that is not reducible to F(c), and we distinguished it in the
statement of the lemma.

3.2.1. Let E = −1. From the last two equations in system (30), we obtain ξ = n(x) log t + l(x) and
τ = k(x)t log t + m(x)t + nxt log2 t− 2Dn(x). After the substitution in the second equation in system (30),
we obtain

(3B + 2D2)n + D(lx − m + 4nx)t + (2kx − lxx)t2 + D(nx − k)t log t − Dnxt log2 t + 3nxxt2 log t = 0.
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As a result, we obtain the system

n(3B + 2D2) = 0, D(lx − m + 4nx) = 0, 2kx − lxx = 0,

D(nx − k) = 0, Dnx = 0, nxx = 0.

3.2.1a. Let D = 0. Then n = 0 and lx = 2k + l1. Substituting these relations in the first equation in
system (30), we obtain

B(3k + 2l1 − 2m)t − 2Bkt log t + kxxt3 log t + mxxt3 = 0.

This implies m = l1, k = 0, and l = l1x + l2, and the algebra is two-dimensional.
3.2.1b. Let D �= 0. Then n = n2, k = 0, l = l1x + l2, m = l1, and (3B + 2D2)n = 0. If n = 0, then the

algebra is two-dimensional; otherwise, B = −2D2/3. The last equation in the system implies n2 = 0, and
the algebra in this case is again two-dimensional.

3.2.2. Let E = −1/2. Then ξ = n(x)t1/2 + l(x). From the third equation in system (30), we obtain
τ = k(x)t1/2 + m(x)t + 2nxt3/2 + 2Dnt1/2 log t. Substituting this expression in the second equation in
system (30), we obtain

(
3
2
Bn − Dk

)
t1/2 + D(lx − m)t + 3Dnxt3/2 +

+ (mx − lxx)t2 + 3nxxt5/2 − 2D2nt1/2 log t = 0.

3.2.2a. Let D = 0. Then n = 0 and lx = m + l1. Substituting these relations in the first equation in
system (30), we obtain

B

(
2l1t −

3
2
kt1/2

)
+ kxxt5/2 + mxxt3 = 0.

This implies k = 0, l1 = 0, m = m1x + m2, and l = m1x
2/2 + m2x + l2. The symmetry algebra

τ = m1xt + m2t, ξ = m1x
2/2 + m2x + l2 is hence three-dimensional for T (c) = Bc3 − c/2. We note that

the function obtained in item 3.1.2c(2) coincides with this function up to a change of the notation.
3.2.2b. Let D �= 0. Then n = 0, k = 0, and lx = m. The first equation in system (30) has the form

Dmx + tmxx = 0 in this case. Then m = m2, l = m2x + l1, and the algebra is two-dimensional.
3.2.3. Let E = 0. Then ξ = n(x)t + l(x), and the third equation in system (30) implies τ =

k(x)t + m(x) + nxt2 − 2Dnt log t. Substituting these relations in the second equation in the system, we
obtain

−Dm + (3Bn + Dlx − Dk)t + (−lxx + 2kx − 4Dnx)t2 + 3nxxt3 − 4Dnxt2 log t + 2D2nt log t = 0.

3.2.3a. Let D = 0. Then n = 0 and lx = 2k + l1. From the first equation in system (30), we obtain
B(2(l1 + k)t − m) + (mxx)t2 + t3kxx = 0. Then k = −l1, m = 0, l = −l1x + l2, and the algebra is
two-dimensional.

3.2.3b. Let D �= 0. Then m = 0, n = 0, lx = k = k2, and the algebra is two-dimensional.

4. If Q = A = B = 0 and D �= 0, then the change of variables t̄ = t, x̄ = x + Et/2D, c̄ = c + E/2D

takes T (c) to the form T = Dc2 + G. System (28) is then simplified to

Dτx + tτxx = 0, D(tξx − τ) − t2(ξxx − 2τtx) = 0,

2Dξt + 3Gτx − t(2ξtx − τtt) = 0, G(−tξx + 2tτt − τ) − t2ξtt = 0.
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We derive τ = e−Dx/tk(t) + m(t) from the first equation, substitute it in the second equation, and obtain

ξ = eDx/tn(t) + l(t) + x
m(t)

t
+

(
−k(t)x

t
+

2k(t)
D

)
e−Dx/t.

