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Abstract

Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which

have developed over millions of years of evolution effective survival strategies based on

unique metabolic pathways to produce both biologically active secondary metabolites and

biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demos-

ponges, only representatives of the Verongiida order have been known to synthetize biologi-

cally active substances as well as skeletons made of structural polysaccharide chitin. This

work, to our knowledge, demonstrates for the first time that chitin is an important structural

component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echino-

clathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analy-

sis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay

were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton

of both species. We suggest that, the finding of chitin within these representatives of Poeci-

losclerida order is a promising step in the evaluation of these sponges as novel renewable

sources for both biologically active metabolites and chitin, which are of prospective applica-

tion for pharmacology and biomedicine.
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Introduction

Structural aminopolysaccharide chitin is recognized to occur as the basic component in both

non-mineralized and mineralized skeletal formations of the cell walls of diverse fungi [1–3],

diatoms [4], sponges [5–9], corals [10], annelids [11], molluscs [12,13], and arthropods (see

for review [14]). This ancient biopolymer is typically cross-linked due to the complex linkage

with pigments, lipids, other polysaccharides, peptides and proteins. As universal template in

biomineralization, chitin plays a significant role in formation of calcium- (in molluscs) and sil-

ica-based (in diatoms and glass sponges) biominerals [15]. Interaction between diverse organic

and inorganic molecules listed above and chitin is often the key way to rigidification of broad

variety of skeletal constructs in invertebrates. Mechanical stiffness of skeletons remains to be

crucial for surviving of sponges as sessile and filtering organisms. Chitin plays important role

in rigidification in some sponges in both non-mineralized and mineralized states have been

recently reported in representatives of marine (see for review [16–19]) and fresh water [20,21]

sponges. In some demosponges, chitin has been confirmed as template for formation of biomi-

neralized structures in the form of aragonite-silica-chitin composites [22]. Silica-chitin-based

skeletal structures have been identified in glass sponges [5,23]. Intriguingly, isolation of chitin-

based structures have been never reported in calcarean sponges (class Calcarea), although chi-

tin synthase genes have been already detected in two species [24] (Fig 1). Furthermore, there is

no reports in the literature about the existence of chitin in skeletons of the sponges belonging

to the class Homoscleromorpha.

Pure chitin, which was traditionally extracted at large scale from fungi and crustaceans,

received special attention in the modern industry [25]. The potential of chitin application as

adsorbent [26] and biomaterial for biomedical purposes [27] is well known. Recent novel

information concerning applied potential of chitin can be found in numerous reviews includ-

ing few reports [28–30]. It is to note here that industrially produced chitin can be mostly iso-

lated in the form of powders and flakes. Interestingly, sponges originally produce 3D chitinous

scaffolds, which are fibrous and macroporous due to their functional role in the skeletons of

Fig 1. Current state of the art concerning distribution of chitin in the phylum porifera.

https://doi.org/10.1371/journal.pone.0195803.g001
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these filter-feeding invertebrates. This feature has been observed also in the Cambrian fossil

demosponges including Vauxia gracilenta [31]. Moreover, chitinous skeleton of the demos-

ponges origin resembles the style and form of the source sponges [7]. The nanofibrillar organi-

zation together with unique mechanical and thermal properties of chitinous skeletal scaffolds

is the key to their successful applications in tissue engineering [9,32,33] and modern biomi-

metics [34–39]. However, up-to-date this progress has been based exclusively on chitin isolated

from diverse representatives of only one order of marine demosponges, the Verongiida order.

The idea to propose the use of this feature for systematics of all sponges related to Verongiida

order logically appeared. However, our recent findings of chitin in fresh water demosponges

[20,21] of non-verongiid origin stimulated the monitoring of chitin also in other demosponges

genera, especially in marine species which arose prior to fresh water sponges.

