"Spatially modulated spin ordering in compounds with a langasite type crystal structure: 57Fe Mossbauer reinvestigation"

Langasite family compounds based on the La₃Ga₅SiO₁₄ mineral attract high interest that mainly caused by their multiferroic properties that are closely related to the unusual magnetic structure of these compounds. The Type-II multiferroic langasite-like Ba₃SbFe₃Si₂O₁₄ oxide has a noncollinear magnetic structure with a magnetic ordering temperature $T_N \sim 34$ K. The magnetic helix structure of Ba₃SbFe₃Si₂O₁₄ below T_N is a result of competing antiferromagnetic intralayer and interlayer interactions.

The present work reports new analysis and reinterpretation of the 57 Fe Mössbauer data [1] for the ferrite Ba₃SbFe₃Si₂O₁₄ with langasite-like crystal structure. The sample enriched with 57 Fe isotopes was obtained by the solid-phase synthesis method. The stoichiometric amounts of pre-dried BaCO₃, Fe₂O₃, Sb₂O₅, SiO₂ were used as precursors. The annealing was carried out at two stages: at 1000° C and 1225° C for 24 hours.

⁵⁷Fe Mössbauer spectra recorded above $T_{\rm N} \approx 34$ K consist of a quadrupole doublet with a high quadrupole splitting ($\Delta_{35K} \approx 1.32$ mm/s) underlying distorted local surrounding of the unique Fe³⁺ sites. The self-consistent calculations of the lattice contribution to the electric field gradient (EFG) at ⁵⁷Fe nuclei have show a significant dipole contribution to the EFG with the oxygen polarizability of $\alpha_0 \approx 0.4$ Å³. In the temperature range $T < T_N$, Mössbauer spectra are consistent with a modulated helical magnetic order, where iron magnetic moments rotate within the (ab) plane with propagation vector along c axis. All experimental spectra at $T < T_{\rm N}$ were analyzed assuming the modulation of the electric hyperfine interactions and the anisotropy of the magnetic hyperfine field $H_{\rm hf}$ at the ${}^{57}{\rm Fe}$ nuclei when the Fe³⁺ magnetic moment rotates with respect to the principal axis of the EFG tensor. The anisotropic part of hyperfine field have been given in terms of the hyperfine coupling tensor ($A_{xx} > A_{zz} > A_{yy}$) and the dipolar fields (A_{dip}) arising from external iron moments μ_{Fe} . The obtained from the fitting a small bunching parameter ($\xi \approx 0.05$) of the spiral spin structure results from easyaxis anisotropy in the plane of the iron spin rotation. The Bean-Rodbell magnetostriction exchange model was used to describe the temperature evolution of the reduced hyperfine field.

References

1) I. S. Lyubutin et al., JETP Letters, 12, 798 (2014).