УДК 547.67

Синтез и характеризация эндоэдрального металлофуллерида K(18-crown-6)[Ho@C₈₂(C_{2v})]

В. М. Некрасов, В. П. Бубнов, В. М. Мартыненко, И. Е. Кареев, 6* Е. Лаухина, Весиана, В. К. Ровирав

^а Московский государственный университет им. М. В. Ломоносова, Факультет фундаментальной физико-химической инженерии, Российская Федерация, 119991 Москва, Ленинские горы, 1, стр. 51.
Факс: (495) 939 0175. E-mail: Inekrasov@inbox.ru

⁶ Институт проблем химической физики Российской академии наук, Российская Федерация, 142432 Черноголовка Московской обл., просп. Акад. Семенова, 1.
Факс: (496) 515 5420. E-mail: kareev@icp.ac.ru

⁶ Институт материаловедения Барселоны, Испания, 08193 Беллатерра, Кампус УАБ*

² Научно-исследовательский центр биомедицины, биоинженерии, биоматериалов и наномедицины, Испания, 28029 Мадрид, просп. Монфорте-де-Лемос 3—5, стр. 11**

Методом окислительно-восстановительного взаимодействия эндоэдрального металлофуллерена $Ho@C_{82}(C_{2v})$ с донором электронов перхлоротрифенилметидом калия $K(18\text{-crown-6})[C(C_6Cl_{5)3}]$ впервые синтезирован эндоэдральный металлофуллерид

K(18-crown-6)[Ho@ $C_{82}(C_{2v})$]. Полученная соль охарактеризована методами спектрофотомерии и масс-спектрометрии.

Ключевые слова: электродуговой синтез, эндоэдральный металлофуллерен, донорно-акцепторные системы, ВЭЖХ, масс-спектрометрия, оптическая спектроскопия.

Уникальная структура эндоэдральных металлофуллеренов (ЭМФ) и разнообразие их свойств в зависимости от инкапсулированного атома (или атомов) металла и углеродного каркаса привлекают внимание исследователей к этим соединениям^{1,2}. Новый класс соединений, образованный на основе ЭМФ — эндоэдральные металлофуллериды (ЭМФД) — это соли (комплексы с переносом заряда), анионами в которых являются ЭМФ. Известно, что ЭМФД представляют интерес для молекулярной электроники и электронных донорно-акцепторных систем^{3—7}.

Открытие в 1991 г. сверхпроводников на основе фуллеридов щелочных металлов (M_3C_{60} , M=K, C_8 , R_{b})⁸ привело к интенсивному развитию химии и физики этого класса соединений. В то же время в литературе не описаны методы синтеза $ЭМ\PhiД$ и тем более отсутствуют данные о их свойствах.

В последнее время активно изучается процесс переноса электрона между молекулой ЭМФ и различными органическими донорами. Была показана возможность создания ионно-контролируемых переключателей на основе переноса электрона от тетратиафульвалена к Li@C_{60} . Этот результат важен при проектировании новых устройств для хранения информации. Имеются литературные данные 10,11 об интересной донор-

но-акцепторной системе, построенной из парамагнитного $\Im M\Phi - La@C_{82}(C_{2v})$ и органических доноров (N,N,N'N')-тетраметил-n-фенилендиамин, декаметилферроцен и 5,10-дигидро-5,10-диметилфеназин). В результате взаимодействия $\Im M\Phi La@C_{82}(C_{2v})$ с донорами (D) в растворе образуются ион-радикальные пары $[(La@C_{82}^-(C_{2v}) \ (D^+ \cdot)]$, стабильность которых может зависеть от температуры или других параметров. Эти системы обладают термохромными свойствами и представляют большой интерес для оптических и магнитных приложений 11 .

Известна только одна работа 12 , посвященная получению ЭМФД с калием — $K(18\text{-crown-6})[Y@C_{82}(C_{2v})]$. Главная причина такого положения — ограниченная доступность ЭМФ для широкого круга исследователей, что связано с проблемами синтеза и выделения в препаративных количествах 2 . Представляет интерес синтез ЭМФД с магнитными атомами металлов, такими как гольмий, гадолиний, диспрозий, и последующее изучение их магнитных свойств.

В настоящей работе методом окислительно-восстановительного взаимодействия ЭМФ $Ho@C_{82}(C_{2v})$ с донором электронов перхлоротрифенилметидом калия K(18-crown-6)[$C(C_6Cl_5)_3$] впервые синтезирована соль K(18-crown-6)[$Ho@C_{82}(C_{2v})$].

Обсуждение полученных результатов

Смесь, состоящую из ЭМФ с гольмием и фуллеренов, разделяли методом многостадийной полупрепа-

^{*} Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Campus UAB, Spain.

^{**} CIBER de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3—5, Pabellon 11, 28029 Madrid, Spain.