Consequently, two years ago we started intensive monitoring of diverse non-verongiid

marine demosponges with the aim to find, purify and characterize and identify chitin from dif-

ferent orders order of marine Demospongiae. Especially, we have taken advantage of the

worldwide distribution of the sponges of the order Poecilosclerida which includes four subor-

ders and 25 families. This order is recognized as the largest and most diverse among Demos-

pongiae orders [40] with species occurring in all oceans from shallow water habitats to deep

seas.

Preliminary investigations with respect to chitin identification in 60 diverse demosponges

recently collected in the Red Sea showed that such representatives of Poecilosclerida as Acar-
nus woffgangi and Echinoclathria gibbosa (Fig 2) should contain chitin within their skeletons

due to their characteristic insolubility in 2.5 M NaOH solution.

Fig 2. Specimens of A. wolffgangi (a) and E. gibbosa (c) in their natural environments. Washed with deionized water of

the freeze-dried skeletons of A. wolffgangi (b) and E. gibbosa (d) which have been used for chitin isolation in this study.

https://doi.org/10.1371/journal.pone.0195803.g002
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Members of the genus Acarnus (Gray, 1867) (Porifera: Poecilosclerida) belong to the family

Acarnidae (Dandy, 1922) with 26 representative species [41–45]. Acarnus wolfgangii was

described for the first time by Conrad Keller in 1889 [46] as a sponge having rigid fiber-based

skeleton which show network-like architecture and rich on spongin. The diameter of skeletal

fibers was measured as about 0.05 mm and the air dried sponge was stone hard [46].

Echinoclathria (Carter, 1885) is a genus of demosponges belonging to the family Microcioni-

dae (Carter, 1885). This family includes two subfamilies, Clathriinae and Ophlitaspongiinae,

with nine valid genera and 524 valid species living worldwide in shallow waters with a few rec-

ords from deeper seas [47]. Unfortunately, with exception of one report on the identification of

secondary metabolites from E. gibbosa [48] no additional reports are available on this species.

Here, we represent the first study on isolation of chitin from the skeleton of A. wolffgangi
and E. gibbosa demosponges according to the step-by-step approach (Fig 3) and identification

of this structural aminopolysaccharide using corresponding bioanalytical methods in compar-

ative modus.

Materials and methods

Biological materials, sample collection and preparation

Acarnus wolffgangi Keller (Demospongiae, Poecilosclerida, Acarnidae). The sponges was col-

lected by SCUBA diving in July 2017 from the eastern side of the Small Giftun Island (N 27˚

11012.900 E 33˚59003.100) in the Egyptian Red Sea at a depth of 28 m. The sponge is yellowish in

color and forms a massive crust with clathrate surface. The skeleton is formed by a reticulation

of skeletal fibers, cored by thick smooth styles and echinated by smooth cladotylotes. The fiber

diameter measuring between 50 and 100 μm. At the surface, there are tangentially scattered

tylotes. The spicules include: ectosomal tylotes with microspined tyles measuring 215–255 x

2–3 μm, smooth and curved choanosomal styles measuring 300–330 x 15–20 μm and the cla-

dotylotes existing in two distinct shapes and sizes, both with smooth rounded tyles at one end,

the larger with three strong hooks at the opposite ends with overall dimensions of 220–290 x

10 μm, and the smaller with four hooks, smooth or occasionally with spined shaft with overall

dimensions 90–125 x 3–6 μm. The toxas exist in three distinct categories, including toxas I

with oxhorn shape measuring 90–115 x 3–5 μm, toxas II, which is thin with shallow curve

measuring 55–65 x 1 μm, and oxea-like toxas III which is barely curved measuring 500–620 x

3 μm; palmate isochelae, 15–20 μm. We were able to study the type material of Acarnus wolff-
gangi, kept in the collections of the Museum für Naturkunde Berlin, ZMB 1498 and 2922. The

Red Sea specimen conforms closely in shape, skeleton and spicules, with this type. The Red Sea

voucher was kept in the Naturalis sponge collection under registration number ZMA Por.

16636 measuring 10 x 5 by 1 cm in size. Another voucher was kept at the Red Sea Invertebrates

Collection at the Department of Pharmacognosy of Suez Canal University under the code

number RS-23.

