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1 Introduction

This Report describes results of studies during the period of July,03-June,04

on development of an ECLIPSE-compatible version of compositional simu-

lator based on alternative description of phase equilibria in multicomponent

systems. It is a direct continuation of the Project “AltSim” (2001-2002)

(see Reports [1], [2], [3]). The main idea of the alternative approach is to

make use of specific geometry of two-phase domain of the compositional

space of multicomponent systems, namely the fact that all compositions

along a straight tie-line in compositional space break into gaseous and liq-

uid phases of the same compositions, and only relative amounts of the

phases vary along each tie-line. Therefore, a vector-parameter of tie-lines

γ and a scalar ‘leading component concentration’ C appear to be natural

variables for description of composition and phase equilibria. Hence the

description of phase equilibria in terms of these variables looks promising

both in the sense of better understanding underlying physics and compu-

tationally. This basic idea has been conceptually confirmed by previous

research described in Reports [1], [2], [3], (see also [4] – [13]).

Present study is concentrated primarily on computational aspects of the

approach. Its main objective is to develop an “alternative compositional

block” which could be incorporated into existing ECLIPSE simulator with

minimum modifications of the existing structure in the hope that possible

advantages of the alternative approach combined with well-established ef-

ficiency of the main body of the ECLIPSE package may lead to improved

performance of compositional simulator. This ‘limited modifications’ ap-

proach emerged after several discussions at Abingdon and Moscow, and is

adopted as the main strategy of further research. While somewhat limiting

potential improvements, it allows to switch to the new procedures without
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significant modification of the entire simulator structure.

In this respect, this study differs significantly from the previous work in

which the main objective was to prove viability of the alternative approach

and to develop the respective package architecture.

2 Formulation of the Problem in the Nc Component Case

2.1 Governing Equations

Let us consider a multicomponent system of Nc components that may form

a single- phase or two-phase mixture. The mixture state is considered to be

completely specified by the pressure P , temperature T and by the compo-

sition vector C = [C1,C2, C3, ..., CNc
], where Ck is the molar concentration

of the k-th component, which is by definition is the ratio of the number of

moles of the i-th component in the mixture to the overall number of moles

per unit volume Ck = bk/b, where b and bk denote respectively overall and

partial molar densities.

The system of governing equations can be written in the standard way

in the form of component conservation laws:

∂mb

∂t
+ div

(
Ulbl + Ugbg

)
+ Q = 0

∂mbCk

∂t
+ div

(
UlblC l

k + UgbgCg
k

)
+ qk = 0, k = 1, ..., Nc − 1 (1)

where m is the reservoir porosity, Cp
k is the molar concentration of the

k-th component for the phase p = l, g, bp is the molar density of the phase

p, qk is the inlux/outflux rate density (contribution of wells) for the k-th

component, specified below, and Q = Σqk.

Phase velocities Up are found from the Darcy law

Ul = −K(x, y)
kl(S)

µl (C)
gradP, Ug = −K(x, y)

kg(S)

µg (C)
gradP (2)
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where K is the absolute permeability, kp is relative permeability of the

phase p, µp is the viscosity of the phase p. Within the two-phase domain,

the overall molar density is found from the expression

b = blS + bg(1− S), S =
L

L + (bl/bg)(1− L)
, L =

C1 − Cg
1

C l
1 − Cg

1
. (3)

where L is the molar fraction of the liquid phase, S is the saturation, or

volume fraction of the liquid phase. To make the system complete, one has

to specify the values of bl, bg,C l
k,C

g
k and µl, µg as functions of C and P .

Let us suppose at the moment that these functions are known:

bp = bp (C, P ) , Cp
k = Cp

k (C, P ) , µp = µp (C, P ) . (4)

Then the system (1)– (4) can be solved by making use of well-known nu-

merical schemes.

An in-house solver has been developed to be able to check independently

effects of separate blocks of the code package. Before describing the algo-

rithm and results, we discuss treatment of wells (sources and sinks), and

normalization used below.

2.2 Inflow and Outflow Conditions

In the present study, the following approximation for the the component

molar flow rates in vicinity of injecting and producing wells is adopted:

Let Qin and Qout be the overall inflow and outflow molar rates.

For calculations in the present study we use the formulae:

Qin = Twδf

(
kl

µl
+

kg

µg

) (
slbl + sgbg

)
(Pin − P ) (5)

Qou = Twδf

(
kl

µl
bl +

kg

µg
bg

)
(Pout − P ) (6)
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where

Tw = K
β

ln r0

rw
+ σ

, (7)

β is the angle segment connecting the grid cell with the well (for well at

the center of grid block β = 2π, for a well on a boundary β = π, and into

a corner β = π/2), r0 is the pressure equivalent radius of the cell, rw is a

well radius, σ is the skin factor.

Corresponding molar outflow rate qk in the two phase domain is

qk = Twδf

(
klbl

µl
C l

k +
kgbg

µg
Cg

k

)
(Pout − P ) . (8)

However, in the injection (inflow) case we just keep the injection-cell

composition equal to the one specified in the well.

2.3 Normalization

Below, we denote L0, µ0, k0, P0, b0, V0 = k0P0/L0µ0, and t0 = L0/V0

some characteristic values of the length, viscosity, permeability, pressure

differential, molar density, fluid velocity and time.

Then after transformation to respective non-dimensional variables the

equations will have the same form as before.

The following typical values of the scales are assumed below:

L0 = 2000m = 2 · 103m,

µ0 = 0.03 · 10−2P = 3 · 10−5Pa · s,
k0 = 100 ·mD == 10−13m2,

P0 = 30atm = 3 · 106Pa,

b0 = 6.25 kgmol ·m−3;

V0 = 5 · 10−6 m
s ;

t0 = 4 · 108s = 4629.6days.
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3 Numerical Model

3.1 General Structure of Numerical Algorithm

Let us rewrite the system of governing equations in the form

−div

(
K

[
kl

µl
bl +

kg

µg
bg

]
gradP

)
= −Q(P, C)−∆b; (9)

mb
∂Ck

∂t
− div

(
K

[
kl

µl
blC l

k +
kg

µg
bgCg

k

]
gradP

)
= −qk(P, C)−Ck∆b, (10)

where ∆b = ∂mb/∂t. Let us assume that at the moment t = tn the values

of ∆b, of the mixture pressure P , composition vector C and functions (3)

and (4) are known.

Then to determine the values of the variables at the next time step,

t = tn+1, we arrange the iterative procedure as follows (below, for the

sake of simplicity, we write the discretization of Eqs.(9) and (10) for one-

dimensional case only):

P q
i − P n

i

ατ
− K̃r

i+1/2
P q

i+1 − P q
i

h2
x

+ K̃r
i−1/2

P q
i − P q

i−1

h2
x

= Q̃r
i (11)

(mb)q
i

Cq
k,i − Cn

k,i

τ
− K̂r

i+1/2
P q

i+1 − P q
i

h2
x

+ K̂r
i−1/2

P q
i − P q

i−1

h2
x

= Q̂r
i (12)

K̃ = K

[
kl

µl
bl +

kg

µg
bg

]
, Q̃ = −Q−∆b (13)

K̂ = K

[
kl

µl
blC l

k +
kg

µg
bgCg

k

]
, Q̂ = −qk − Ck∆b. (14)

Here, α is an artificial compressibility relaxation parameter.

