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1  Introduction 
Plenty of studies on mantle convection 

with different rheologies were carried out 
during the past years. The models with 
different effective Rayleigh numbers, non-
Newtonian viscosity, different values for 
the activation energy and volume which 
determine the P,T dependence, different 
modes of heating, different aspect ratios 
and dimensions (two-dimensional, three-
dimensional, three-dimensional spherical: 
2D, 3D, 3S) were considered.  

These works mainly studied the 
temperature and velocity fields of the 
mantle flows. However, only relatively few 
works address the stress fields. In the study 
[1], the stress fields were calculated in the 
lithosphere for different depth profiles of 
viscosity for spherical model with plates on 
the surface. It was found that, depending on 
the boundary conditions, the stresses in the 
lithosphere  varied  between  ±50  MPa  and  

 
 

±140 MPa. In our previous works [2], [3] 
we studied (with different distributions of 
viscosity) 2D stresses in the presence of 
floating continental plates. The stresses in 
the upper part of plates reach 40 MPa.  

A more complex rheology was 
investigated in [4]. For the generation of 
2D plate boundary, authors introduced a 
history-dependent rheology with the yield 
strength which is determined by past 
fractures. The results show horizontal 
stresses varying inside the interval ±100 
MPa. Yoshida [5] analyzed spherical 
models with a heat production rate H = 10 
and a simpler P,T- dependent mantle 
viscosity with a highly viscous area 
simulating a supercontinent. The maximum 
deviatoric tensional stress generated in the 
area of immobile supercontinent is (30÷90) 
MPa.  

Thus, in these and another studies, the 
authors  focus   mainly   on  the  lithospheric  
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stress fields. In our opinion, insufficient 
attention has been paid to the mantle stress 
fields. 

In the present work, we study how non-
Newtonian viscosity affects the convection 
structure and stress fields in the mantle and 
lithosphere. In our model, the convection is 
solely driven by the temperature anomalies 
in the mantle. The subduction process 
develops in a self-consistent manner after 
introducing the strain rate dependence of 
the viscosity in addition to its P,T 
dependence. Of course, the real mantle has 
a more complex rheology than the 
considered model.  

 

2 The model and equations 

We use a 2D Cartesian model in order 
to minimize numerical calculations and to 
provide high resolution.  

The mantle is assumed to be heated 
from below (from the core) and internally 
heated by the decay of radiogenic elements, 
which are uniformly spatially distributed.  

With these assumptions, thermal 
convection is governed by the common 
equations for conservation of mass, 
momentum, and energy. In Boussinesq 
approximation, 2D fluid convection 
equations for coordinates x and z (with the z 
axis directed upwards) have the following 
dimensionless form [6]:  

 

the momentum transfer equations 

-∂p/∂x + ∂τxx/∂x + ∂τxz/∂z = 0, (1) 
 

-∂p/∂z+∂τxz/∂x+∂τzz/∂z+RaT = 0, (2) 

the heat transfer equation 

∂T/∂t+Vx∂T/∂x+Vz∂T/∂z = 
∂2T/∂x2+∂2T/∂z2+H,   (3) 

and the continuity equation 

∂Vx/∂x + ∂Vz/∂z = 0.   (4) 
Here,  

Ra = (α g ∆T D3)/(κν0)  
is the Rayleigh number determined in 

terms of the reference kinematic viscosity 
ν0. The unknown variables are the velocity 
components, Vx and Vz; the overlithostatic 
pressure, p (i.e., the perturbation in the 
lithostatic pressure P caused by 
convection); the superadiabatic (potential) 
temperature, T; and the deviatoric viscous 
stress tensor, τij.  

