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Abstra
t. For the 1D radial hypersoni
 
ow the development of the 
on�guration

with two sho
ks and 
onta
t dis
ontinuity is 
onsidered. At small and large moments

of time solutions in expli
it form are found. As follows from these solutions the


onta
t surfa
e a

elerates in time. This a

eleration makes possible the Rayleigh-

Taylor instability to develop. The 2D numeri
al investigation of the problem has


on�rmed the instability of the 1D solution.
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1. Introdu
tion

A model of hypersoni
 sour
e with variable mass loss rate is widely

used in astrophysi
s presently. The variability of mass loss rate 
an be

interpreted as a Riemann problem for the radial hypersoni
 
ow. We

will 
onsider evolution of the 
ow in the 
ase when 
on�guration with

two sho
ks and 
onta
t dis
ontinuity between them takes pla
e. In the

related studies (Shidlovskaya, 1976; Chevalier & Imamura, 1983; and

others) the 
ow is 
onsidered as self-similar, so that the dis
ontinuities

propagate with 
onstant velo
ities. In our formulation, when there exist

some �nite radius where the 
on�guration arises from, the problem is

not self-similar but permit limiting self-similar solutions at small and

large moments of time. The 
omparison between these solutions reveals

the 
onta
t surfa
e a

eleration, and gives rise a question of the 
ow

stability.

2. Formulation of the problem

Let us 
onsider the exa
t solution of Euler equations for a stationary

radial 
ow of an ideal gas with zero pressure

u = u

S

; � = A

S

r

�2

; p = 0 (1)

We will 
all this solution for u

S

> 0 as a hypersoni
 sour
e, sin
e it

des
ribes in the hypersoni
 approximation the 1D supersoni
 radial


ow (Mises, 1961). Its intensity is de�ned by two parameters u

S

; A

S

.
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Let the parameters of a sour
e be 
hanged so that for t = 0 they are:

u

1

; A

1

for r > r

S

and u

2

; A

2

for r < r

S

. Let u

2

> u

1

, i.e. stationary


ows 
ome into 
ollision. It is natural to expe
t that for t > 0 the 
ow

will 
onsist of two regions of stationary 
ow

u = u

k

; � = A

k

=r

2

; p = 0 (2)

(hereafter k = 1; 2) and of the intera
tion region between them, whi
h

is bounded by two strong sho
ks and is divided by the 
onta
t dis-


ontinuity surfa
e on two sho
k layers. The problem is to des
ribe the


ow in the intera
tion region. There are three independent dimensional

parameters : A

1

; u

1

; r

S

in the initial 
ondition, thus, in a

ordan
e

with the 
lassi
 theory (Sedov, 1981) the problem is not self-similar.

However, for small or large times the last parameter may be inessential,

and so the problem 
an permit self-similar solutions.

It is 
onvenient to 
hoose as independent dimensionless variables

x = (r � r

S

)=u

1

t; � = u

1

t=r

S

Let us also introdu
e dimensionless fun
tions

U = u=u

1

; R = �r

2

=A

1

; P = pr

2

=A

1

u

2

1

Then the stationary 
ows may be represented in the form

U = �

k�1

; R = �

2(k�1)

; P = 0 (3)

where � = u

2

=u

1

, and �

2

= A

2

=A

1

are dimensionless parameters of the

problem.

In the region of a sho
k layer the 
ow is des
ribed with the set of

Euler equations and adiabati
 
ondition

(U � x)R

x

+ �R

�

+RU

x

= 0

R[(U � x)U

x

+ �R

�

℄ + P

x

� 2�P=(1 + x�) = 0 (4)

(U�x)(P

x

=P �
R

x

=R)+�(P

�

=P �
R

�

=R)+2(
�1)�U=(1+x�) = 0

with Rankine-Hugoniot 
onditions at the sho
ks x

j

(�); j = 1; 2

U =

2


 + 1

(x

k

+ � _x

k

) +


 � 1


 + 1

�

k�1

R =


 + 1


 � 1

�

2(k�1)

(5)

P =

2


 + 1

�

2(k�1)

(�

k�1

� (x

k

+ � _x

k

))

2
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and non 
owing and pressure equilibrium 
onditions at the 
onta
t

surfa
e x

0

(�)

U = x

0

+ � _x

0

; P = P

0

� 
onst (6)

We will seek for the selfsimilar solutions of the problem (4)-(6) in

two limiting 
ases : � � 1 and � � 1.

3. Planar solution

Let us 
onsider the 
ase � � 1 whi
h 
orresponds to small times in the


ow evolution. Then from (4) under assumption that fun
tions depend

only on x it follows

(U � x)R

0

+RU

0

= 0

(U � x)U

0

+R

�1

P

0

= 0

(U � x)(P

0

=P � 
R

0

=R) = 0

The prime hereafter denotes a derivative with respe
t to x. These equa-

tions admit the solution with 
onstant U; R; P; whi
h are determined

by the values at the sho
ks (5), while 
onditions (6) determine x

0;1;2

x

0

=

1 + ��

1 + �

; x

1

= x

0

+


 � 1

2

�(�� 1)

1 + �

; x

2

= x

0

�


 � 1

2

�� 1

1 + �

(7)

Let us 
all (7),(5) as a planar self-similar solution, sin
e in essen
e it

is a partial solution of the 
lassi
 Riemann problem (Kot
hine, 1926).