At the first iteration, we put r = n and from Eq.(11) obtain P q which

then is used in Eq. (12) to obtain Cq
k. The values P q and Cq are used then

to determine functions (bp)q, (Cp
k)

q, (µp)q in accordance with equations of

state Eq.(4). These values, in turn, are used to determine the quantities

at the next iteration (with the superscript r), which is set hereafter to
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r = (n+ q)/2. The iterations at each time step are continued until |(∆bq−
∆bq−1)/∆bq−1| ≥ ε.

The question is how to calculate functions with the semi-integer sub-

script i + 1/2, i.e. defined on the intergrid boundaries. We need to know

there phase densities, relative permeabilities and phase viscosities which

all are functions of composition determined at the center of the cell. In the

present study, we use the simplest upwind specification for all the listed

functions: fi+1/2 = fi if Pi+1 − Pi < 0, and fi+1/2 = fi+1 otherwise.

3.2 ECLIPSE’s EOS Solver flashs

The pivotal point of the described above iterative procedure is the assumed

possibility to specify the thermodynamic state of the phases (4) by the

given values of the mixture pressure P and the composition vector C.

The possibility is realized in the subroutine flashs from the ECLIPSE

package for compositional simulation of a range of petroleum reservoir

engineering problems. The subroutine, which in fact summarizes different

approximations of the equation of state tables by several chosen well known

cubic polynomials, is considered in the present study as a ‘black box’ which

returns the compositions of the phases Cp
k and their molar densities bp as

output data, the input data being the pressure P and overall composition

C.

Coupled with another ECLIPSE’s subroutine, flbsc1, which outputs the

phases viscosities µp, the package provides the assumed possibility.

3.3 Numerical Results: 1D In-House Code with flashs

Our first step is to incorporate this ECLIPSE subroutines into described

above solver. The objective is very simple: in this way, we are getting
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Figure 1: The results of the calculations for four-component C1-CO2-C4-C10 mixture. The reservoir has

initial pressure P = 120 atm, and temperature T = 72oC. Initial concentrations of the components in

the order listed are: 0.23, 0.01, 0.3 and 0.46. The injection well parameters are Pin = 130 atm, 0.2, 0.78,

0.01 and 0.01. The producing well pressure is Pout = 100 atm. Black lines show the solution obtained

with Eclipse package at the moment t = 600 days. Red lines show the solution obtained at t = 1600 days

with the numerical code developed in the present study where the state of the phases is determined with

the help of ECLIPSE subroutines flashs and flbsc1.
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a transparent experimental solver with separated pressure updating and

composition updating algorithms.

Figure 1 presents the results of the simulations performed in the way

described above in comparison with the results of the ECLIPSE package

simulations.

Evidently, there is almost perfect coincidence between the solutions for

concentration distributions generated by both codes.

As of to-day, there is a difference in pressure distributions and respective

time scale between these two solutions. The reason is probably in the spec-

ification of input well parameters which we were unable to clearly identify

at the moment in the Eclipse 2004A environments. In spite of this discrep-

ancy, the results presented at Fig. 1 confirm validity of the developed code

for further numerical experiments with an alternative procedure for phase

state representation that constitutes a primary objective of our study.

4 Alternative Description of Phase Equilibrium

4.1 Alternative Variables (C1,γ)

In the described above procedure, we have to calculate phase equilibrium

at any spatial point and at any time step in order to obtain the values of

C l
i ,C

g
i ,b

l, bg, and µl, µg. According to fundamental properties of the two-

phase state of multicomponent systems, all these quantities are functions of

a (Nc− 2)-dimensional vector-parameter γ of tie-lines and pressure P (see

Reports [1], [2], [3]). Thus, a simple approximation of phase equilibria in

terms of tie-line parameter γ and the leading component concentration C

plays a pivotal role in our approach. The approximation used is essentially

semi-empiric and is based on several observations of ‘typical’ behavior of

real phase diagrams. This Report revisits this topic and summarizes both
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Figure 2: The phase diagram for the C1 −N2 − C12 mixture at T=247oC and P = 170 atm.

the approach used and some new developments.

Let us illustrate the way we introduce the tie-line vector in the case of a

ternary mixture. Figure 2 shows the phase diagram for the C1 −N2 −C12

mixture at T=247oC and P = 170 atm.

It is well known that each composition vector of a Nc component mixture

can be represented by a point within the Nc− 1 dimensional regular poly-

hedron of unit height; it is a triangle in the case under consideration. The

interior of the triangle is divided into single-phase and two-phase domains.

Those are separated with Nc− 2 dimensional binodal surface, which is the

locus of bubble points and dew points.

Thermodynamics implies that there is one-to-one correspondence be-

tween the sets of bubble points and dew points. This correspondence is

specified by the requirement that compositions corresponding to two re-
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spective points are in thermodynamic equilibrium. Let C l and Cg be two

such points. Then, all the compositions along the straight segment

Θ : C = C lL + Cg(1− L), 0 ≤ L ≤ 1 (15)

correspond to two-phase mixture of liquid of composition C l at molar

fraction L and gas of composition Cg at molar fraction (1 − L). The

segment Θ is a tie-line.

Two tie-lines do not intersect within the two-phase domain. This means

that given composition breaks into a unique combination of the liquid and

gaseous phases. Therefore, there exists one-to-one correspondence between

any two of the three sets: the set of bubble points, the set of dew points

and the set of tie lines.

Let us choose now one of components (say, the most light one) as the

leading or principal component and use its concentration as the along-tie-

line coordinate. Let us also consider one of components (say, the heaviest

one) as the dependent one. Then, all other Nc−2 components are referred

to as intermediary ones and are used to introduce the tie-line parameter

vector γ by the relation

γ = {Cm
2 , ..., Cm

Nc−1}, (16)

where the superscript m denotes the midpoint of tie-line.

Note that the suggested way to introduce the alternative coordinates

(C1, γ) is not the only one of course. It has been chosen in the cited above

reports since the observations of numerous 3 and 4 component phase dia-

grams suggested that the following two common properties approximately

hold for the diagrams:

• the binodal surfaces has parabola-like (in 2D) or paraboloid-like (in

3D) shape;
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• midpoints of tie-lines are located along an almost straight line (a hy-

perplane in the case of multidimensional diagrams).

At the same time, some remarkable properties of the suggested change

of variables has been pointed out in our previous reports, which allow

us to consider the change to be rather promising for the modeling of the

multicomponent two phase flows.