Echinoclathria gibbosa (Keller, 1889). The sponge was collected in July 2017 from Hurghada

(N 27˚1700.5300 E 46˚2200.800) in the Egyptian Red Sea at a depth of 30 m. The live sponge is

blood-red in colour and forms a mass of long branches, which anastomose infrequently. The

length of the branches in the voucher sample measuring up to 20 cm with varied thickness due

to the irregular outline of the branches from 1 to 2 cm. The surface is pitted and clathrate. The

skeleton displayed square- to round-meshed reticulation of skeletal fibers, cored by 1–5 spic-

ules in cross section. The meshes measure 150–300 mm, while connecting fibers measure 10–

25 mm in diameter, respectively. The surface skeleton showed a tangential arrangement of

loose styles. The spicules are of choanosomal styles and ectosomal subtylostyles, existing in

two or three diffeent sizes, but these are not clearly differentiated and measuring about 125–
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360 x 1–4 mm. The microseleres are very thin, shallow-curved toxas and measuring up to 20

mm in length. The specimen was compared with a slide of the Berlin Museum type and found

to conform closely to it. The voucher is registered in the collections of the Netherlands Centre

of Biodiversity Naturalis under number ZMA Por. 19793. Another voucher was kept at the

Red Sea Invertebrates Collection at the Department of Pharmacognosy of Suez Canal Univer-

sity under the code no. RS-46.

Isolation of chitin skeleton from A. wolffgangi and E. gibbosa
The isolation of chitin-based skeletons from A. wolffgangi and E. gibbosa were carried out as

previously reported [17–20,49]. The protocol consists of four steps (Fig 3): firstly, the sponge

skeletons were placed, separately, in deionized water at room temperature for 1 h in order to

remove possible water-soluble sediment particles and salts. Then, the samples were treated

with 20% acetic acid at room temperature for 12 h in order to remove residual carbonate-

Fig 3. Step-by-step scheme showing procedure for isolation of chitinous fibers from the skeletons of A. wolffgangi (left line) and E. gibbosa (right line).

https://doi.org/10.1371/journal.pone.0195803.g003
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based debris (microfragments of mollusc shells and crustacean carapaces) from the skeleton of

A.wolffgangi and E. gibbosa. Afterwards, the samples were washed several times with deionized

water until achieving a pH of 6.5 followed by treatment with 2.5 M NaOH at 37˚C for 72 h to

remove pigments and proteins. The siliceous spicules were observed in the samples after 72 h

of alkali treatment, thus thorough desilicification was needed. Consequently, after alkali treat-

ment, samples were accurately rinsed with deionized water and placed in a plastic vessel con-

taining appropriate amount of 2% hydrofluoric acid (HF) solution. The vessel was covered in

order to prevent the evaporation of HF. Desilicification was conducted at room temperature

for 12 h. The effect of alkaline and strong acidic treatments on the structure of skeletons of

both demosponges was investigated using optical and fluorescence microscopy (Keyence BZ-

8000). Finally, the isolated materials were washed several times with deionized water up to pH

of 6.5. The fibrous scaffolds were put into the 250 mL large GLS 80 Duran glass bottles con-

taining deionized water and stored at 4˚C for further analyses.

Light and fluorescent microscopy imaging

Collected sponge samples and isolated chitinous scaffolds from A. wolffgangi and E. gibbosa
have been observed using BZ-9000 microscope (Keyence) in white light as well as in fluores-

cence modes.

Calcofluor White (CFW) test

In order to evaluate the localization of chitin in the demineralized skeleton of A. wolffgangi
and E. gibbosa, Calcofluor White (Fluorescent Brightener M2R, Sigma) was used as a fluores-

cent dye for staining of β-(1!3) and β-(1!4) linked polysaccharides [31,49–52]. After bind-

ing to polysaccharides containing β-glycosidic bond, such as chitin, this flourochrome emits a

bright blue light under UV excitation even using very short light exposure time (up to 1/1000

s) Selected fragments of demineralized skeletons of A. wolffgangi and E. gibbosa were placed in

0.1 M KOH-glycerine-water solution and few drops of 0.1% solutions of CFW were added and

the mixture was placed in darkness for 60 min. Afterwards, the stained skeletons were rinsed 5

times with deionized water and dried at room temperature followed by investigation of the

scaffolds under fluorescence microscopy.