 We use here the dimensionless 
variables assuming the following scaling 
factors: the thickness of the mantle D for 
length; κ/D for velocity; D2/κ for time; 
∆T=T2-T1 for temperature; η0 for dynamic 
viscosity; η0κ/D2 for pressure and stresses 
and κ∆T/D2 for thermometric heat source 
density H. The components of the 
deviatoric viscous stress tensor are  

τxx = 2 η∂Vx/∂x,    (5) 
 

τzz = 2 η∂Vz /∂z,    (6) 
 

τxz = η (∂Vx/∂z +∂Vz/∂x),   (7) 
 

where η is the dimensionless dynamical 
viscosity at a given point.  

The deviatoric stresses τij are associated 
with the total viscous stresses σij. In 
particular, the total normal horizontal 
stresses and the total normal vertical 
stresses are  

σxx = p - 2 η∂Vx /∂x,    (8) 
 

σzz = p - 2 η∂Vz /∂z.   (9) 
 

In terms of this definition, the 
compressive stresses are assumed positive. 
Here, the stress sign is consistent with the 
definition accepted in geophysics and 
engineering and is opposite to that adopted 
in physics. 

 The average values of the parameters 
that can be used to describe the overall 
mantle of the Earth [6] give the Rayleigh 
number Ra = (α g ∆T D3)/(κν0) = 2 × 107,  
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as it was used in the work. The 
dimensionless stress of 1 × 104  in the 
given units of σ0 corresponds to the 
dimensional value of 2.35 MPa.  

The temperature on the upper and 
lower boundaries of the calculation domain 
is constant, and equal to 0 and 1 
dimensionless units, respectively: T1 = 0 
and T2 = 1. The boundaries of the domain 
are assumed to be free-slip and 
impermeable (the shear stresses and 
normal velocity components are zero). The 
side boundaries are assumed to be 
insulated, that is, the normal derivative of 
temperature is zero: ∂T/∂x = 0.  

We consider a model of the mantle 
with P,Т-  and strain-dependent viscosity. 
Generally, the viscosity can be described 
as 

η = A – 1/n   [έ](1-n)/n exp[(E +  
PV)/(nRT)],    (10) 

 

n – nonlinearity index, έ is the second 
invariant of the strain rate tensor, E is 
activation energy, V is the activation 
volume. The member [έ](1-n)/n in this 
equation describes the plastic deformation. 
The numerical simulations for the 
parameters of the real Earth require a lot of 
computation time. So we use the simplified 
dependence of viscosity on temperature 
and lithostatic pressure [7]:  

 

η(P,T) = 200×exp[-9.2T+2.3(1-z)], (11) 
 

Here, the depth z is connected with the 
dimensional lithostatic pressure P by the 
formula P = ρgD(1 – z). Simultaneously, 
the viscosity depends on the strain 
invariant έ as  

 

η = min (η(P,T), τ/ έ),  (12) 
 

where έ is the second invariant of the 
strain rate tensor, τ is an effective yield 
stress [8]. The latter relation describes, by 
means of the drop in the effective viscosity 

 η, the effect of plasticity of the oceanic 
lithospheric plate in the areas of high strain 
rate (when the slab bends into the mantle; 
when sinking slab separates from the 
oceanic lithospheric plate). We assume the 
yield stress to be 25 MPa, which falls in 
the interval of “mobile lid regime” [9]. The 
symbol “min[a,b]” indicates that a function 
assumes a value of a and b, whichever is 
smaller.  

In our simulation, we use well 
benchmarked 2D CITCOM code [10]. The  
calculations were carried out in the 
rectangular box with an aspect ratio of L : 
D = 5 : 1 with uniform 401 × 201 grid, i.e. 
with a horizontal resolution of 36 km and 
vertical resolution of 15 km. In the process 
of calculating, the model evolutionarily 
enters the typical mode (i.e., systematic 
trend of the solution disappears). 