First of all, is has been shown that in some particular cases, namely in

1D self similar flows, the suggested change of variables makes it possible

to split the problem into physico-chemical and fluid dynamical ones.

Besides, as is has been shown there as well, the suggested set of (C1, γ)

variables allows the concise description of phase equilibrium and phase

properties. In the present study we discuss how this property can be used

in numerical modeling of displacement problems.

Finally, it has been supposed, that the observed property of approximate

route invariance in multidimensional displacement problems would allow

to construct efficient numerical codes. In the present study we discuss this

topic as well.

4.2 Approximation of Phase State with Alternative Variables

To find the explicit dependence of phase state functions on new variables, a

number of tie-lines should be generated at first. The scanning procedure is

described in detail in previous Reports. Here we just recall that the basic

idea is to start from the midpoint of the longest tie-line at the edge of phase

diagram, and then proceed layer-by-layer choosing each next computational

point well within the two-phase domain of the compositional space (Fig. 3).

For each tie-line the flash calculations are preformed, which return the

compositions of phases, their molar densities and phases viscosities.
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Figure 3: The schematic scanning procedure of the phase diagram for the quarternary mixture.

In the previous studies, as well as in the present one, simple expressions

for composition of phases as function of γ are used as suggested by the

observed shape of the two-phase domain.

First, the phase concentrations of the intermediary components are ap-

proximated as follows:

C l
k = γk−1P

(k)(γ), Cg
k = 2γk−1 − C l

k, k = 2, ..., Nc − 1 (17)

where P (k) are the second order polynomials of γ:

P (k) (γ) =

IP∑
i=1

P
(k)
i

JP∏
j=1

γ
αji

j , (18)
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α being an Ip × Jp array. For example, if Nc = 4, Ip = 6, Jp = Nc − 2 = 2,

α =


 2 0 1 0 1 0

0 2 0 1 1 0




and

P (k) = P
(k)
1 γ2

1 + P
(k)
2 γ2

2 + P
(k)
3 γ1 + P

(k)
4 γ2 + P

(k)
5 γ1γ2 + P

(k)
6 .

If Nc = 5, Ip = 10, Jp = Nc − 2 = 3,

α =




2 0 0 1 0 0 1 1 0 0

0 2 0 0 1 0 0 1 1 0

0 0 2 0 0 1 1 0 1 0




and

P (k) = P
(k)
1 γ2

1 + P
(k)
2 γ2

2 + P
(k)
3 γ2

3 + P
(k)
4 γ1 + P

(k)
5 γ2 + P

(k)
6 γ3+

+P
(k)
7 γ1γ3 + P

(k)
8 γ1γ2 + P

(k)
9 γ2γ3 + P

(k)
10 .

Approximation of the principal component concentration along the bound-

ary of the two phase domain is introduced in two steps. Firstly, we intro-

duce quadratic approximation of concentration along the median surface:

Cm
1 =

1

2
(C l

1 + Cg
1 ) = P (m)(γ). (19)

Next, we approximate the square of differential of phase concentrations as

follows:

(C l
1 − Cg

1 )
2 = [P (m)(γ)]2P (d)(γ), (20)

thus, the final expressions have the form:

C l
1 =

1

2
P (m)

[
2−

√
P (d)

]
, Cg

1 =
1

2
P (m)

[
2 +

√
P (d)

]
, (21)

where P (m)(γ) and P (d)(γ) have the form (18) and the sign at square root

is chosen in such way that the difference between the compositions of the

leading component in the gas and liquid phases remains positive.
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Finally, for phase densities and viscosities the simplest quadratic ap-

proximations were adopted:

bp = P (b)(γ), µp = P (µ)(γ). (22)

All polynomials have the same form and differ only by their coefficients

which were evaluated using the least mean square procedure. The described

above quasi-quadratic approximate procedure has been tested against avail-

able data for a number of reservoir system. Some examples of the approxi-

mation are shown in Fig.4. The compositions of phases for the 4-component

mixture, obtained by standard ECLIPSE flash calculations, are shown in

Fig.4 by red points, while the approximate functions are shown in blue.

Yellow points show the parametric domain in the tie-line parameter (γ)

space. One can see, that the quasi–quadratic approximation of phase com-

positions can be considered as good enough everywhere excluding the very

close vicinity of the plait point. At the same time, the simplest quadratic

approximation of phase densities and viscosities is not so good but both

in previous and in the present study we did not care about this too much.

The reason is that we supposed that such rough approximation of these

functions was good enough for the displacement problems, and, secondly

we do not need, in fact, in the approximated values since ECLIPSE package

allows an user to calculate these values explicitly using the special subrou-

tines (dlbce1 and dcdenu for phase viscosity and density respectively), with

pressure, temperature and the pre-calculated values of phase compositions

as input data.

4.3 Fast Transformation to Alternative Variables (FTAV )

In order to complete transformation to new coordinates in composition

space we need a rule how to calculate the alternative variables if the stan-

16
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Figure 4: Approximation of phase compositions, phase densities and viscosities for the C1−CO2−C4−
C10 mixture at T = 72C and P = 120 atm.
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dard ones are known and vice versa, or, in other words, to write out ex-

plicitly the tie-line equation.

Since along the tie-line the two-phase mixture composition depends on of

liquid phase fraction linearly, one can obtain the dependence of the liquid

fraction on the leading component concentrations in the mixture and the

both phases:

L =
C1 − C l

1

Cg
1 − C l

1
. (23)

Simple algebraic manipulations allow then to obtain the relations between

concentrations of the intermediary components, the leading component,

and the corresponding phase compositions as follows:

Ck = Ak(γ, P )C1 + Bk(γ, P ), k = 2, ..., Nc − 1; (24)

Ak =
C l

k − Cg
k

C l
1 − Cg

1
, Bk = Cg

k − AkC
g
1 . (25)

For given phase diagram, with fixed pressure and temperature values, the

phase compositions (as well as the phase densities and viscosities) depend

on the tie-line vector parameter only,

Cp
k = Cp

k (γ) , bp = bp (γ) , µp = µp (γ) , (26)

and, therefore, Eqs. (24) and (25) define a nonlinear relation between the

standard and alternative variables.

In accordance with equations (25), (17) and (21) the explicit dependence

of the coefficients Ak and Bk on γ can be written as follows:

Ak = −2
γk−1

(
P (k) − 1

)

P (m)
√

P (d)
, Bk = γk−1

(
1 + 2

P (k) − 1√
P (d)

)
. (27)

One can see in Fig. 5, that described in the previous subsection approxi-

mative procedure gives the perfect result for the Ak and Bk functions as

well.
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Figure 5: Approximation of Ak and Bk functions for the C1−CO2−C4−C10 mixture at T = 72C and

P = 120 atm.