Scanning electron microscopy

The surface morphology and microstructure of isolated chitinous scaffolds as well as untreated

samples of both sponges were investigated on the basis of SEM images using ESEM XL 30 Phil-

ips scanning electron microscope. Before analysis, samples were covered with a carbon layer

for 1 min using Edwards S150B sputter coater.

Raman spectroscopy

Raman spectroscopy was performed using a Raman spectrometer (RamanRxn1™, Kaiser Opti-

cal Systems Inc., Ann Arbor, USA) coupled to a light microscope (DM2500 P, Leica Microsys-

tems GmbH, Wetzlar, Germany). For more details, see [17].

The samples displayed intense fluorescence, which made the acquisition of a high quality

Raman spectrum impossible. Therefore, the samples were bleached in 10% solution of hydro-

gen peroxide for 3 h. After three washing steps in distilled water, the samples were dried at

room temperature. The Raman spectra were then acquired using an accumulation time of 3 s

and summing up 50 accumulations. A baseline correction was finally applied in Matlab to

remove the residual fluorescence signal from the spectra and display the Raman scattering.

Chitin in skeletons of non-verongiid marine demosponges
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Fourier-transformation infrared spectroscopy

FTIR spectroscopy is a powerful tool for the structural analysis of polysaccharides. This

method is sensitive to the position and anomeric configuration of glycosidic linkages in glu-

cans. It is worth to note that chitin, depending on its origin and function of tissue, occurs

mostly in three main isoforms as α-chitin (fungi, sponges, arthropods), β-chitin (diatoms, mol-

luscs) and rarely as γ-chitin (cocoons of some insects) [14,16]. This vibrational spectroscopy is

also sensitive to the geometry of molecules, system of intramolecular and intermolecular inter-

actions. Transmission spectra of chitinous scaffolds were made using a Nicolet 210c FTIR

Spectrometer using ATR accessory. The investigation was performed over a wavenumber

range of 4000–400 cm-1 (at a resolution of 0.5 cm-1). The standard α-chitin was purchased

from INTIB GmbH, Freiberg, Germany.

Chitinase digestion test

In order to carry out chitinase digestion test, the Yatalase1 enzyme from culture supernatants

of Corynebacterium sp. OZ-21 (Cosmo Bio, Japan) was used. One unit of this enzyme released

1 μmol of N-acetyl-D-glucosamine from 0.5% chitin solution and 1 μmol of p-nitrophenol

from p-nitrophenyl-N-acetyl-β-D-glucosaminide solution in 1 min at 37˚C and pH 6.0. The

completely demineralized fibers of A. wolffgangi and E. gibbosa were incubated in enzyme

solution containing 10 mg Yatalase dissolved in 1 mL of citrate phosphate buffer at pH 5.0 for

2 h. The effectiveness of enzymatic digestion was monitored using optical microscopy

(Keyence).

Estimation of N-acetyl-D-glucosamine (NAG) contents (Electrospray

ionization mass spectrometry ESI-MS)

The Morgan–Elson assay was used in order to estimate the N-acetyl-D-glucosamine content

released after chitinase treatment, as previously reported [17,20].

Preparation of the samples for ESI-MS: the demineralized organic scaffolds of A. wolffgangi
and E. gibbosa were hydrolysed in 6 M HCl for 24 h at 50 oC. After hydrolysis samples were fil-

trated with 0.4 μm filter and freeze-dried to remove the excess of HCl. The dried samples were

dissolved in deionized water for analysis. All ESI-MS measurements were performed on

Waters TQ Detector ACQUITYuplc mass spectrometer (Waters, USA) equipped with

ACQUITYuplc pump (Waters, USA) and BEHC18 1.7 μm, 2.1 × 50 mm UPLC column. Nitro-

gen was used as nebulizing and desolvation gas. Graphs were generated using Origin 8.5 for

PC.

