Self-similar solutions for hypersonic source with variable
mass loss rate

N.A. Belov, A.V. Myasnikov
Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow,
Russia

December 31, 1999

Abstract. For the 1D radial hypersonic flow the development of the configuration
with two shocks and contact discontinuity is considered. At small and large moments
of time solutions in explicit form are found. As follows from these solutions the
contact surface accelerates in time. This acceleration makes possible the Rayleigh-
Taylor instability to develop. The 2D numerical investigation of the problem has
confirmed the instability of the 1D solution.
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1. Introduction

A model of hypersonic source with variable mass loss rate is widely
used in astrophysics presently. The variability of mass loss rate can be
interpreted as a Riemann problem for the radial hypersonic flow. We
will consider evolution of the flow in the case when configuration with
two shocks and contact discontinuity between them takes place. In the
related studies (Shidlovskaya, 1976; Chevalier & Imamura, 1983; and
others) the flow is considered as self-similar, so that the discontinuities
propagate with constant velocities. In our formulation, when there exist
some finite radius where the configuration arises from, the problem is
not self-similar but permit limiting self-similar solutions at small and
large moments of time. The comparison between these solutions reveals
the contact surface acceleration, and gives rise a question of the flow
stability.

2. Formulation of the problem
Let us consider the exact solution of Euler equations for a stationary
radial flow of an ideal gas with zero pressure
u=ug, p=Asr 2 p=0 (1)

We will call this solution for us > 0 as a hypersonic source, since it
describes in the hypersonic approximation the 1D supersonic radial
flow (Mises, 1961). Its intensity is defined by two parameters ug, Ag.
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Let the parameters of a source be changed so that for t = 0 they are:
uy, Ay for r > rg and wue, As for r < rg. Let us > uq, i.e. stationary
flows come into collision. It is natural to expect that for ¢ > 0 the flow
will consist of two regions of stationary flow

U = ug, p:Ak/T27 p:O (2)

(hereafter £ = 1,2) and of the interaction region between them, which
is bounded by two strong shocks and is divided by the contact dis-
continuity surface on two shock layers. The problem is to describe the
flow in the interaction region. There are three independent dimensional
parameters : Aj, uq, g in the initial condition, thus, in accordance
with the classic theory (Sedov, 1981) the problem is not self-similar.
However, for small or large times the last parameter may be inessential,
and so the problem can permit self-similar solutions.
It is convenient to choose as independent dimensionless variables

z=(r—rg)/uit, T=uit/rs
Let us also introduce dimensionless functions
U=u/u, R=pr’/A, P=pr’/Au?
Then the stationary flows may be represented in the form
U=x"1 R=XF1D p=y (3)

where y = ug/u;, and A2 = Ay /A, are dimensionless parameters of the
problem.

In the region of a shock layer the flow is described with the set of
Euler equations and adiabatic condition

(U—-z)Ry +TR; + RU, =0
R(U —-z)Uy+7R;]+ P, —27P/(1 +27) =0 (4)
(U—-z)(P,/P—vRy/R)+7(P;/P—~R./R)+2(y—1)7U/(14+27) =0
with Rankine-Hugoniot conditions at the shocks z;(7), 7 = 1,2

(Ik —l—Tj:k) + Yokl

U =
v+1

v+1

|
R= _14: Ak (5)

2
P = —’Y n 1>\2(k_1)(Xk_1 — (zp + Ta'rk))2
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and non flowing and pressure equilibrium conditions at the contact
surface z((7)
U=xy+ 7129, P = Py=const (6)

We will seek for the selfsimilar solutions of the problem (4)-(6) in
two limiting cases : 7 < 1 and 7 > 1.

3. Planar solution

Let us consider the case 7 < 1 which corresponds to small times in the
flow evolution. Then from (4) under assumption that functions depend
only on z it follows

(U—-x)R +RU' =0

(U—-2)U'+R'P'=0
(U —a)(P'/P—~yR'/R) =0

The prime hereafter denotes a derivative with respect to z. These equa-
tions admit the solution with constant U, R, P, which are determined
by the values at the shocks (5), while conditions (6) determine zg ;2

T—1Ax—1) 7—1x-1

14+ Ay
= = _— 7
5 1ia 0 T™ (7)

T T

zo
Let us call (7),(5) as a planar self-similar solution, since in essence it
is a partial solution of the classic Riemann problem (Kotchine, 1926).