A key point in the algorithm being developed is to find values of the

alternative variables γ provided that the overall composition C is specified,

or to solve the system of equations (24). It can be written in the form:

f1 = 2γ1

(
P (2) − 1

)
C1 + GC2 − γ1

(
G + 2Pm

(
P (2) − 1

))
= 0;

fi = 2γi

(
P (i+1) − 1

)
C1 + GCi+1 − γi

(
G + 2Pm

(
P (i+1) − 1

))
= 0;

.... (28)

fJp
= 2γJp

(
P

(Jp+1) − 1
)

C1 + GCJp+1 − γJp

(
G + 2Pm

(
P

(Jp+1) − 1
))

= 0;

where G = Pm
√

P d. This procedure has been developed anew, follow-

ing completely different than before, while quite straightforward algorithm

based on the Newton method. First, we evaluate the Jacobian matrix

Jij =
∂fi

∂γj
,
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and then iterate the system starting with an initial value γ0. After simple

calculations we have:

∂fi

∂γi
= 2γi (C1 − Pm)

∂P (i+1)

∂γi
+ (Ci+1 − γi)

∂G

∂γi
+ 2γi

(
1− P (i+1)

) ∂Pm

∂γi
+

+2Pm −G + (2C1 − 2Pm) P (i+1) − 2C1,

and

∂fi

∂γj
= 2γi (C1 − Pm)

∂P (i+1)

∂γj
+ (Ci+1 − γi)

∂G

∂γj
+ 2γi

(
1− P (i+1)

) ∂Pm

∂γj
;

with
∂P

∂γk
=

IP∑
i=1

P
(z)
i

∂

∂γk

JP∏
j=1

γ
αji

j =

IP∑
i=1

P
(z)
i αk,iγ

−1
k

JP∏
j=1

γ
αji

j ,

∂G

∂γk
=

∂Pm
√

P d

∂γk
= Pm∂

√
P d

∂γk
+
√

P d
∂Pm

∂γk
=

Pm

2
√

P d

∂P d

∂γk
+
√

P d
∂Pm

∂γk
.

Now, following the Newton method, we have

f
(
γn+1) = f (γn + ∆γ) = f (γn) + ∆γ· ∂f

∂γ
(γn) = 0

and, therefore,

∆γ = −
[

∂f

∂γ

]−1

· f .
Surprisingly enough, it turned out, that the choice

γ0 = 0 (29)

proved to be the best (at least for Nc ≤ 5) in the sense that the Newton

iterations converge rapidly (3-4 iterations) to attain the relative accuracy

10−8.

As a result, we now have a technique for fast transformation from C to

γ, C variables and back.

It allows us to convert the described above in-house simulator into a

prototype alternative simulator (ALTSIM-2) in which all phase equilibria

are expressed in terms of the alternative state variables γ and C.
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4.4 Numerical Results: 1D In-House Code with FTAV

Let us now return to the first objective of this Project, namely to con-

struction of alternative 1D code for displacement problem. The code will

be based on the developed above γ-approximation of phase equilibrium

and the developed technique which allows to perform fast transformation

from standard C variables to alternative (C1, γ) variables and vice versa.

We recall now, that the first step in this Project was development of 1D

simulator where the thermodynamic state of the phases was specified with

the help of ECLIPSE’s flash subroutines. We have shown by comparison

with the standard ECLIPSE code the validity of the code to solve the

displacement problems.

The drawback of that code, as we believe, is that we have to calculate

phase equilibrium at any space point and at any time step. The exter-

nal approximation of phase equilibria based on (C1, γ) variables makes it

possible now to take the flash procedure outside the computational loop.

To illustrate this idea, let as look again at the general structure of the

numerical algorithm described in Sect. 3.1. As it was suggested there, at

each time step and at each iteration we obtain the values of pressure P q

and concentrations of components Cq by solving the system of governing

equations, which are written in terms of standard C variables.

It is possible then, using the found values P q and Cq, to determine func-

tions (Cp
k)

q, (bp)q, (µp)q in accordance with equations of state (4). Instead

of the standard ECLIPSE’s subrotines flashs and flbsc which were used

for this purpose in Sect. 3.2, we make now the change of variables at each

space point, using the fast transformation technique described above. We

determine all component phase concentrations, phase densities and vis-

cosities as functions of γ using the interpolated beforehand data, where
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Figure 6: The results of the calculation for four-component C1-CO2-C4-C10 mixture. The reservoir has

initial pressure P = 85 atm, the reservoir temperature T = 93o. Initial concentrations of the components

in the order listed are: 0.23, 0.01, 0.3 and 0.46. The injection well parameters are Pin = 90 atm, 0.2,

0.78, 0.01 and 0.01. The producing well pressure is Pout = 60 atm. Black lines represent the solution

obtained with the help of developed 1D in-house code with FTAV procedure at the moment t = 1800

days. Red lines represent the solution obtained at t = 2000 with the numerical code developed in the

present study where the state of the phases is determined with the help of ECLIPSE subroutines flashs

and flbsc1.
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Figure 7: The results of the calculation for the five component C1-CO2-C4-C8-C10 mixture. The reservoir

has initial pressure P = 85 atm, the reservoir temperature T = 93o. Initial concentrations of the

components in the order listed are: 0.23, 0.01, 0.3, 0.4 and 0.06. The injection well parameters are

Pin = 90 atm, 0.2, 0.77, 0.01, 0.01 and 0.01. The producing well pressure is Pout = 60 atm. Black

lines represent the solution obtained with the γ parametrization at the moment t = 1800 days. Red lines

represent the solution obtained at t = 2000 with the numerical code developed in the present study where

the state of the phases is determined with the help of ECLIPSE subroutines flashs and flbsc1.
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the polynomial coefficients P
(k)
i , P

(m)
i , P

(d)
i , P

(b)
i and P

(µ)
i (see Sect. 4) are

stored in the memory and do not change during calculations. It should be

noted here, that the approximation procedure has been performed for a

fixed value of pressure, while it may change during calculations. However,

it has been shown in the previous reports, that in wide enough pressure

range it is possible to consider the coefficients as pressure-independent,

or as linear functions of pressure. Respective modifications of the codes

developed can be introduced straightforwardly.

Thus, at each time step and at each iteration we translate the updated

values of concentrations into updated values of fluid-dynamics related vari-

ables (such as phase compositions, densities viscosities, saturations). With

these values we evaluate new values of pressure and concentrations and

repeat the cycle. In a sense, we now working simultaneously in two sets of

variables. As a result, we make change of variables not once and forever,

as has been suggested in the previous reports, but at each time step and

at each spatial point. This pragmatic approach, while not necessarily be-

ing the best choice, makes it possible to keep intact entire computational

infrastructure of ECLIPSE, and makes transition to new variables much

less painful.

To demonstrate efficiency of the described above numerical procedure,

we run the simulation similar to that, presented in Fig. 1, but for a lit-

tle different pressure and temperature values. The results are shown in

Figs. 6, 7. One can see again the perfect coincidence between the results

of our γ and flashs solvers. A small delay in time is related to non-perfect

approximation of the phase molar densities and viscosities (we checked

this by additional runs where the mentioned variables only were calcu-

lated by flashs solver). What is important in this demonstration, is the
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CPU time needed to attain the same moment of physical time in different

solvers. This feature is about 20 times less for the γ solver when compared

with our flashs solver. Since both solvers differ only in the part related

to the phase state calculation, one may expect that, being inserted into

the Eclipse package, our γ solver will save the similar amount of the CPU

time. We return to this topic in Sect. 6.