Results

Fig 4 clearly indicates that the applied chemical treatment procedures (detailed presented in

Fig 3) lead to purification of the fibrous scaffolds with well-organized anastomosing morphol-

ogy from the skeletons of A. wolffgangi and E. gibbosa, respectively. The images presented in

Fig 3A and 3D show that the overall shape and morphology of the extracted 3D scaffolds

closely resemble the styles and forms of the investigated sponges (Fig 2B and 2D). This means

that, the isolation procedure does not lead to a breakdown of the–sometimes very fragile–

demosponge structures, even after HF-based removal of the skeleton supporting spicules.

SEM microphotographs of the skeletal fibers of A. wolffgangi and E. gibbosa prior to any

treatment confirmed the complex character of their skeletons where, various forms of inor-

ganic (spicules) as well as organic (fibres) structures are well visible. Fig 5B and 5E) show that

glassy spicules were still present within skeletal scaffolds isolated from both sponges after
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NaOH and acetic acid treatment. Only HF-based treatment leads to dissolution of the spicules

and purification of silica-free microfibers (Fig 5C and 5F).

The Calcofluor white staining (CFW) [50] was the first step for the preliminary identifica-

tion of chitin within isolated and demineralized skeletal samples. Fluorescence microscopy

analysis of the scaffolds isolated from A.wolffgangi and E. gibbosa after CFW staining displayed

very strong fluorescence even under light exposure time as short as 1/4800 s (Fig 6B and 6D).

Corresponding results were previously reported for chitin isolated from marine [7,17,18] and

freshwater sponges [20] as well as in chitin-containing fossilized remnants [31,51].

To confirm the presence of chitin in the isolated scaffolds (Fig 4A and 4D), more sensitive

analytical techniques were applied. FTIR spectra acquired for the fibrous scaffolds obtained

from A. wolffgangi and E. gibbosa, as well for α-chitin standard are presented in Fig 7. The

region of the amidic moiety, between 1700 and 1500 cm−1, yields different signatures for chitin

polymorphs. In this region, the spectra of the samples studied by us showed strong adsorption

Fig 4. Spicule-free, colorless 3D scaffold obtained from A. wolffgangii (a) and E. gibbosa (d) according to the isolation

procedure represented in Fig 3. Microstructural features of selected skeletal fibers of A. wolffgangii (marked with

arrows) (b) and E. gibbosa (e) prior and after HF-treatment (c and f, respectively) are well visible on the corresponding

light microscopy images.

https://doi.org/10.1371/journal.pone.0195803.g004
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band associated with the stretching vibrations of C = O group characteristic of the amide band

I. The amide band I showed twin peak at 1659 cm-1 and 1626 cm-1 for A. wolffgangi; 1659 cm-1

and 1626 cm-1 for E. gibbosa, as a result of the intermolecular C = O� � �H-N and the intramo-

lecular hydrogen bonds C = O� � �HO-CH2 which is characteristic for α-chitin polymorph

[53,54]. Additional feature, the characteristic intense band at 950 cm−1 assigned to γCHx was

observed in α-chitin standard as well as in the purified sponges chitin samples. Moreover, the

α-chitin indicative band assigned to a ß-glycosidic bond is observed at a νmax 897 cm−1 in the

FTIR spectra of the scaffolds isolated from A. wolffgangii and E. gibbosa (Fig 7). Detailed analy-

sis of the bands indicates that acquired spectra of both isolated chitinous scaffolds are very sim-

ilar to those of the α-chitin standard.

