The effect of pressure on magnetization and magnetic phase diagram of monocristals of Tb-Dy alloys

S. A. Nikitin a, Yu. I. Spichkin a & A. M. Tishin a

a Moscow State University, 199899, Moscow, USSR

Published online: 01 Dec 2006.

To cite this article: S. A. Nikitin, Yu. I. Spichkin & A. M. Tishin (1990) The effect of pressure on magnetization and magnetic phase diagram of monocristals of Tb-Dy alloys, High Pressure Research: An International Journal, 4:1-6, 378-380, DOI: 10.1080/08957959008246128

To link to this article: http://dx.doi.org/10.1080/08957959008246128

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
THE EFFECT OF PRESSURE ON MAGNETIZATION AND MAGNETIC PHASE DIAGRAM OF MONOCRISTALS OF Tb-Dy ALLOYS

S.A. Nikitin, Yu. I. Spichkin, A.M. Tishin
Moscow State University, 199899, Moscow, USSR

Abstract. The effect of pressure on magnetic phase transitions in monocrystals of Tb-Dy alloys is studied. It is shown that the destruction of antiferromagnetic structure and the establishment of ferromagnetic ordering is due to magneto-elastic interactions.

Key Words: pressure, magnetic phase transition, magnetization, magnetostriction

It is the purpose of this paper to investigate phase transitions in monocrystals of Tb-Dy alloys. Magnetization at atmospheric pressure and at 10 kbar, magnetostriction, magnetic anisotropy, thermal expansion and susceptibility in magnetic fields of up to 50 kOe and in temperature range of 4.2-300 K are measured. Experimental techniques are described in (Nikitin S.A. et al., 1987).

Temperature dependences of specific magnetization $\mathcal{G}(T)$ in Tb$_{0.5}$Dy$_{0.5}$ at atmospheric pressure (curves 2, 4, 5) and at 10 kbar (curves 1 and 3) (\mathcal{H}/\mathcal{g}) are presented in Fig. 1. The pressure shifts the curves of $\mathcal{G}(T)$ into the low
It is stated that the temperatures of helicoidal antiferromagnetism paramagnetism phase transition Θ_2 and ferromagnetism-helicoidal antiferromagnetism phase transition Θ_1 decrease under the pressure of 10 kbar by 5.9 and 10.8 K, respectively.

Phase diagrams of Tb$_{0.5}$Dy$_{0.5}$ at atmospheric pressure (curve 1) and at 10 kbar (curve 2) are given in Fig. 2. At atmospheric pressure $\Theta_1 = 146$ and $\Theta_2 = 201.5$ K.

The investigations made enabled us to calculate the amount of various energy contributions into the thermodynamic potential. The computational technique is described in (Nikitin S.A., 1984; Ewenson W., Zin S., 1969). The calculations made use of experimental results of (Palmer S., Lee E., 1973). For transition description jump of free energy of exchange interaction between layers ΔF_{ex}, jump of magneto-elastic energy due to magnetostrictive lattice distortions in basal plane ΔF_{me}^b and total change of magneto-elastic energy ΔF_{me} (Ewenson W., Lin S., 1969) were taken into account. Jump of magnetic anisotropy energy $\Delta E_a = -K_6$ was neglected as the
value of K_6 in the temperature range of $\Theta_1 - \Theta_2$ is extremely small. Calculation results are presented in Fig. 2 (energy change per atom: $-\Delta E_{me}$ curve 3, $-\Delta E_{me}$ curve 4, ΔF_{ex} curve 5). In the vicinity of Θ_1', ΔE_{me} in absolute value is approximately equal to ΔF_{ex} and, as a result, energy barrier ΔH_{cr} separating the two phases vanishes. Consequently, the increase of exchange energy in helicoidal antiferromagnetic-ferromagnetic transition is made up for by the decrease of magneto-elastic energy. A conclusion can be drawn that helicoidal antiferromagnetic-ferromagnetic transition in Tb-Dy alloys is due to the action of spontaneous magnetostrictive deformations that arise in magnetic ordering.

References

Nikitin S.A. JETF. 86(1984)1734 (in Russian)
Nikitin S.A., Bezdushniy R.V. JETF. 93(1987)1854 (in Russian)
Palmer S., Lee S. Proc. ICM-73, Moscow, 1(2) (1973) 169