5 Route Invariance and its Numerical Implications

5.1 Route Definition

As it has been noted in Sect. 4, another remarkable property of the alterna-

tive variables C1, γ is the experimentally observed property of approximate

route invariance for the problems of oil displacement by gas injection.

This Section is devoted therefore to study of this property, which eventu-

ally is becoming more and more important for two-phase multicomponent

flows. To begin with, we remind some definitions and basic facts.

Consider a flow of a multicomponent system characterized by time de-

pendent composition fields: C(x, t). The same distributions can be equiv-

alently characterized by the fields of alternative variables C1(x, t), γ(x, t).

In particular, if we are using a kind of standard reservoir simulator such

as ECLIPSE, the output directly provides sets of concentrations Cg
k(x, t),

C l
k(x, t) in the grid points. Therefore if we define tie-line vector as above,

then we directly have fields of γi = 0.5(Cg
k+1 + C l

k+1), k = 1, . . . , Nc − 2.

Now we define the route in γ-space as the locus of points γ1, γ2, . . . γNc−2

space for fixed time t. (If our spatial grid consists of Imax points, the route

also consists of Imax points, some of which may coincide.) It characterizes

the set of tie lines ‘active’ at given time. It is convenient to consider the

discrete point set as a representation of a continuous curve. In general, the

25



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

γ
1

γ 2

I
max

=200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

γ
1

γ 2

I
max

=1000 

Figure 8: Route in γ space for different moments of time for the solutions of oil displacement problems

obtained with different grid resolution. The input/output conditions and the reservoir parameters are the

same as in Fig. 1. Black, red, blue, green and magenta lines correspond to the time moments 100, 500,

1000, 2000 and 3000 days respectively. Note that on grid with higher resolution the routes are different

only at the early stage of the flow evolution. The colored symbols in the left panel indicate the position

of the middle point of considered further different three-point quasi-linear approximation of the limiting

time independent route. The other two points in such approximation are not indicated in the Figure

since their choice is obvious.

route evolves in time.

5.2 Route Invariance in 1D and 2D Displacement Flows

An important theoretical result consists in that for similarity solution of

the Riemann problem corresponding to oil displacement by continuous in-

jection of gas mixture at negligible pressure differential the route does not

depend on time, or is invariant. In this case, the route is evidently a con-

tinuous curve. More than that, the route is also invariant in another sense,

namely, it does not depend on flow properties, such as relative perme-

abilities and phase viscosities, and is determined completely by the system

phase behavior and two values of the tie-line parameter corresponding to oil
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Figure 9: Route in γ space for different moments of time for the solutions of 2D oil displacement problems

obtained with different grid resolution (solution on grid 20×20 is presented by red points, on grid 40×40 –

by blue points) vs. 1D time-independent route (green points, Imax = 200). The input/output conditions

and the reservoir parameters are the same as in Fig. 1.

in place and the injected gas mixture. In principle, the route can be found

as solution of an auxiliary Riemann problem stated completely in terms of

properties related to phase equilibrium of a mixture of given components.

In reservoir simulations of oil displacement by injection of gas mixtures

can not be considered strictly as a self similar flow, due to variable pressure

and effects of numerical dispersion. However, it has been experimentally

established that an approximate route invariance holds there as well.

This feature is illustrated in Fig. 8, where the routes are shown for the

displacement problem with inflow/outflow conditions and reservoir param-

eters being the same as in Fig. 1. One can see that the routes corresponding

to different times are spread out in the γ space, but with time they tend

to a single limiting route the faster the higher the grid resolution.

Another important property of the route is the experementally observed

fact, that in 2D displacement problems route at not too large times ap-
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proaches with time to the same time-independent route as in correspondineg

1D flow. Fig. 9 presents the routes in 2D displacement problem obtained

with the help of 2D in-house simulator (see Sect. 3.1) on the 20× 20 grid

(red points), 40×40 grid (blue points) and the 1D time-independent route

(green points, Imax = 200).

5.3 Numerical Code Based on Route Invariance Property (RIP–technique)

The approximate route invariance property makes it possible to develop an

version of the alternative numerical code for solution of 1D oil displacement

problem as follows. The idea is based on the direct application of this

property to reduce modeling of a multicomponent flow to an effectively

two-component one. Suppose that the limiting time independent route

for a Nc component displacement problem is known, and this route is a

segment of a continious curve in Nc− 2 dimensional γ space. The segment

can be parametrized somehow, for example by its length s. Thus, the

values

γ(s) = {γ1(s), . . . , γNc
(s)}

are known at any spatial point and at any moment of time if the value of

s is known there.

The values of phase compositions, phase densities and viscosities, as well

as of functions Ak and Bk can be therefore determined as well (see Sect. 4).

If, in addition, the values of pressure P and the leading component con-

centration C1 are known as well, the solution at given spatial and temporal

point can be completely reconstructed with the help of relation (24) which

we rewrite here again for the sake of convenience:

Ck = Ak(s)C1 + Bk(s), k = 2, ..., Nc − 1. (30)
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To solve the multicomponent displacement problem we have to solve there-

fore three equations of the system (1):

∂mb

∂t
+ div

(
Ulbl(s) + Ugbg(s)

)
+ Q = 0;

∂mbC1

∂t
+ div

(
Ulbl(s)C l

1(s) + Ugbg(s)Cg
1 (s)

)
+ q1 = 0; (31)

∂mbC2

∂t
+ div

(
Ulbl(s)C l

2(s) + Ugbg(s)Cg
2 (s)

)
+ q2 = 0.

where subscript ′1′ corresponds to the chosen beforehand leading compo-

nent, and subscript ′2′ – to any other component of the Nc > 3 component

mixture. Since C2 in accordance with the relations (30) can be considered

as a function of s, the system (31) is a closed system of p.d.e. for b,C1 and

s.

This system is not, however, resolved with respect to the time derivatives

and that is why we consider C2 as the independent unknown variable when

solve the system (31) in the present study. In more detail, let us suppose

that the solution in all spatial points at a moment of time is known. That

means, that we know all phase compositions, densities and viscositities.

thus, we can determine the values of C1 and C2 at next time step (or

iteration) by solving the system (31). Then, with the help of the nonlinear

equation (30) with k = 2 we can obtain the value of parameter s. Then, as

it has been already described above, we can recover the values of γ, which,

in turn, with the help of the stored beforehand in the memory polynomial

coefficients, can be used for the reconstruction of the phase compositions at

the next time step (or iteration), and, at the same, for the reconstruction

of the values of concentrations of the rest components with the help of

relations (30) with k = 3, . . . , Nc − 1.
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Figure 10: The results of the 1D RIP calculations for four component C1-CO2-C4-C10 mixture. The

input/output conditions and the reservoir parameters are the same as in Fig. 1. The results in the left

column correspond to t = 1000 days, in the right – to t = 4000 days. Red, blue, green and magenta lines

correspond to different three-point quasi-linear approximations of the limiting time-independent route.

