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Summary 
 

Modeling of wave propagation in a realistic geological 

environment needs a numerical scheme able to handle 

complex shapes and geometries. Finite difference scheme 

based on a generalization of the rotated staggered grid 

method can be used for modeling of elastic waves on 

curvilinear grid. This scheme has been validate with 

classical analytical solutions and used to simulate elastic 

wave propagation in complex geometries. The proposed 

method is simple and computationally performing.  

 

Introduction 
 

Numerical modeling of wave propagation through irregular 

interfaces between layers, especially for the case of the sea 

floor having complex shapes is a fundamental problem in 

seismology. The methods which allow modeling correctly 

the boundary effects (e.g. Rayleigh waves on the free 

surface with complex topography, scattering of elastic 

waves on fractures in rocks, etc) are of great interest. For 

such complex geological structures, finite or, more 

recently, spectral element methods (FEM/SEM) proved to 

be well adapted [Komatitsch and Vilotte, 1998; Seriani, 

1998]; However, these methods are more complex and 

computationally more expensive than classical staggered 

finite difference methods. Moreover; in the case of 

FEM/SEM methods special care should be taken when 

dealing with fluid-solid interfaces as spurious modes are 

generated in fluid regions [Komatitsch et al., 2000].  

 

In this article we describe an alternative method for the 

wave propagation problem. It combines the simplicity of 

finite difference methods and the flexibility of FEM/SEM 

to model complex geometries without the need of making 

any special treatments for the fluid-solid interfaces. The 

method can be seen as a generalization of the rotated 

operators finite difference method [Saenger et al., 2000]-

well known in the geophysical literature; or, it can be 

referred as the HEMP method well known in the rock 

mechanic literature [Wilkins, 1999]. Our purpose is to 

demonstrate that our finite difference scheme on a 

curvilinear grid correctly models the propagation of 

Rayleigh waves and is capable to model the wave 

propagation through the surface between the liquid 

environment and an elastic body. For comparison purposes 

with the SEM method, we reproduced the synthetic tests 

with the same geometry and the same physical parameters 

described in the papers [Komatitsch and Vilotte, 1998; 

Komatitsch et al., 2000] where the authors demonstrated 

the efficiency of the SEM method. 

 

Method 
 

To construct the numerical scheme, we start from the 

standard staggered finite difference scheme: 
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To define the spatial Cartesian x  and y derivatives in the 

case of curvilinear mesh system, let’s consider the new 

coordinate system ( ),ξ η  being the direction of diagonals 

of a convex quadrangular grid cell as shown in (Figure 1).  

 

Figure 1 Quadrangular grid cell 

 

Then, the operators of differentiation in the new system 

have the form ( ) ( )24 24x yx yξ∂ = ∆ ∂ + ∆ ∂  and 

( ) ( )13 13x yx yη∂ = ∆ ∂ + ∆ ∂ , where 
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( ) ( ) /mn m n mnf f f r∆ ≡ − .  
mn

r  is the distance 

between points m and n . If the velocities in the nodes of 

a cell are known, their ξ  and η  derivatives in the center 

of the cell can be defined as  ( ) ( )24, ,u v u vξ = ∆  and 

( ) ( )13, ,u v u vη = ∆ . 

Combining these four equations into a linear system and 

having solved it relative to x  and y derivatives, one 

obtains the relations: 
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Analogously, the relations for the average stress spatial 

derivative can be derived. For the case of rectangular cells 

the described method of discretization degenerates to the 

rotated staggered grid method [Saenger et al., 2000]. At the 

same time, the scheme can be considered as a particular 

case of the HEMP scheme used by Wilkins [Wilkins, 1999] 

for modeling of 3D finite elastic body deformations.   

 

 

Numerical tests 

 

To check the accuracy of the solution obtained by means of 

our scheme, we performed three series of numerical tests. 

  

Test #1. First, Lamb’s classical problem was considered to 

check the scheme on an irregular grid. All physical and 

geometrical parameters of the computational domain for 

this test case are taken as in [Komatitsch and Vilotte, 

1998]. The source represents a Ricker wavelet force, 

perpendicular to the free surface having a central frequency 

of 10 Hz. The grid for this problem has a convex-curved 

form (Figure 2a). We gradually refined the grid at the 

surface to have more than 80 grid points for the Rayleigh 

wavelength (
R

λ ≈ 226 meters in the case under 

consideration). Note that in the case of the rotated scheme 

and therefore in our generalized scheme more points per 

wavelength are needed than the classical Virieux scheme 

[Saenger et al., 2000]. The results presented in Figure 2 are 

obtained with a grid size of 3200× 1600.  Comparison with 

analytical solutions (Figure 3) demonstrates less than 1% 

error for this resolution. 

 

 

 

Tests #2 and #3.  Second and third tests are performed for 

the problem of wave propagation through the water – solid 

interface. All physical parameters are taken the same as in 

[Komatitsch et al., 2000]. In the second test, two 

homogeneous half-spaces with an inclined contact interface 

having a slope of 10 degrees (Figure 4); in the third test the 

interface is sinusoidal (Figure 5). Both grids essentially 

thicken in the vicinity of the interface. The source in both 

problems also represents Ricker wavelet, but of 

compression type, with the central frequency of 10 Hz. 

Rigid wall conditions are implemented at the computational 

domain boundaries. 

 The main purpose of the test #2 was to make sure that no 

numerically reflected S-wave propagates in the water 

domain;   as can be seen in Figure 4. Several P-waves of 

different origins (incident, reflected from the free surface 

and reflected from the interface) can be observed in water, 

Stoneley waves are seen at the interface, and transmitted P- 

and S-waves can be noticed in the solid media.  

In the third test, the absence of spurious numerical 

diffraction is mainly demonstrated (Figure 5). Such 
diffraction is caused in general by the approximation of 

curvilinear surface by rectangular grids: this is a well 

known limitation for the classical finite-difference schemes 

for such cases. As can be seen in Figure 5b, the use of 

surface-oriented mesh admissible by our scheme allows to 

avoid this problem. Besides, as in the previous test case, we 

do not see any spurious S-waves propagating into the water 

domain.  

 

 

Conclusions 
 

 

We have shown that finite difference scheme based on 

simple generalization of rotated staggered grid method can 

be used for modeling of elastic/acoustic waves on 

curvilinear grid. We have validated this scheme with well 

know analytical solutions and used the same complex 

geometries as described in the literature to demonstrate that 

our scheme can be as flexible as finite or spectral element. 

The main advantage of this method with respect to finite 

element consists in it simplicity and its computational 

performance. 
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(a) 

 

 
(b) 

 

Figure 2 The grid used for the test #1 (every 10th line is plotted) 

(a); snapshots of the wavefield (velocity modulus is plotted) at 0.6 

sec (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

 

 
(a)

 
(b) 

Figure 3 Seismograms of the horizontal (a) and vertical (b) 

components of the velocity vector (the blue and red lines 

correspond to numerical and analytical solution respectively). 
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(a) 

 
(b) 
Figure 4: The grid used for the test #2 (every 10th line is 

plotted) (a); snapshots of the wave field (velocity modulus 

is plotted) at 1.3 sec (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5: The grid used for the test #3 (every 10th line is 

plotted) (a); snapshots of the wave field (velocity modulus 

is plotted) at 0.8 sec (b) and 1.2 sec (c) 
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