4. Radial solution

Let us 
onsider the 
ase � � 1 
orresponding to large times in the 
ow

evolution. From (4) under assumption that fun
tions depend only on x

it follows

(U � x)R

0

+RU

0

= 0

(U � x)U

0

+R

�1

(P

0

� 2P=x) = 0 (8)

(U � x)(P

0

=P � 
R

0

=R) + 2(
 � 1)U=x = 0

Note that system (8) with (5), (6) was 
onsidered earlier on other phys-

i
al ba
kgrounds by (Shidlovskaya, 1976) and (Chevalier & Imamura,

1983). These authors solved the problem numeri
ally, by Runge-Kutta

method. The exa
t analyti
 solution apparently does not exist sin
e

(8) may be redu
ed to a single Avel equation whi
h is not integrable

by quadratures. A 
omprehensive analysis of the problem is in the
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forth
oming paper, while in the present study we restri
t ourself by


onsideration of the approximate analyti
 solution. We suppose that

(U � x)=x� 1 (9)

Then (8) looks as

(U � x)R

0

+RU

0

= 0

P

0

� 2P=x = 0


U

0

+ 2(
 � 1) = 0

so that it is easy solvable. The solution may be represented in the form

U =

3
 � 2




x

0

�

2(
 � 1)




x

R = R

0

�

�

�

�

x� x

0

x

0

�

�

�

�

��

; � =

2(
 � 1)

3
 � 2

(10)

P = P

0

�

x

x

0

�

2

where R

0

and P

0

, as well as x

0;1;2

, are determined from (5) and (6). It

is 
onvenient to present the 
oordinates of dis
ontinuities in the form

x

0

=

1 + ��

1 + �

; x

1

= x

0

+ f

�(�� 1)

1 + �

; x

2

= x

0

� f

�� 1

1 + �

(11)

where

� = �

�

1 + f

(1 + �)(�� 1)

1 + ��

�

; f(
) =


(
 � 1)

2(


2

+ 
 � 1)

(12)

The solution (10)-(12) we will 
all as a radial self-similar solution.

The assumption (9) is ful�lled if

�

k

� jx

k

� x

0

j=x

0

� 1 (13)

It is not diÆ
ult to show that the last inequality is ful�lled when � is

not so large and � is 
lose to 1.

The main result following after obtaining of the radial self-similar

solution is: sin
e x

0

(whi
h also is the dimensionless velo
ity of 
onta
t

surfa
e) for the planar solution is less than for the radial self-similar

one, it is 
on
lusive that the 
onta
t surfa
e is a

elerated in time.

This fa
t, as it is well-known (Chandrasekhar, 1961), 
an lead to the

Rayleigh-Taylor instability for � < 1 (density in the planar solution

in
reases outwards) at least.
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Figure 1. R(x) at di�erent moments of time for 
 = 1:4, � = 20, � = 2 (a) and

� = 0:5 (b). Points denote self-similar planar and radial solutions, solid, dashed and

dash-dotted lines 
orrespond to numeri
ally obtained distributions for � = 0:1; 0:7

and 5 respe
tively.

5. Comparison with numeri
al solutions

To 
ompare analyti
al solutions with numeri
al we run series of numer-

i
al simulations by making use of high resolution te
hnique developed

by Myasnikov (1996). We found that numeri
al solution behaves like

the planar ones at �rst; very soon, however, the geometri
al e�e
ts


ome into play, and as a result, the solution approa
hes to the radial

self-similar one (Fig. 1). By the way, �

1;2

< 0:12 and �

1;2

< 0:17 for the


ases presented at Fig .1,a and Fig. 1,b respe
tively. Note that relation

(10) gives the in�nite value of R at the 
onta
t dis
ontinuity, while in

numeri
al simulations R strives to a �nite value at any �xed time when

the grid resolution in
reases. More detailed analyti
al study, whi
h is

out of the s
ope of the present paper, 
on�rmed the numeri
al results.

To explore the possible RT instability development, the planar an-

alyti
al solution with the same parameters as presented at Fig. 1,b

was introdu
ed as an initial �eld for the 2D 
ode in the se
tor with

the angle range ��=80 < � < �=80 at the moment t = 0. Then we


onsider a random perturbation with 10% amplitude with respe
t to

u

1

, whi
h is applied to the velo
ity �eld of the gas between sho
ks. The

preliminary results of simulations indi
ate that the 
ow is a subje
t of

instability development, whi
h manifests itself by developing '�ngers'
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Figure 2. Logarithmi
 density 
ontours in the vi
inity of 
onta
t surfa
e at � = 0:7

for the same set of parameters as in Fig. 1,b.

with mushroom-like 
aps (Fig. 2). At the same time, the additional

study should be 
arried out to determine the dependen
e of the per-

turbed 
ow on the initial perturbation form, amplitude and numeri
al

grid resolution.

A spe
ial attention should be also put on the 
ase � > 1, where

the instability may be 
aused by the positive density gradient (Chan-

drasekhar, 1961), whi
h appears at the beginning of the 1D 
ow evo-

lution in the inner layer (Fig. 1,a).

A
knowledgements

The study was supported by grants from the Royal Swedish A
ademy

of S
ien
es and, partially, by RFBR grant N 99-01-00756.

Referen
es

S. Chandrasekhar. Hydrodynami
 and hydromagneti
 stability. Clarendon Press,

Oxford, 1961.

R.A. Chevalier, J.N. Imamura. Astrophysi
al J., 270:554{563, 1983.

N.E. Kot
hine. R. C. Cir
. math., Palermo, 50:305{344, 1926.

R. Mises. Mathemati
al theory of 
ompressible 
uid 
ow. A
ademi
 Press, New

York, 1958.

A.V. Myasnikov. IPM RAS, Mos
ow, Prepr. No 576, 1996

L.I. Sedov. Similarity and Dimensional Methods in Me
hani
s. CRC Press, Bo
a

Raton, Florida, 1993.

L.V. Shidlovskaya Fluid Dynami
s, 11(3):415{420, 1976.

t.tex; 21/09/2000; 19:47; p.6