It remains to take the third and fourth equations into account. Substituting the obtained expressions in
the third equation, we obtain

2Dn

t
eDx/t +

2Dx

t

(
mt −

m

t

)
+ 2Dlt − 2mt +

2m

t
+ tmtt +

+
(
−3D2x2k

t3
+ x

(
14Dk

t2
− 2Dkt

t

)
− 3(GD + 2)k

t
+ 10kt + tktt

)
e−Dx/t = 0.

This relation (because D �= 0) implies k = n = 0, mt − m/t = 0, and 2Dlt − 2mt + 2m/t + tmtt = 0.
Therefore, m = m1t, l = l1, and the algebra τ = m1t, ξ = m1x + l1 is two-dimensional.

5. If Q = A = B = D = 0 and E �= 0, then τ = k(t)x + m(t). Using a change of form 1, we obtain
T (c) = Ec. A function of such a form is reducible to the zero function by a change of form 2.

6. If Q = A = B = D = E = 0, then T (c) = G. The equation with a constant function T (c) is
reducible to the equation with the zero function by a change of form 3 (with M = 0 and m = 1/G).

We have thus shown that all functions of the form F = (Qc5 + Ac4 + Bc3 + Dc2 + Ec + G)/t with
a nonzero symmetry algebra except the function F = (Bc3 − c/2)/t with the algebra τ = m1xt + m2t,
ξ = m1x

2/2 + m2x + l2 are taken into account in the commutative case. We try to use admissible changes
of variables to simplify the form of the function. We apply changes of forms 2 and 4 to reduce it to F(x) =
A/x3, and the corresponding symmetry algebra has the form τ = m1t

2/2 + m2t + l2, ξ = (m1t + m2)x/2.
The lemma is proved.

Lemma 8. For functions of the form T (c) = Ac4 + Bc3 + Dc2 + Ec + G + K/(c + M) with K �= 0
that are not reducible by a change of variables to the already considered functions, the symmetry algebra

is two-dimensional.

Proof. As in the commutative case, using a change of form 1, we can assume that M = 0. Substituting
T (c) of the given form in (27) and reducing to a common denominator, we obtain

−c2t(4Ac3 + 3Bc2 + 2Dc + E)(ξt + cξx − cτt − c2τx) + Kt(ξt + cξx − cτt − c2τx) +

+ c2(Ac4 + Bc3 + Dc2 + Ec + G)(tξx − 2tτt − 3tcτx + τ) +

+ Kc(tξx − 2tτt − 3tcτx + τ) + t2c2(ξtt + c(2ξtx − τtt) + c2(ξxx − 2τtx) − c3τxx) = 0. (32)

The left-hand side of the equation contains a polynomial in c identically equal to zero. Equating the
coefficients of c0 and c1 to zero, we obtain Kξt = 0 and K(2tξx−3tτt+τ) = 0. Because K �= 0, we divide the
second relation by t and differentiate with respect to t to obtain 3t2τtt−tτt +τ = 0, i.e., τ = tf(x)+t1/3g(x)
and ξ(x) =

∫
f(x) dx. Substituting these formulas in (32), we again obtain a polynomial in the variable c.

We write the coefficients of powers of c as

Ag = 0, A(tfx + t1/3gx) = 0, 4Bg − 3D(t5/3fx + tgx) − 3(t8/3fxx + t2gxx) = 0,

3Dg = 3t5/3(2E + 1)fx + 2t(3E + 1)gx,

2(3E + 1)g = 27G(t5/3fx + tgx), Gg = 12K(t5/3fx + tgx).
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Let A �= 0. Then g = fx = 0, and the algebra is two-dimensional. Let A = 0. The dependence on
t is explicitly manifested in the remaining four expressions. The last equation implies Gg = fx = gx = 0
(because K �= 0). The algebra is two-dimensional for g = 0, and we hence assume that G = 0. We similarly
obtain E = −1/3, D = 0, and B = 0 from the other equations, i.e., the symmetry algebra τ = ft + gt1/3,
ξ = fx + C is three-dimensional for T (c) = −c/3 + K/c. We use a change of variables of form 2 to reduce
the equation with T (c) = −c/3 + K/c to the equation F(c) = K/c and then use a change of variables of
form 4 to reduce the result to the equation with F(c) = Kc4 whose symmetry algebra was obtained in
Lemma 1. The lemma is proved.

Lemma 9. For functions of the form T (c) = A(c2 + g)3/2 + c(c2 + g)/g with A �= 0 and g �= 0, the

symmetry algebra is three-dimensional, and its basis is Ξ1 = ∂x, Ξ2 = t∂t +x∂x, Ξ3 = tx∂t +(x2−gt2)/2∂x.