Figs.1 - 2 show two typical stages of the 
examined convection.  
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Figure 1. The non-Newtonian viscosity model 
at Ra = 2 × 107 and H = 15, for the first time 
moment (t = 0). Panels (a) – (e) from top to 
bottom: (a) The spatial distributions of 
dimensionless temperature and flow velocity. 
The dimensionless velocities are shown by the 
arrows with a maximum value of 15 cm/year. 
(b) The spatial distribution of the logarithm of 
dimensionless viscosity. (c) The spatial 
distribution of dimensionless σxx. Tones from 
white to light gray correspond to overlithostatic 
tensile stresses (negative values), dark gray 
tones correspond to compressional stresses. (d) 
The spatial distribution of dimensionless 
overlithostatic pressure. (e) The spatial 
distribution of dimensionless σzz. The 
dimensionless stress of 1 × 104  in the given 
units of σ0 corresponds to the dimensional value 
of 2.35 MPa. 

 
 

 

  

Figure 2. The non-Newtonian viscosity model 
for for the second time moment (t = 1.50 × 10-4, 
in dimensional form 40 Ma).  

 

3  Results  
Compared to the models studied in our 

previous works [3], the present model 
exhibits significant distinctions. Our 
present model demonstrates jump-like 
migration of subduction zones and reveals 
large spatial and time heterogeneities of 
stresses and velocities in the area of slab 
subduction depending on the slab 
detachment stage. Due to more easy 
removal of lithospheric plates from the 
surface into the mantle, the model shows 
reasonable (not too low) values of the 
mantle velocities (with a maximum value 
of 5 cm/year at the surface and about 10 
cm/year for rapidly sinking lithospheric 
slabs) and the surface heat flow. This 
rh 
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lrheology also provides plausible (not 
excessively large) stresses in the mantle 
and slabs. Thus, inclusion of the effect of 
plastic deformation essentially changes the 
behavior of the model, bringing it closer to 
the actual situation.  

The model stresses in the parts of the 
mantle where vigorous subvertical flow is 
absent are small. Typical values of the 
horizontal stresses σxx, the overlithostatic 
pressure and the vertical stresses σzz  in 
these areas vary within ± 6, ±8, ±10 MPa, 
respectively. However, the overlithostatic 
stresses exhibit strong concentrations in the 
areas of descending slabs, where the values 
are about an order of magnitude higher 
(±50 MPa). The stresses increase also in 
the surrounding area of the mantle, what is 
caused by viscous mantle interaction with 
rapidly sinking slab. These results give in 
terms of stresses the quantitative  
confirmation of current views on the 
oceanic downgoing slabs as the most 
important agent of the mantle convection. 
The ascending plumes play only a 
supplementary role (for our model, their 
contribution is about three times smaller).  

We find significant differences between 
the σxx, σzz, and the pressure fields.The 
pressure field reveals both vertical and 
horizontal features of slabs and plumes, 
showing their long thermal conduits (areas 
of  relatively low pressure) with broad, 
spherical or disk-like heads (areas of 
compression). Here, just as throughout the 
whole study, we consider the 
overlithostatic stresses. The σxx field is 
sensitive to  subhorizontal features of the 
mantle flow. Conversely, the distribution 
of σzz mainly reflects vertical substructures 
(the conduits).  

In the considered model,  these fields 
differ in the mantle areas measuring in 
hundreds of kilometers where one of the 
fields shows the values almost an order (up  

 

to 50 MPa) greater than the typical, while 
the other field anomalies in this region are 
almost absent. Among these three fields, 
the structure of mantle flows is most 
clearly visible in the σzz field (the range of 
variations in σzz is wider than that of σxx).  

The model predicts the presence of 
relatively cold remnants of lithospheric 
slabs at the bottom of the mantle just above 
the thermal boundary layer. The reason is 
more rapid detachment and subsequent 
immersion of the slabs as a result of the 
plastic properties of the material. The hot 
plumes penetrating through these 
remnants, which has relatively higher 
viscosity, as well as the descending slabs 
induce intense stress fields in the lower 
mantle, which are strongly nonuniform in 
space and time. By the same reasons, the 
upper surface of D'' layer is an uneven.  

The considered model is simplified in a 
number of respects. In the future, the use 
of the models with a more complex 
rheology would enable constructing more 
adequate model representations.  
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