The results of Raman spectroscopy examinations showed that spectra of A. wolffgangi and

E. gibbosa are very comparable with the spectrum obtained for α-chitin reference (see Fig 8).

Fig 5. SEM imagery of the purified A. wolffgani (a) and E. gibbosa (d) skeleton’s fragments prior (b and e, respectively) and after

demineralization procedure (c and f, respectively). Well visible spicules are marked with arrows.

https://doi.org/10.1371/journal.pone.0195803.g005
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For analytical investigations of the isolated scaffolds, prior and after HF-treatment, Raman

spectroscopy was used. Consequently, for example, the Raman spectra of chitinous scaffold

isolated from A. wolffgangi and E. gibbosa prior to demineralization display intense bands of

biosilica at 443, 480, 599, 640, 805 cm-1. The bands of the organic matrices are visible in the

Fig 6. Purified skeletal fibers of A. wolffgangi (a) and E. gibbiosa (c) after CFW staining observed in light microscopy (a, c)

and fluorescence microscopy (b and d) modus, respectively.

https://doi.org/10.1371/journal.pone.0195803.g006

Fig 7. FT-IR spectra of chitin isolated from A. wolffgangi and E. gibbosa demosponges in comparison with the of

α-chitin standard.

https://doi.org/10.1371/journal.pone.0195803.g007
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ranges� 900–1800 cm-1 and 2700–3000 cm-1. These bands are comparable with those

reported for α-chitin standard. Similar observations have been reported for chitin of demos-

ponge origin previously [5–9,18,49].

Chitinases possess the ability to degrade chitin directly to low molecular weight chitin olig-

omers including N-acetylglucosamine (GlcNAc). Consequently, such enzymatic treatment

resulted in the loss of chitin integrity and in release of residual chitin microfibers of steadily

decreasing size. The activity of chitinase is clearly visible using an optical microscope (Fig 9).

Chitinase digestion test which have been previously utilized in the studies for the chitin detec-

tion in other sponges [5–9,17,49,55], definitely confirmed the chitinous nature of demineral-

ized scaffolds isolated from both A. wolffgangi and E. gibbosa.

The Morgan–Elson assay has been previously described in details [6,20] and was used as

the most accurate methods to estimate the GlcNAc released after chitinase treatment. Determi-

nation of GlcNAc in chitin-based scaffolds of A. wolffgangi and E. gibbosa showed, 750 ±
1.5 μg and 730 ± 1.5 μg N-acetyl-glucosamine per mg of chitinous scaffolds of these sponges,

respectively. These results are similar to those reported for chitin isolated from the demos-

ponge Spongilla lacustris [20].

Fig 8. Raman spectroscopy of the chitinous scaffolds isolated from A. wolffgangi and E. gibbosa demosponges in

comparison with α-chitin standard.

https://doi.org/10.1371/journal.pone.0195803.g008
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ESI-MS of D-glucosamine (GlcN) standard showed four main peaks at m/z = 162.08,

180.09, 202.07 and 381.15 (Fig 10). The ion peak with m/z = 180.09 corresponds to the molecu-

lar ions [M+H]+ of a species with a molecular weight 179.09 corresponding to GlcN (calcu-

lated: 179.1). The ion peak at m/z = 162.08 corresponds to a fragment ion [M−H2O + H]+ after

losing one molecule of H2O from DGlcN (calculated: 162.1). Finally, the ion peak at m/

z = 381.15 corresponds to [2M+Na]+ species which is sodium-bound GlcN non covalent

Fig 9. Visualization of the chitinase digestion test using white light microscopy. Chitinase digestion of purified and

completely demineralized selected skeletal fiber isolated from A. wolffgangi and E. gibbosa prior (a and c, respectively)

and after 3 h of chitinase treatment (b and d, respectively).

https://doi.org/10.1371/journal.pone.0195803.g009

Fig 10. Comparative ESI-MS analyses from the glucosamine standard (a), and of the hydrolysed chitin from the A. wolffgangi
(b) and E. gibbosa (c).

https://doi.org/10.1371/journal.pone.0195803.g010
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dimmer. Similar ion peak for the proton-bound GlcN covalent dimmer was observed at m/z

359.17 [M+H]+ in the spectra.