Proof. We note that 3cT = Tc(c2 + g) − (c2 + g) and substitute T expressed in terms of Tc in (27):

Tc(−3t(cξt + c2(ξx − τt) − c3τx) + (c2 + g)(tξx − 2tτt − 3tcτx + τ)) −

− (c2 + g)(tξx − 2tτt − 3tcτx + τ) + 3t2(cξtt + c2(2ξtx − τtt) + c3(ξxx − 2τtx) − c4τxx) = 0.

Because Tc is not a fractional rational function and is linearly independent of a fractional rational function,
the coefficient of Tc is zero, the second term is hence also zero, and we obtain

tξx − 2tτt + τ = 0, ξt + gτx = 0, 2tξx − tτt − τ = 0, gτx + tξtt = 0,

tξx − 2tτt + τ − 3t2(2ξtx − τtt) = 0, τx + t(ξxx − 2τtx) = 0, τxx = 0.

It follows from the first, third, and seventh equations in the system that τ = k1xt + k2t. We have ξ =
−gk1t

2/2 + l(x) from the second equation. Substituting this relation in the first equation, we obtain
l = k1x

2/2 + k2x + l1. The three-dimensional symmetry algebra

τ = k1xt + k2t, ξ =
k1(x2 − gt2)

2
+ k2x + l1

hence corresponds to the function T (c) of the form given in the lemma.
We successively apply changes of variables of the forms 2, 4, and 5 to reduce the equation with

T (c) given in the condition of the lemma to the equation with the function F = A
(
1 + (t+gc)2

t2+2gx

)3/2. The
corresponding algebra has the form

τ = −gk1x + k2t + l1, ξ = k1

(
3tx +

t3

g

)
+ 2k2x − l1t

g
.

The lemma is proved.

Lemma 10. For functions of the form T (c) = Aca + pc with A �= 0 and a �= −1, 0, . . . , 5 that are

not reducible by a change of variables to the already considered functions, the symmetry algebra is two-

dimensional.

Proof. Substituting T (c) of the given form in (27), we obtain

−aAca−1tξt + Aca((a − 2)tτt − (a − 1)tξx + τ) + (a − 3)Aca+1tτx + (t2ξtt − ptξt) +

+ c(t2(2ξtx − τtt) − ptτt + pτ) + c2(t2(ξxx − 2τtx) − 2ptτx) − c3t2τxx = 0.
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Because the cases a = −1, 0, 1, . . . , 5 have already been considered in Lemmas 7 and 8, the powers of c are
distinct, and we obtain the system

ξt = 0, τx = 0, (a − 2)tτt − (a − 1)tξx + τ = 0, ; t2τtt + p(tτt − τ) = 0, ξxx = 0.

If p �= −1, then we obtain τ = kt+mt−p and ξ = nx+ l from the last two equations. Substituting the result
in the third equation, we obtain (a− 1)(k−n)t+(1− (a− 2)p)mt−p = 0. Then k = n, (1− (a− 2)p)m = 0.
In this case, either m = 0 and the algebra is two-dimensional or p = 1/(a − 2) and the symmetry algebra
τ = kt + mt−1/(a−2), ξ = kx + l is three-dimensional for T (c) = Aca + c/(a − 2). We use a change of
variables of form 2, which reduces T (c) = Aca + c/(a − 2) to the commutative case F(c) = Aca.

If p = −1, then we obtain τ = kt+mt log t, ξ = nx+ l from the last two equations and substitute these
relations in the third equation. As a result, we obtain ((a−1)k+(a−2)m− (a−1)n)t+(a−1)mt log t = 0.
This implies m = 0, k = n, and the algebra is two-dimensional. The lemma is proved.

Lemma 11. For functions of the form F(c) = Aeac + p, A �= 0, a �= 0, that are not reducible by a

change of variables to the already considered functions, the symmetry algebra is two-dimensional.

Proof. Substituting T (c) of the given form in (27), we obtain

Aeac((tξx − 2tτt + τ − atξt) − c(atξx − atτt + 3tτx) + ac2tτx) + ptξx − 2ptτt +

+ pτ + t2ξtt + c(2t2ξtx − t2τtt − 3ptτx) + c2(t2ξxx − 2t2τtx) − c3t2τxx = 0.