The color of the line corresponds to the color of the symbol in the left panel of Fig. 8. Black lines present

the ‘correct’ solution, obtained in ALTSIM-2 simulations (see Sect. 4.4).
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5.4 Numerical Results: 1D RIP simulations

To test the suggested technique (hereafter Route Invariance Property

(RIP ) technique), we consider the four component 1D displacement prob-

lem, results for which were presented in Figs. 1 and 8. Keeping the value

Imax = 200 and C1 as the leading component, we choose CO2 as the sec-

ond component in the pseudo three-component system, and C4 as the third

component. That means that subrsripts ‘1’ and ‘2’ in notations of the sys-

tem (31) refer to C1 and CO2 respectively, the molar concentration of C4

is reconstructed with the help of (30), and C10 is considered as dependent

component.

We have run a series of simulations which differ one from another by the

chosen position of the middle point in a three point quasi-linear approxi-

mation of the limiting time-independent poute (see colored symbols n the

left panel of Fig. 8).

The results of the 1D RIP calculations for four component mixture at

different moments of time are presented in Fig. 10. Red, blue, green and

magenta lines there correspond to different three-point quasi-linear ap-

proximations of the limiting time-independent route. The color of each

line corresponds to the color of the symbol in the left panel of Fig. 8.

Black lines present the ‘correct’ solution, obtained in ALTSIM-2 simula-

tions (see Sect. 4.4). As could be expected, the blue lines are closer to

the correct solution since the blue square gives the best approximation of

the route. At the same time, other colors give the acceptable approxima-

tion of the correct solution, excluding oscillating results presented by the

green lines. Interestingly enough, that red and magenta lines in Fig. 10

practically coincide, although the corresponding symbols in Fig. 8 are far

enough.
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Figure 11: The results of the 2D RIP calculations for four component C1-CO2-C4-C10 mixture (left

column) vs. 2D ALTSIM-2 simulations (right column). C4 distributions are presented. The input/output

conditions and the reservoir parameters are the same as in Fig. 1. The results in the upper row correspond

to t = 2500 days, in the middle – to t = 5000 days, in the lower – to t = 7500 days. The three-point quasi-

linear approximations of the 1D limiting time-independent route correspond to the magenta pentagon

(Fig. 8).
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5.5 Numerical Results: 2D RIP simulations

Property of route invariance can be in principle used to improve perfor-

mance of 2D compositional simulators as well. The idea is based again

on the mentioned above experementally observed fact, that route distri-

bution in 2D displacement problem with time tends to the same time-

independent route as in corespondineg 1D flow. Thus, if the 1D limiting

time-independent route is known, say, from 1D calculations, the RIP tech-

nique can be applied in 2D case in the exactly the same way as described

above in 1D case. The results of the test calculations are shown in Fig. 11.

One can observe good enough coincidence with the 2D ALTSIM-2 simula-

tion results in the distribution at different moments of time, including the

moment of gas breakthrough.

6 Incoporation into ECLIPSE

The ultimate objective of this work is to develop a version of ECLIPSE

based on an alternative representation of phase equilibrium avoiding it-

erative use of the flash-calculation procedure. Above we developed two

alternative techniques. The first one – FTAV – is based on the taking the

standard flash procedure outside the displacement problem solution. We

have tested this approach in our in-house 1D package and found 20 times

improvemement in CPU time of FTAV when compared with flashs. In

this section we check whether the ECLIPSE 300 with FTAV incorpo-

rated into it still demonstrates such improvement when compared with its

standard version. The second alternative technique – RIP technique –

essentially uses the experementally established route invariance property.

Above, the technique has been tested for the four component mixtures
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only. Thus, we do not have a goal now to check the technique efficiency,

but just want to see whether it works being incorporated into ECLIPSE.

In the case of satisfactory result, extension of this procedure on the

multicomponent case can be straightforwadly done later.

6.1 ECLIPSE with FTAV

The structure of ECLIPSE package is similar to the structure of the devel-

oped above in-house code.

Namely, in both codes the flash calculation is inside an iterative proce-

dure which solves the system of conservation laws. That makes it possible

to insert any alternative approximation of phase equilibria into ECLIPSE

in a way similar to that used in our in-house code. Namely, as soon as the

iterated values are defined, the flash-calculation procedure in the ECLIPSE

should be replaced by an alternative subroutine.

After studying in detail the ECLIPSE structure it has been found that

the new alternative subroutine should be inserted instead of flashv. The

function flashv built in the current version of Eclipse package is much more

complicated that flashs subroutine which we used to test our alternative

solver. The function flashv built in Eclipse outputs 30 parameters. It

is necessary to replace all of them with ones calculated by the alternative

block (altFTAV -block). Those are:

• total molar density SMT ;

• total mole fractions SZ;

• liquid mole fraction SL;

• vapour mole fraction SV ;

• K-values SK and SJ = log SK;
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• component liquid SX and vapour SY mole fractions;

• liquid SZL and vapour SZV z-factors;

• z-factors derivatives with respect to pressure SZLP , SZV P ;

• z-factors derivatives with respect to mole fractions SZLX or SZV Y ;

• Jacobian matrices SDDZ and WCDZ;

• liquid and vapour AIJ-coefficients AIL and AIV ;

• BI-coefficient BI;

• state indicator array ISIA.

The altFTAV -block uses only the component molar densities from Eclipse

and the coefficients of the approximating polynomials which are calculated

earlier using separate program package to determine phase fractions pa-

rameters. The other parameters are determined with the help of standard

Eclipse functions, inserted in the block. The structure of this block can be

briefly described as follows:

1. Polynomial coefficients P
(k)
i , P

(m)
i , P

(d)
i , P

(b)
i and P

(µ)
i (see Sect. 4) are

read from the hard disk in the beginning of the run, stored in the

memory and do not change during calculations.

2. The total mole fractions SZ are calculated from the given values of

molar densities at each iteration in each spatial point.

3. At each iteration at each time step loop through cells then starts.

During the loop the following procedures are performed:

a) function cresh defines γ1 and γ2 from the known values of SZ;

b) function cthrmd determines then component liquid and vapour mole

fractions SX and SY
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c) Then the liquid molar fraction is determined by the given values of

SZ, SX and SY . Then SX and SY are updated in single phase areas.

4. After the loop through the cells, the Eclipse storage arrays are filled in

by the alt-block variables SZ, SX and SY ;

5. Finally, cparm subroutine is called, which is, in fact, the combinaton

of standard Eclipse procedures, and has the objective to fill the rest of

flashv output parameters in the Eclipse storage arrays.