The major peaks in ESI-MS spectra of the hydrolyzed samples of A. wolffgangi and E. gib-
bosa observed at m/z = 162.08, 180.09, 202.07 and 381.15 are comparable with the peaks of

GlcN (Fig A in S1 File). The ion peak of the sodium-bound GlcN dominated the spectra of

these sponges as expected for marine-derived samples due to strong salt presence [31].

Discussion

Previously, members of the genus Acarnus have been mostly investigated as a source of

pharmacologically active compounds. For example, a group of compounds named acarnidines

were isolated by extraction of the homogenized tissues of the sponge A. erithacus with toluene-

methanol (1:3) and partitioning with 1 M sodium nitrate solution. They possess unique substi-

tuted homospermidine skeleton with diverse fatty acid substituents. The acarnidines showed

antibacterial and antifungal properties and displayed significant antiviral activity against Her-

pes simplex type 1 [56]. Two cyclic peroxide-containing polyketide C22 methyl esters, perox-

yacarnoic acid methyl esters A and B, have been isolated from the Red Sea marine sponge

Acarnus cf. bergquistae [57]. The methanolic extract of this sponge exhibited cytotoxicity

against P-388, A-549, and HT-29 tumor cells with an IC50 of 0.1 μg/ml [58]. Two new cyclic

peroxides have been reported in the organic extract of the sponge A. bicladotylota from India

[59].

Furthermore, sponges of the genus Echinoclathria are recognized as producers of biologi-

cally active compounds. Azaspiracid-2 was isolated from a marine sponge Echinoclathria sp.

collected off Amami-Oshima area in Japan. It exhibited potent cytotoxicity against P388 cells

with an IC50 value of 0.72 ng/mL and caused S phase arrest on the cell cycle [60]. The demos-

ponge E. subhispida gave a new steroid sulfate, echinoclasterol sulfate with experimentally con-

firmed antifungal activity against Mortierella ramannianus, and cytotoxicity against PC-9

human lung cancer cells [61]. Echinoclathrines A-C, a new class of pyridine alkaloids possess-

ing a 4-aryl-2-methylpyridine moiety as a common structural element were isolated from an

Okinawan sponge Echinoclathria sp [62]. The procedure of the isolation of echinoclathrines

have been patented recently [63]. Some of echinoclathrines exhibited weak immunosuppres-

sive activity in a mixed lymphocyte reaction assay. Studies on marine pharmacology potential

of Echinoclathria demosponges habituated in Red Sea started only recently. Investigation of

the Red Sea sponge E. gibbosa resulted in the isolation of three new compounds including β-

sitosterol-3-O-(3Z)-pentacosenoate, 5α-pregna-3β-acetoxy-12β,16β-diol-20-one, and echino-

clathriamide together thymine and uracil [48]. β-Sitosterol-3-O-(3Z)-pentacosenoate showed

weak activity against A549 non-small cell lung cancer (NSCLC), U373 glioblastoma (GBM),

and PC-3 prostate cancer cell lines [48]. New ceramide (icosanamide) was isolated from the

Red Sea sponge Echinoclathria sp. [64]. The in vitro growth inhibitory activity of this ceramide

against different human cancer cell lines was evaluated.

To our best knowledge there are no reports even about attempts to search for chitin in

these species of demosponges. Till now, isolation protocols of diverse secondary metabolites

from representative members of the genera Acarnus and Echinoclathria have followed tradi-

tional organic solvent-based extraction approaches. There are no data on isolation methods

for such metabolites which are based on treatment with alkaline solutions as well as about

structural stability of these biomacromolecules at alkaline pH levels. It is well known that,

since the experimental work done by von Kölliker in 1864 [65] the main skeletal protein of

demosponges-spongin is quickly soluble in alkali solutions [66,67]. This feature is crucial for

extraction and isolation of poriferan chitin in purified form due to its exceptional resistance to
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the treatment with alkali up to concentration of 5% and temperatures not higher than 40˚C for

example, in the case of NaOH [5,6,8,9,20,21,31,34]. Such treatment showed also no electron

microscopically visible changes on the surface of siliceous spicules of the demosponges under

investigation (see Fig 5). Moreover, our observations showed with convincing support the

localization of spicules within chitinous (Figs 3 and 5) and non-spongin based matrix. Similar

results have been reported before in the case of chitinous skeleton of the fresh water demos-

ponge S. lacustris (order Spongillida) [20]. The possible role of poriferan chitin as structural

support for spicule-producing cells as well as in complete process of spiculogenesis in demos-

ponges is still unknown.