Because T is not a fractional rational function and is linearly independent of a fractional rational function,
the coefficients of T and the remaining term are zero, and we have

tξx − 2tτt + τ − atξt = 0, atξx − atτt + 3tτx = 0, τx = 0,

ptξx − 2ptτt + pτ + t2ξtt = 0, 2ξtx − τtt = 0, ξxx = 0.

This implies τ = kt + m, ξ = kx + l(t) and lt = m/at, pm + t2ltt = 0. Then l = (m log t)/a + l1 and
m(p − 1/a) = 0. If m = 0, then the algebra is two-dimensional. If m �= 0, then p = 1/a, and τ = kt + m,
ξ = kx + m log t/a + l1 is then a three-dimensional algebra for T (c) = Aeac + 1/a. A change of form 3
reduces T (c) = Aeac + 1/a to the commutative case F(c) = Aeac. The lemma is proved.

4.8. Proof of the existence of an exact two-dimensional symmetry algebra in other cases.
We prove that all functions T (c) with the symmetry algebra of a dimension greater than two were considered
in Lemmas 7–11. We consider (27) as an equation for T of the form −TcA + TB + D = 0. The following
versions are possible.

1. Let A = 0. Then τx = ξt = 0, and τt = ξx = const, τ = C1t + C3, and ξ = C1x + C2. The constant
C1 is nonzero by the assumption that at least one of the functions τ and ξ is not constant. But it then
turns out that B = C3, D = 0, and hence T = 0, which was already considered in Lemma 7.

2. Let A �= 0. We differentiate the relation −TcA + TB + D = 0 with respect to x and t and obtain a
system of three equations for T (c) and Tc(c)

− TcA + TB + D = 0, −TcAx + TBx + Dx = 0, −TcAt + TBt + Dt = 0. (33)

Three cases are possible: system (33) is inconsistent, all three equations are equivalent, or at least two of
them nonproportional to each other. The first case is not interesting for us, because there do not exist
functions T (c) satisfying this system. We consider the remaining two cases.
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2.1. Let BAx = BxA and BAt = BtA. Then B is proportional to A with a coefficient depending only
on c, φ(c)t(ξt + cξx − cτt − c2τx) = t(ξx − 2τt − 3cτx) + τ .

2.1.1. Let τx �≡ 0. Then fixing the corresponding values (t, x), we obtain φ(c) = (3c + a)/(c2 + bc + d),
where a, b, and d are constants. Using the obtained ansatz in (27), we obtain

t(3c + a)(ξt + cξx − cτt − c2τx) = (c2 + bc + d)((tξx − 2tτt + τ) − 3tcτx),

t(aξt + c(3ξt + aξx − aτt) + c2(3ξx − 3τt − aτx)) =

= c2(tξx − 2tτt + τ) + bc(tξx − 2tτt + τ) + d(tξx − 2tτt + τ) − 3bc2tτx − 3dctτx.

We equate the coefficients of powers of c to zero and as a result obtain

2tξx − τ = t(a − 3b)τx + tτt, 3tξt + t(a − b)ξx − bτ = t(a − 2b)τt − 3dtτx,

atξt = dtξx − 2dtτt + dτ.

Using the change of variables t̄ = t, x̄ = x − (a − 3b)t/3, c̄ = c − (a − 3b)/3, we obtain new functions
τ̄ (t̄, x̄) = τ(t, x) and ξ̄(t̄, x̄) = ξ − (a − 3b)τ/3. Relation (27) is then taken to itself, and the obtained
equations become

ξx =
τ

2t
+

τt

2
, ξt = −

(
a(a − 3b)

9
+ d

)
τx,

(
a(a − 3b)

9
+ d

)(
2
(

b − 2a

3

)
tτx + tτt − τ

)
= 0.

2.1.1a. We first assume that 9d + a(a − 3b) = 0, and then ξx = τ/2t + τt/2, ξt = 0. We write the
consistency condition τtt + τt/t − τ/t2 = 0 and find τ = k(x)t + m(x)/t from it. The formulas for the
derivatives of ξ are then simplified: ξt = 0, ξx = k(x), i.e., ξ =

∫
k(x)dx. Substituting these expressions

in (27),
(m − ct3kx − ctmx)(3T − Tcc) − c2t3kx − c3t4kxx − 2cm + 2c2tmx − c3t2mxx = 0,

we obtain a polynomial in t in the left-hand side. We then have

kxx = 0, kx(3T − Tcc + c) = 0, mxx = 0, mx(3T − Tcc − 2c) = 0, m(3T − Tcc − 2c) = 0,

i.e., k = k1x + k2, m = m1x + m2. Let 3T − Tcc − 2c = 0. Then T = Mc3 + c. If 3T − Tcc − 2c �= 0, then
m = 0 and either T (c) = Mc3 − c/2 or k = k2. As a result, we obtain a two-dimensional algebra. The
algebras for such functions T (c) were determined in Lemma 7.

