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Abstrat. For the 1D radial hypersoni ow the development of the on�guration

with two shoks and ontat disontinuity is onsidered. At small and large moments

of time solutions in expliit form are found. As follows from these solutions the

ontat surfae aelerates in time. This aeleration makes possible the Rayleigh-

Taylor instability to develop. The 2D numerial investigation of the problem has

on�rmed the instability of the 1D solution.
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1. Introdution

A model of hypersoni soure with variable mass loss rate is widely

used in astrophysis presently. The variability of mass loss rate an be

interpreted as a Riemann problem for the radial hypersoni ow. We

will onsider evolution of the ow in the ase when on�guration with

two shoks and ontat disontinuity between them takes plae. In the

related studies (Shidlovskaya, 1976; Chevalier & Imamura, 1983; and

others) the ow is onsidered as self-similar, so that the disontinuities

propagate with onstant veloities. In our formulation, when there exist

some �nite radius where the on�guration arises from, the problem is

not self-similar but permit limiting self-similar solutions at small and

large moments of time. The omparison between these solutions reveals

the ontat surfae aeleration, and gives rise a question of the ow

stability.

2. Formulation of the problem

Let us onsider the exat solution of Euler equations for a stationary

radial ow of an ideal gas with zero pressure

u = u

S

; � = A

S

r

�2

; p = 0 (1)

We will all this solution for u

S

> 0 as a hypersoni soure, sine it

desribes in the hypersoni approximation the 1D supersoni radial

ow (Mises, 1961). Its intensity is de�ned by two parameters u

S

; A

S

.
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Let the parameters of a soure be hanged so that for t = 0 they are:

u

1

; A

1

for r > r

S

and u

2

; A

2

for r < r

S

. Let u

2

> u

1

, i.e. stationary

ows ome into ollision. It is natural to expet that for t > 0 the ow

will onsist of two regions of stationary ow

u = u

k

; � = A

k

=r

2

; p = 0 (2)

(hereafter k = 1; 2) and of the interation region between them, whih

is bounded by two strong shoks and is divided by the ontat dis-

ontinuity surfae on two shok layers. The problem is to desribe the

ow in the interation region. There are three independent dimensional

parameters : A

1

; u

1

; r

S

in the initial ondition, thus, in aordane

with the lassi theory (Sedov, 1981) the problem is not self-similar.

However, for small or large times the last parameter may be inessential,

and so the problem an permit self-similar solutions.

It is onvenient to hoose as independent dimensionless variables

x = (r � r

S

)=u

1

t; � = u

1

t=r

S

Let us also introdue dimensionless funtions

U = u=u

1

; R = �r

2

=A

1

; P = pr

2

=A

1

u

2

1

Then the stationary ows may be represented in the form

U = �

k�1

; R = �

2(k�1)

; P = 0 (3)

where � = u

2

=u

1

, and �

2

= A

2

=A

1

are dimensionless parameters of the

problem.

In the region of a shok layer the ow is desribed with the set of

Euler equations and adiabati ondition

(U � x)R

x

+ �R

�

+RU

x

= 0

R[(U � x)U

x

+ �R

�

℄ + P

x

� 2�P=(1 + x�) = 0 (4)

(U�x)(P

x

=P �R

x

=R)+�(P

�

=P �R

�

=R)+2(�1)�U=(1+x�) = 0

with Rankine-Hugoniot onditions at the shoks x

j

(�); j = 1; 2

U =

2

 + 1

(x

k

+ � _x

k

) +

 � 1

 + 1

�

k�1

R =

 + 1

 � 1

�

2(k�1)

(5)

P =

2

 + 1

�

2(k�1)

(�

k�1

� (x

k

+ � _x

k

))

2
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and non owing and pressure equilibrium onditions at the ontat

surfae x

0

(�)

U = x

0

+ � _x

0

; P = P

0

� onst (6)

We will seek for the selfsimilar solutions of the problem (4)-(6) in

two limiting ases : � � 1 and � � 1.

3. Planar solution

Let us onsider the ase � � 1 whih orresponds to small times in the

ow evolution. Then from (4) under assumption that funtions depend

only on x it follows

(U � x)R

0

+RU

0

= 0

(U � x)U

0

+R

�1

P

0

= 0

(U � x)(P

0

=P � R

0

=R) = 0

The prime hereafter denotes a derivative with respet to x. These equa-

tions admit the solution with onstant U; R; P; whih are determined

by the values at the shoks (5), while onditions (6) determine x

0;1;2

x

0

=

1 + ��

1 + �

; x

1

= x

0

+

 � 1

2

�(�� 1)

1 + �

; x

2

= x

0

�

 � 1

2

�� 1

1 + �

(7)

Let us all (7),(5) as a planar self-similar solution, sine in essene it

is a partial solution of the lassi Riemann problem (Kothine, 1926).