It has been done successfully and some experiments have been carried

out. The calculations were run for the 1D flow of four-component mixture,

with the same the input/output conditions and reservoir parameters as in

Fig.1. Different grids were considered in the simulations: 200 cells, 600

cells and 1000 cells.

Good coincidence of these solutions is obvious from Fig. 12, where blue

lines show the solution obtained with modified ECLIPSE package with the

alt-block, and red lines correspond to standard ECLIPSE flashv solution.

Thus it can be concluded that alt-block replaced flashv properly. Then it

is sensible to compare the work times. We recall that it was expected that

alt-block should be much more faster then flashv.

Unfortunatelly, as of to-day, that is not the case. Table 1 summarises the

measured time of the modified by the alt-block ECLIPSE vs. its standard

version. Two characteristics were considered to estimate the calculations

efficiency – the CPU time and time of recording output files on disk. The

first one was taken from the standard ECLIPSE output file. The value of

the second was taken as the standard Windows file attribute as a difference

between the data file time attributes at 1000 and 100 days.

One can see, that the stated in Sect. 4.3 huge CPU advantage of FTAV
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.Figure 12: The results of calculations for four-component C1-CO2-C4-C10 mixture are presented at 600

days. The input/output conditions and reservoir parameters are the same as in Fig.1. Blue lines show

the solution obtained with modified ECLIPSE package with the alt-block, Red lines show the standard

ECLIPSE flashv solution. The left column corresponds to the grid with 200 cells, the right - with 1000.
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Table 1:

Number of cells CPU time CPU time Record disc time Record disc time

alt-block flashv alt-block flashv

200 13.62 14.27 32 32

600 74.61 74.75 112 112

1000 180.57 178.56 237 230

over flashs dissapeared and the efficiences should be considered to be the

same. The reason is still unclear but is hidden probably in that we are

still far enough from bringing the new inserted subroutines to the highest

performance.

6.2 ECLIPSE with RIP

As it is readily seen from Sect. 5, the RIP procedure differs from FTAV

procedure only in the way of finding γ using specified values of C. We recall

here for the sake of the reader convenience, that the FTAV technique

requires solving the system of Nc − 1 equations (28) to find γ from the

given values of C (subroutine cresh), while in the code based on the RIP

technique we have to solve only one equation (30) with the fixed k to

determine the value of s and then to reconstruct the value of γ = γ(s)

(subroutine crr). Thus, in the case of the four component mixture under

consideration, the incorporation of RIP into ECLIPSE package is reduced

to the described in the previous Subsection procedure, if the word cresh

is replaced by crr and, in addition, the third and fourth components total

fractions are calculated in accordance with Eq.(30). Thus, in short the

structure of the altRIP -block can be described as follows:

1. Polynomial coefficients P
(k)
i , P

(m)
i , P

(d)
i , P

(b)
i and P

(µ)
i (see Sect. 4) are

read from the hard disk in the beginning of the run, stored in the
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Figure 13: Route in γ space for different moments of time for the solutions of 1D oil displacement problems

obtained by the ECLIPSE package combined with FTAV technique on the grid 200 cells (blue points).

The colores symbols indicate the position of the middle point of three-point quasi-linear approximation

of the limiting time independent route.

memory and do not change during calculations.

2. Then total mole fractions SZ are calculated from the given values of

molar densities at each iteration in each spatial point.

3. The appropriate approximation of the limiting time-independent route

should be chosen. As in Sect. 5 we considered here different three-point

quasi-linear approximations for the given route which differ one from

another by the choice of the middle point position in γ space.

4. At each iteration at each time step loop through cells then starts.

During the loop the following procedures are performed:

a) function crr defines the value of s, and, then γ1(s) and γ2(s) using

the known values of SZ;

b) function cthrmd determines then component liquid and vapour mole

fractions SX and SY
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c) then the liquid molar fraction is determined by the given values of

SZ, SX and SY . Then SX and SY are updated in single phase areas.

d) the third and fourth components total fractions are evaluated in

accordance with equation (30).

5. After all, the Eclipse storage arrays are filled in by the alt-block vari-

ables SZ, SX and SY ;

6. Finally, cparm subroutine is called, which is, in fact, the combinaton of

standard Eclipse procedures, and aims to fill the rest of flashv output

parameters into the Eclipse storage arrays.

To check whether the RIP technique works being incorporated into

ECLIPSE we carried out the same numerical experiment as in Sect. 5.2.

Namely, we considered the four-component 1D displacement problem, re-

sults for which were presented in Figs. 1 and 8. Keeping the value Imax =

200 and C1 as the leading component, we choose CO2 as the second com-

ponent in the pseudo three-component system, and C4 as the third com-

ponent. As the middle point of three-point quasi-linear approximation of

the limiting time independent route we choose the middle point which gave

the best approximation in our in-house simulations, or those in the close

vicinity of it. The results are presented in Fig. 14.

One can see, that the choice of the middle point of the curve approximat-

ing the route denoted by the black circle in Fig. 13 provides the results that

can be considered to be good enough, although we still face some discrep-

ancy of the solutions in the vicinity of injecting well, and the dicrepancy

is stronger when the RIP technique is being inserted into ECLIPSE than

into the in-house code.
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.Figure 14: Solutions of the 4-component displacement problem obtained at 600 days (left column) and

900 days (right column) with the help of standard ECLIPSE package (blue) curves, and with ECLIPSE

package modified with RIP technique. In the later case the color of the curve corresponds to the color

of the symbol in Fig. 13 which indicates the position of the middle point of the three-point quasi-linear

approximation of the limiting time-independent route.

41



7 On approximation of phase equilibrium for multicomponent

systems

The alternative description of phase equilibrium described above works

efficiently for the systems with up to 10 component. For a larger number

of components we face technical problems in the scanning procedure of

the composition space, which is still theoretically sound but in practice

it is impossible to have enough CPU and RAM facilities to handle the

calculation for more than 10 components in reasonable time. The reason is

that the number of nodes in the ‘composition database’ is TNc−1
max (Tmax is

the number of points along each coordinate to be scanned), and it becomes

prohibitively large for Nc = 10÷ 30.

We examine now several ideas how to extend the developed above tech-

nique for the mixtures with number of component exceeding 10. All of

them are based on the fact, that in the mixtures with very large number of

components one always can distinguish several components whose concen-

trations are very low initially both in the reservoir and in the injected fluid,

and so are expected to remain low during all the displacement evolution.