2.1.1b. We assume that 9d + a(a − 3b) �= 0. Then 2(b − 2a/3)tτx + tτt − τ = 0. We determine
τ = tk(x − 2(b − 2a/3)t). Substituting this expression in the formulas for the derivatives of the function ξ,
we obtain

ξx = k −
(

b − 2a

3

)
tk′, ξt = −

(
a(a − 3b)

9
+ d

)
tk′.

We can write the consistency condition as 9(3b − 2a)k′ = (2(3b − 2a)2 + a(a − 3b) + 9d)tk′′, which implies
(2(3b− 2a)2 + a(a− 3b)+ 9d)k′′ = (2a− 3b)k′ = 0. By the above assumptions, only the following two cases
are possible.

If k′ = 0, i.e., k = const, then ξx = k and ξt = 0, which means that τ = kt, ξ = kx + C is a
two-dimensional algebra.
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If k′ �= 0, then k′′ = 0 and a = 3b/2, i.e., k = k1x + k2. We have ξx = k1x + k2 and ξt = −gk1t, where
g = d−b2/4, which implies τ = k1tx+k2t and ξ = k1(x2−gt2)/2+k2x+m. Substituting these expressions
in (27), we obtain k1[Tc(g + c2)− 3Tc− (g + c2)k1] = 0. If k1 = 0, then the algebra is two-dimensional. We
further assume that k1 �= 0 and then

T (c) = exp
(∫

3c dc

c2 + g

)(
M +

∫
e
−
� 3cdc

c2+g dc

)
= M(c2 + g)3/2 +

c(c2 + g)
g

(34)

(if g = 0, then we obtain T = Mc3 − c/2 with an already studied symmetry algebra). The function T (c) of
form (34) was considered in Lemma 9.

2.1.2. Let τx ≡ 0 and ξt �≡ 0. Then φ(c) = a/(1 + bc), and we have

at(ξt + cξx − cτt) = (t(ξx − 2τt) + τ)(1 + bc).

Equating the coefficients of powers of c in the obtained polynomial to zero, we obtain atξt = tξx − 2tτt + τ

and (b− a)tξx +(a− 2b)tτt + bτ = 0. Expressing τt from the first equation and substituting it in the second
equation, we obtain

τt =
1
2
ξx − a

2
ξt +

1
2t

τ, a(tξx + t(a − 2b)ξt − τ) = 0. (35)

2.1.2a. In the case a = 0, we obtain τ = τ(t), ξ = (2τt − τ/t)x + C(t). Substituting these relations
in (27), we obtain

Tc

((
2tτtt − τt +

τ

t

)
x + tCt + ctτt − cτ

)
−

−
(

2t2τttt − tτtt + 2τt −
2τ

t

)
x + t2Ctt + c(3t2τtt − 2tτt + 2τ) = 0.

In the left-hand side, we have a polynomial in x, i.e.,

Tc

(
2tτtt − τt +

τ

t

)
−

(
2t2τttt − tτtt + 2τt −

2τ

t

)
= 0,

Tc(tCt + c(tτt − τ)) − t2Ctt − c(3t2τtt − 2tτt + 2τ) = 0.

Either we determine T (c) = Ec + G from the first equation, which was already done, or the coefficient of
T is zero, 2t2τtt − tτt + τ = 0, and then τ = kt1/2 + mt. In this case, we consider the second equation,
2Tc(2t1/2Ct − ck) = 4t3/2Ctt + ck. The solvability condition for the equation implies either k = 0 and again
T = Ec + G or Ct + 2tCtt = 0 and T = −c/2 + G, which was already considered above.

2.1.2b. In the case a �= 0, we obtain ξ = xτ/t + C(t) for a = 2b. From the first equation in (35), we
obtain 2t2τt = 2tτ − ax(tτt − τ) − at2Ct. Because τx = 0, we have tτt − τ = 0, i.e., τ = kt, C = const, and
the algebra is then two-dimensional for any function T . For a �= 2b, we have

ξ =
∫

τ dt

t(a − 2b)
+ C(t + (2b − a)x), τt +

b

(a − 2b)t
τ = (b − a)C′.