4. Radial solution

Let us consider the case 7 > 1 corresponding to large times in the flow
evolution. From (4) under assumption that functions depend only on z
it follows
(U—-z)R'+RU' =0
(U —z)U' + R YP' —2P/z) =0 (8)
(U—-=x)(P'/P —~vR'/R) +2(y —1)U/z =0

Note that system (8) with (5), (6) was considered earlier on other phys-
ical backgrounds by (Shidlovskaya, 1976) and (Chevalier & Imamura,
1983). These authors solved the problem numerically, by Runge-Kutta
method. The exact analytic solution apparently does not exist since

(8) may be reduced to a single Avel equation which is not integrable
by quadratures. A comprehensive analysis of the problem is in the
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forthcoming paper, while in the present study we restrict ourself by
consideration of the approximate analytic solution. We suppose that

U—-z))z k1 9)

Then (8) looks as
(U —z)R +RU' =0

P'—2P/z =0
AU +2(y—=1) =0

so that it is easy solvable. The solution may be represented in the form

—2 2y -1
_3r-2 0 20 -1)

U 0 — T
Y Y
2(y—1
R=Ry |22 oz 2r=b (10)
o 3y —2

2\ 2
o

where Ry and Py, as well as 2,1 2, are determined from (5) and (6). It
is convenient to present the coordinates of discontinuities in the form

1+ px pw(ix —1) x—1
To 1+M’$1 zo+ f T , Ty = T f1+u (11)
where
(I+M(x—1) y(y—1)
SN P Sl A, S I = _nr=- 12
I f oW f() e E— (12)

The solution (10)-(12) we will call as a radial self-similar solution.
The assumption (9) is fulfilled if

& = |z — zo| /20 K 1 (13)

It is not difficult to show that the last inequality is fulfilled when x is
not so large and A is close to 1.

The main result following after obtaining of the radial self-similar
solution is: since xy (which also is the dimensionless velocity of contact
surface) for the planar solution is less than for the radial self-similar
one, it is conclusive that the contact surface is accelerated in time.
This fact, as it is well-known (Chandrasekhar, 1961), can lead to the
Rayleigh-Taylor instability for A < 1 (density in the planar solution
increases outwards) at least.
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a)

b

Figure 1. R(z) at different moments of time for v = 1.4, x = 20, A = 2 (a) and
A = 0.5 (b). Points denote self-similar planar and radial solutions, solid, dashed and
dash-dotted lines correspond to numerically obtained distributions for = = 0.1,0.7
and 5 respectively.

5. Comparison with numerical solutions

To compare analytical solutions with numerical we run series of numer-
ical simulations by making use of high resolution technique developed
by Myasnikov (1996). We found that numerical solution behaves like
the planar ones at first; very soon, however, the geometrical effects
come into play, and as a result, the solution approaches to the radial
self-similar one (Fig. 1). By the way, {; 2 < 0.12 and &; 2 < 0.17 for the
cases presented at Fig .1,a and Fig. 1,b respectively. Note that relation
(10) gives the infinite value of R at the contact discontinuity, while in
numerical simulations R strives to a finite value at any fixed time when
the grid resolution increases. More detailed analytical study, which is
out of the scope of the present paper, confirmed the numerical results.

To explore the possible RT instability development, the planar an-
alytical solution with the same parameters as presented at Fig. 1,b
was introduced as an initial field for the 2D code in the sector with
the angle range —7/80 < © < 7/80 at the moment ¢ = 0. Then we
consider a random perturbation with 10% amplitude with respect to
u1, which is applied to the velocity field of the gas between shocks. The
preliminary results of simulations indicate that the flow is a subject of
instability development, which manifests itself by developing 'fingers’
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Figure 2. Logarithmic density contours in the vicinity of contact surface at = = 0.7
for the same set of parameters as in Fig. 1,b.

with mushroom-like caps (Fig. 2). At the same time, the additional
study should be carried out to determine the dependence of the per-
turbed flow on the initial perturbation form, amplitude and numerical
grid resolution.

A special attention should be also put on the case A > 1, where
the instability may be caused by the positive density gradient (Chan-
drasekhar, 1961), which appears at the beginning of the 1D flow evo-
lution in the inner layer (Fig. 1,a).
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