4. Radial solution

Let us onsider the ase � � 1 orresponding to large times in the ow

evolution. From (4) under assumption that funtions depend only on x

it follows

(U � x)R

0

+RU

0

= 0

(U � x)U

0

+R

�1

(P

0

� 2P=x) = 0 (8)

(U � x)(P

0

=P � R

0

=R) + 2( � 1)U=x = 0

Note that system (8) with (5), (6) was onsidered earlier on other phys-

ial bakgrounds by (Shidlovskaya, 1976) and (Chevalier & Imamura,

1983). These authors solved the problem numerially, by Runge-Kutta

method. The exat analyti solution apparently does not exist sine

(8) may be redued to a single Avel equation whih is not integrable

by quadratures. A omprehensive analysis of the problem is in the
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forthoming paper, while in the present study we restrit ourself by

onsideration of the approximate analyti solution. We suppose that

(U � x)=x� 1 (9)

Then (8) looks as

(U � x)R

0

+RU

0

= 0

P

0

� 2P=x = 0

U

0

+ 2( � 1) = 0

so that it is easy solvable. The solution may be represented in the form

U =

3 � 2



x

0

�

2( � 1)



x

R = R

0

�

�

�

�

x� x

0

x

0

�

�

�

�

��

; � =

2( � 1)

3 � 2

(10)

P = P

0

�

x

x

0

�

2

where R

0

and P

0

, as well as x

0;1;2

, are determined from (5) and (6). It

is onvenient to present the oordinates of disontinuities in the form

x

0

=

1 + ��

1 + �

; x

1

= x

0

+ f

�(�� 1)

1 + �

; x

2

= x

0

� f

�� 1

1 + �

(11)

where

� = �

�

1 + f

(1 + �)(�� 1)

1 + ��

�

; f() =

( � 1)

2(

2

+  � 1)

(12)

The solution (10)-(12) we will all as a radial self-similar solution.

The assumption (9) is ful�lled if

�

k

� jx

k

� x

0

j=x

0

� 1 (13)

It is not diÆult to show that the last inequality is ful�lled when � is

not so large and � is lose to 1.

The main result following after obtaining of the radial self-similar

solution is: sine x

0

(whih also is the dimensionless veloity of ontat

surfae) for the planar solution is less than for the radial self-similar

one, it is onlusive that the ontat surfae is aelerated in time.

This fat, as it is well-known (Chandrasekhar, 1961), an lead to the

Rayleigh-Taylor instability for � < 1 (density in the planar solution

inreases outwards) at least.
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Figure 1. R(x) at di�erent moments of time for  = 1:4, � = 20, � = 2 (a) and

� = 0:5 (b). Points denote self-similar planar and radial solutions, solid, dashed and

dash-dotted lines orrespond to numerially obtained distributions for � = 0:1; 0:7

and 5 respetively.

5. Comparison with numerial solutions

To ompare analytial solutions with numerial we run series of numer-

ial simulations by making use of high resolution tehnique developed

by Myasnikov (1996). We found that numerial solution behaves like

the planar ones at �rst; very soon, however, the geometrial e�ets

ome into play, and as a result, the solution approahes to the radial

self-similar one (Fig. 1). By the way, �

1;2

< 0:12 and �

1;2

< 0:17 for the

ases presented at Fig .1,a and Fig. 1,b respetively. Note that relation

(10) gives the in�nite value of R at the ontat disontinuity, while in

numerial simulations R strives to a �nite value at any �xed time when

the grid resolution inreases. More detailed analytial study, whih is

out of the sope of the present paper, on�rmed the numerial results.

To explore the possible RT instability development, the planar an-

alytial solution with the same parameters as presented at Fig. 1,b

was introdued as an initial �eld for the 2D ode in the setor with

the angle range ��=80 < � < �=80 at the moment t = 0. Then we

onsider a random perturbation with 10% amplitude with respet to

u

1

, whih is applied to the veloity �eld of the gas between shoks. The

preliminary results of simulations indiate that the ow is a subjet of

instability development, whih manifests itself by developing '�ngers'
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Figure 2. Logarithmi density ontours in the viinity of ontat surfae at � = 0:7

for the same set of parameters as in Fig. 1,b.

with mushroom-like aps (Fig. 2). At the same time, the additional

study should be arried out to determine the dependene of the per-

turbed ow on the initial perturbation form, amplitude and numerial

grid resolution.

A speial attention should be also put on the ase � > 1, where

the instability may be aused by the positive density gradient (Chan-

drasekhar, 1961), whih appears at the beginning of the 1D ow evo-

lution in the inner layer (Fig. 1,a).

Aknowledgements

The study was supported by grants from the Royal Swedish Aademy

of Sienes and, partially, by RFBR grant N 99-01-00756.

Referenes

S. Chandrasekhar. Hydrodynami and hydromagneti stability. Clarendon Press,

Oxford, 1961.

R.A. Chevalier, J.N. Imamura. Astrophysial J., 270:554{563, 1983.

N.E. Kothine. R. C. Cir. math., Palermo, 50:305{344, 1926.

R. Mises. Mathematial theory of ompressible uid ow. Aademi Press, New

York, 1958.

A.V. Myasnikov. IPM RAS, Mosow, Prepr. No 576, 1996

L.I. Sedov. Similarity and Dimensional Methods in Mehanis. CRC Press, Boa

Raton, Florida, 1993.

L.V. Shidlovskaya Fluid Dynamis, 11(3):415{420, 1976.

t.tex; 21/09/2000; 19:47; p.6