If also a = b, then τ = kt, ξ = −kt/a + C(t + ax), and relation (27),

−Tc(aC′ − k)(1 + ac) + aT (aC′ − k) + at(1 + ac)2C′′ = 0,

implies T (c) = (1 + ac)(Qc + M). This case was already considered above.
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If a �= b, then using the relation τ = τ(t), we obtain C = C1(t+(2b−a)x)+C2 and τ = ktb/(2b−a)+C1t.
We also (for b �= 0) have ξ = −ktb/(2b−a)/b + C1x + C2. Substituting these relations in (27), we obtain

k

(
Tc(1 + cb) − aT − (a − b)(1 + cb)

2b − a

)
= 0.

We assume that k �= 0 (otherwise, the algebra is two-dimensional) and obtain

T (c) = M(1 + cb)a/b − 1 + cb

2b − a
.

Up to a change of variables, we obtain a function of the form T = Mcp + c/(p − 2) from the equivalence
group, and the symmetry algebra of this function was determined in Lemma 10.

If b = 0, then τ = k − C1at and ξ = k log t/a − C1ax + C2. Substituting these relations in (27), we
obtain Tc − Ta + 1 = 0, whence we obtain T (c) = Meac + 1/a, which was considered in Lemma 11 and has
a three-dimensional symmetry algebra.

2.1.3. Let τx ≡ 0 and ξt ≡ 0. In this case, the condition ξx − τt �≡ 0 is satisfied by the assumption
that A �≡ 0, and we have φ(c) = a/c. Then (a − 1)ξx = (a − 2)τt + τ/t = const = l. If a = 2, then
τ = lt, ξ = lx + m, and this contradicts the assumption that ξx − τt �≡ 0. If a = 1, then τ = bt and
ξ = ξ(x). Substituting these relations in (27), we obtain (T − Tcc)(ξx − b) + tc2ξxx = 0, whence we have
either ξ = lx + m or l = b (the algebra is two-dimensional) or T (c) = Mc. The symmetry algebra for this
function was obtained in Lemma 7.

If a �= 1 and a �= 2, then τ = bt−1/(a−2) + lt/(a − 1), ξ = lx/(a − 1) + m. We return to relation (27),
which now becomes

b

(
Tcc − Ta + c

a − 1
a − 2

)
= 0.

The case b = 0 leads to a two-dimensional algebra. Otherwise, assuming that b �= 0, we obtain T (c) =
Mca + c/(a − 2). The corresponding symmetry algebra was obtained in Lemma 10.

2.2. We assume that there are at least two equations nonproportional to each other in system (33)
(one of the relations BAx = BxA and BAt = BtA is not satisfied identically). We can then determine the
ansatz T (c): because A �= 0, the corresponding pair of equations implies that T is a ratio of two polynomials
for some fixed (t, x) (a polynomial of degree five is in the numerator, and a polynomial of degree two is
in the denominator). And because B �= 0, from the same pair of equations, we find that Tc is a ratio of
two polynomials for the corresponding values of (t, x) (a polynomial of degree four is in the numerator,
and a polynomial of degree two is in denominator). We differentiate the expression for T with respect to
c, compare the result with Tc, and see that only the following two cases are possible. The denominators of
both functions contain a constant or the fraction is canceled after separation of the integral part, i.e., the
possible functions T are

T (c) = Qc5 + Ac4 + Bc3 + Dc2 + Ec + G, T (c) = Ac4 + Bc3 + Dc2 + Ec + G +
K

c
.

Such functions were already considered in Lemmas 7 and 8.
We have thus shown that all cases where there is a symmetry algebra of dimension greater than two

were considered in the lemmas in the preceding section.

4.9. Equations with one-dimensional symmetry algebras. If the symmetry algebra is one-
dimensional, then the generating operator is reducible to the form Ξ = ∂x by a change of variables,
and Eq. (1) with F(t, c) corresponds to an algebra of such a form. Therefore, up to transformations
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in the equivalence group, the family of functions F for which the symmetry algebra of the equation is
one-dimensional consists of functions F(t, c) that are not reducible to functions in the families given in
Tables 1–3. We note that the change of variables t̄ = x, x̄ = t, which interchanges the roles of the “space”
and “time,” allows considering F(x, c) with the one-dimensional algebra and the basis Ξ = ∂t instead of
F(t, c).

The proof of Theorem 3 is complete.
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