Complete desilicification of the spicules can be achieved using HF-based treatment. This

study together with previously reported data [7,18,19,20,21] showed that chitin remains to be

well preserved even after such treatment. However, logical question about the possible pres-

ence of diverse secondary metabolites with alkaline, or HF-based extracts remain to be open.

In contrast, the experiments with bromotyrosine- and chitin-producing demosponges repre-

senting the order Verongiida showed that bromotyrosines and chitin-based scaffolds could be

isolated from the sponge skeletons using a stepwise extraction procedure mainly based on the

use of NaOH [6]. Recently, a patented method for isolation of both bromotyrosines and chitin-

ous skeletal frameworks from selected sponges, without disruption of the skeletons in the mor-

tar has been reported [68]. Here, we propose a schematic view of the principal steps which can

be now applied for isolation of secondary metabolites and chitin from the sponges of the order

Poecilosclerida (Fig 11).

There are no doubts about the necessity for the development of novel, more effective tech-

nologies for extraction of biologically active compounds together with chitinous scaffolds

from sponges of the genera Acarnus and Echinoclathria. Especially those species which could

be adapted for cultivation under marine farming conditions will possess high potential in this

case.

We suggest that the discovery of chitin within other representatives of Poecilosclerida order

would be the next step in the evaluation of the possibility to accept these worldwide distributed

Fig 11. Schematic view of the possible uses of Poecilosclerida sponges including A. wolffgangi and E. gibbosa
species.

https://doi.org/10.1371/journal.pone.0195803.g011

Chitin in skeletons of non-verongiid marine demosponges

PLOS ONE | https://doi.org/10.1371/journal.pone.0195803 May 15, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0195803.g011
https://doi.org/10.1371/journal.pone.0195803


demosponges as novel renewable source for both chitin and biologically active metabolites

which are perspective for biomedicine and marine pharmacology, respectively.

Conclusions

Chitin-producing marine demosponges are highly perspective invertebrates due to their ability

to synthetize broad variety of secondary metabolites with antiviral, antibiotic, antidiabetic,

cytotoxic and antitumor activities as well as chitin. Here, we showed for the first time that chi-

tin is present as a structural component in skeletons of the Red Sea sponges Accarnus wolff-
gangi and Echinoclathria gibbosa demosponges. The question of chitin synthesis among

representatives of the genera Acarnus and Echinoclathria should gain importance as a result of

our findings. Consequently, the evolution, localization and functions of chitin in these demos-

ponges as well as in other representatives of Poeciloscrerida order should be examined in the

future. Additionally, separate studies should be carried out on the identification of chitin

synthase genes within genomes of diverse representatives of the genera Acarnus and Echinocla-
thria as well. Also, additional investigations are necessary to obtain a better understanding of

the nature and origin of spicules-containing skeletons of these demosponges with respect to

the spongin-chitin relationship. It is still unclear how much spongin is present in the chitin-

based skeletons of the sponges studied. Novel approaches must be proposed which will bring

together molecular biology and modern bioanalytical methods for a better understanding of

the poriferan chitins synthesis in diverse taxa on molecular level. The best way to solve this

challenging task is to bring together coherent and synergetic collaborators and experts in

marine biology, marine chemistry, marine pharmacology, marine biotechnology and biomate-

rials together with spongologists using their multidisciplinary knowledge and experiences to

answer raised questions and develop new approaches in this interesting area of research.
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