7.1 Effective Reduction of Scanning Procedure of Phase Diagramm

Let us now return to the schematic scanning procedure of the phase di-

agram presented in Fig. 3 and suppose that O2 there is such a ‘minor’

component, and its initial concentration does not exceed, say 3 percent

both in the reservoir and the injected fluid. That means, that we do not

need to run the scanning procedure in O2 direction up to the values of O2

close to unity, but can stop it when the component concentration becomes

comparable with the specified maximum value of initial data with some

margin say until it becomes equal to 5 percent.
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Figure 15: The results of the calculation for the five component C1-CO2-C4-C8-C10 mixture. The

inflow/outflow conditions and the reservoir parameters are the same as in Fig. 7. Black lines represent

the solution obtained with the γ parametrization help of in-house code with standart FTAV at the

moment t = 1800 days. Red lines present the solution obtained with the help of the same numerical

code, but the beforehand scanning of the phase space was cut in the C8 direction at the 10 % levels.
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That means that for any slice in the scanning we save a lot of CPU time,

and, actually, the procedure for 4-component system presented in Fig. 3 is

almost the same as for corresponding 3-component one.

Let us consider again the same 5 component mixture as presented in

Fig. 7. Since the C8 concentration equals to 6 percent in the injection well

and 1 percent in the reservoir, we introduce the cutoff in C8 direction at

10-percent level in the scanning procedure. The results of the simulations

performed with the help of in-house code with standard FTAV are shown

in Fig. 15 by black lines, while red lines correspond to the just described

modification. One can note a small discrepancy in the solutions which ,

however, decreases when the cutoff value increases. Namely, the solutions

completely coincide when the value is increased to 15 percent.

7.2 Multicomponent case

To estimate the efficiency of the described above cutting procedure let us

assume that the mixture consists of nc main components and of Nc − nc

additional components, and the maximum concentration of each of this

additional component is less than δ = 0.1. Therefore, if we are using,

say, Tmax = 20 points along each main coordinate in composition space,

we need only 3 points in each ‘secondary’ composition direction. Then

the volume of the compositional space to be scanned is decreased by a

factor of (Nc−nc)
10. This approach can be effective for as much as 6 main

component and up to total number of 10 to 15 components.

However even this limitation of the scanned volume becomes insufficient

in the case of very large number of component because it still requires too

large amount of calculations.

A way around this obstacle is to once more use the smallness of con-
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centrations of all secondary components, and use linear approximation in

these terms for all dependent variables:

F (γ1, . . . , γNc−2) = F0(γ1, . . . , γnc−2) +

(Nc−nc)∑
i=1

Fi(γ1, . . . , γnc−2)γNc−nc−2+i.

(32)

An important advantage is that due to linearity any composition can be

considered as a superposition of (Nc − nc) compositions of (nc + 1) com-

ponent each (say, 30-component mixture state is a superposition of 26 of

5-component systems). Therefore, the number of necessary grid points is

∼ (1/δ)(nc−1)Nc, and becomes quite moderate.

To illustrate the technique, let us return to the structure of approxi-

mating polynomials (18) and write it out explicitly in the 5 component

case:

P [5] = P1γ
2
1+P2γ

2
2+P3γ

2
3+P4γ1+P5γ2+P6γ3+P7γ1γ3+P8γ1γ2+P9γ2γ3+P10.

Let us now assume, that γ3 corresponds to the component with small con-

centration. If so, we take away this component for a time being, and

consider 4 component mixture. For this mixture we obtain the polynomial

coefficients exactly in the way described above (Sect. 4.2):

P [4] = P1γ
2
1 + P2γ

2
2 + P3γ1 + P4γ2 + P5γ1γ2 + P6.

Then, we fix these coefficients and construct a modified approximating

polynomial for the 5 component mixture as follows:

P ∗[5] = P [4] + (P6 + P7γ1 + P9γ2)γ3 ≡ P [4] + Padd.

Its structure slightly differs from the structure of the original one since the

γ2
3 term is absent. The coefficients P6, P7 and P9 are evaluated also using

the least mean square procedure.
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Figure 16: C1-CO2-C4-C12 mixture with low concentartion of C4 is considered. Blue points correspond

to the values obtained directly with the help of flashs ECLIPSE procedure, Green points present the

result of our standard approximation, and red points correspond to the reconstruction procedure, based

on linear approximation of small concentartions instead of quadratic.

Let us suppose that the described procedure of approximation of the

5-component phase space with the help of 4-component model works per-

fectly, and let us now consider a mixture which consists of the same 4

leading components, and N = Nc − nc minor components which concen-

trations are low. Thus, we have (4+N) 5 components systems and the

resulting polynomial can be constructed in the similar way as for a single

5-component system.

P ∗[4 + N ] = P [4] +
N∑

i=1

Padd.

The technique is under the development at the moment. What we can

show now is how the reconstruction works in the 4 component case. We

considered the following C1-CO2-C4-C12 mixture where the C4 compo-

nent has low concentration. In Fig. 16, the distributionis of this component

in two slices of the γ space are presented. Blue points correspond to the val-
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ues obtained directly with the help of flashs ECLIPSE procedure, Green

points present the result of our standard approximation, and red points

correspond to the reconstruction procedure, which, as can be seen, works

even better than standard one. This is however is well understood since we

used linear approximation for the small concentration instead of quadratic.

8 Conclusion

In conclusion, we summarize principal results of the Project.

I. The main achievement of the Project is that a working prototype of an

alternative compositional reservoir simulator based on representation

of the phase equilibrium in terms of tie-line space parameter has been

developed and incorporated into the existing ECLIPSE package.

II. Technically, the crucial new element consists in using local change from

the standard variables {P, C} to the alternative ones {P,C1, γ} instead

of the global change of variables, as was assumed in our previous work

[1]-[3].

This approach made possible to leave intact entire architecture of the

code package and all advantages of the best up-to-date algorithms and

codes for solution of the reservoir flow problems formulated in the stan-

dard variables in the alternative version. Viability of such combined

simulator has been tested in a series of numerical experements with

the help of a specially developed for this purpose in-house 1D and 2D

codes, and with the help of ECLIPSE 300 package as well.

III. Another major achievement of this Project is that a version of the

prototype Alternative Simulator using an empirically-established ap-

proximate rule of route invariance observed in multicomponent flows
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has been developed and tested. The tests confirm the viability of such

simplified version; however they reveal some weak points which appar-

ently can be dealt with in future.

IV. These main advances are supported by research on other topics covered

by this Report, such as:

• Development of improved techniques for approximation of phase di-

agrams in terms of alternative variables.

• Development of fast and robust algorithms of transformation of stan-

dard variables into alternative ones and vice versa.

• Development of an interface for interaction of the external ‘alterna-

tive block’ with the main body of the ECLIPSE package.

• Study of the property of route invariance by means of computer

experiments.

The main unresolved issue now is whether the alternative approach may

lead to significant improvement of computational performance, as it was

supposed from the beginning of these studies, or it just provides some

advantages in representation and understanding multiphase flows without

significant computational gains. This issue can be resolved only by collab-

orative effort of the main code developers and the research team.

Improvement of efficiency of the alternative simulator requires some

more or less straightforward technical work, however it is intimately related

to mathematical properties of the governing equtions and computational

algorithms including dissipative properties and propagation of discontinu-

ities.

Mentioned above computational and mathematical issues may constitute

the backbone of a tentative future project.
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