SPORODERM ULTRASTRUCTURE OF *OEDIPODIUM GRIFFITHIANUM* (OEDIPODIOPSIDA, BRYOPHYTA)

СТРУКТУРА СПОРОДЕРМЫ *OEDIPODIUM GRIFFITHIANUM* (OEDIPODIOPSIDA, BRYOPHYTA)

Svetlana V. Polevova

СВЕТЛАНА В. ПОЛЕВОВА

Abstract

Spores of *Oedipodium griffithianum* are studied under SEM and TEM, revealing a unique combination of characters: distinct trilete laesura, distal surface densely covered by club-shaped papillae often fused by their distal parts, perine mostly eroded and fallen off in the mature spores, and layer between exine and intine strongly variable in size and texture between distal and proximal hemisphere. This layer is homogeneous or occasionally totally absent at distal pole, lamellose in equatorial region in sections of fully developed spores, while indistinctly lamelllose to homogeneous in a slightly premature spores; in the proximal hemisphere and in laesura it is thick and has complex structure. In somewhat premature spores an electron dense perine is observed upon exine, but it seems to easily fall off during spore maturation, so fully mature spores almost lack perine like in *Bruchia brevifolia*. *Oedipodium* is similar to *Sphagnopsida* in distinct laesura, unstable perine and complex multilaminate innermost layer of exine, a remnant of tripartite lamella.

Резюме

Споры *Oedipodium griffithianum* изучены с помощью сканирующего и трансмиссионного электронных микроскопов, что позволило выявить уникальную комбинацию признаков, включающую: хорошо выраженную трилетную лезуру на проксимальной полусфере; столбиквидную скульптуру дистальной полусферы, вершины столбиков часто сливаются в небольшие фрагменты сетчатой скульптуры; периспорий нестойкий, легко стирающийся по мере высыпания спор из коробочки, представлен электронно-темными гранулами, изменчивыми по размерам и форме; срединный слой (производное трехчастной пластинки, TPL) между экзоспорием и эндоспорием, который слabo представлен на дистальной полусфере, где он гомогенный, хорошо выражен в месте перехода на проксимальную полусферу. Здесь срединный слой имеет четкую мультиламеллятную структуру, а далее, на проксимальной стороне он становится сильно утолщенным, размыто-волокнистым и особо сложно устроенного под лезурой. У недоразвитых спор срединный слой в экваториальной части может не иметь отчетливых ламел, а периспорий может быть богато представлен особенно на проксимальной полусфере. Споры *Oedipodium* напоминают споры *Sphagnopsida* хорошо развитой лезурой, нестойким периспорием и сложным ламеллатным строением внутреннего слоя экзины, производного TPL. С другой стороны, по участию в формировании скульптуры экзоспория и отсутствию периспория в зрелом состоянии *Oedipodium* имеет сходство с видами рода *Bruchia*.

KEYWORDS: exine, intine, perine, tripartite lamellae, spore wall, *Oedipodium*, Oedipodiopsida, TEM, SEM, mosses

INTRODUCTION

Moss spore studies with light microscopy and SEM are fairly numerous. Many taxonomic revisions nowadays use SEM, and in a number of genera spore characters are useful for taxonomy. Especially well-known and thoroughly studied are families Encalyptaceae (Horton, 1983), Polytrichaceae (Smith, 1971), and Bruchiaceae (McClymoth, 1955). The greater variation occurs in acrocarpous mosses, however in Hypnales the thorough studies in e.g. Plagiotheciaceae (Ireland, 1987) and Entodontaceae (Kungu et al., 2007) also found correlation between spore surface sculpture and taxonomy. These studies however do not cover all the families, as alete spores in many families are fairly uniform and have limited diagnostic value. Likely for this reason, comprehensive spore atlases are few. They include only regional species from Europe (Boros et al., 1993) and China (Zhang & Wu, 2005), and even then include not all the genera. No worldwide review of moss spores of all the families has been published so far.

1 – Moscow State University, Biological Faculty, Higher Plant Dept., Moscow 119234 Russia – Россия 119234, Москва, Московский университет, Биологический факультет, каф. высших растений; e-mail: svetlanapolevova@mail.ru
Ultrastructural studies of moss spores using-TEM were started before SEM technique became widely available (McClymoth & Larson, 1964), but the published results are much fewer and many groups have not been studied at all. The reason for that is likely the more difficult specimen preparation, requiring more complicated methods and less diverse structure, making results not so straightforward for discussion. However the study of the spore wall structure proved its usefulness both for systematic studies, as well as for understanding of its development (Brown & Lemmon, 1980, 1981, 1984, 1988, 1990; Brown et al., 1982a,b; Estébanez et al., 1997, Carrion et al., 1990, 1995, Estébanez et al., 1997, 2006; Filina & Filin, 1984, 1985; Luizi-Ponzo & Barth, 1998; Luizi-Ponzo & Melhem, 2006; Mueller, 1974; Rernzaglia et al., 1997). Brown et al. (2015) provided especially useful overview of the spore ultrastructure of the basal groups of mosses, liverworts, and hornworts. They included, among others, the genus Oedipodium, which was also simultaneously studied by me, as a moss recently assumed as having a basal and intriguing phylogenetic position. I am presenting here my observations which are in general congruent with data published in this paper, although expanding data on variation of its ultrastructure, mostly due to material used for Brown et al. (2015) observation was likely slightly premature when compared with ours.

The genus Oedipodium includes one species, O. griffithianum (Dicks.) Schwägr., with wide and strongly disjunctive distribution (Ignatov et al., 2006). It has been placed at first with Tayloria in Tayloriaceae of the order Splachnales (Schimper, 1860), but later segregated in monotypic family of the order Funariales (Schimper, 1876) and placed most commonly near Splachnales (Brotherus, 1924) or even within the latter family (Savicz-Lyubitskaya & Smirnova, 1970) which was at that time universally accepted as a member of Funariales. The placement in Splachnales was likely due to superficial similarity to some species of Tayloria in obtuse leaves and long hypophysis of the capsule.

Already the first molecular studies found this placement to be erroneous. Its position was revealed among the most basal mosses of subclasses Takakiopsida, Sphagnopsida, Andreaopsida and Andreaobryopsida and the most basal group of peristomate mosses of Polytrichopsida (Newton et al., 2000; Cox et al., 2004, Tsubota et al., 2004).

The sporophyte development of Oedipodium has been studied by Shimamura & Deguchi (2008), who showed that its structure do not contradict the hypothesis of the primarily peristome absence, not its reduction as was thought before.

This fact deserved the segregation of Oedipodium in a separate subclass Oedipodiopsida, with a position in moss system previous to the Polytrichopsida (Goffinet et al., 2009; Frey & Stech, 2009). Ligrone & Ducket (2011) however challenged such placement basing on the placentary study, which indicates more similarity with Tetraphidales than with Polytrichales. It is worth mentioning that the similarity in the protonemal leaf structure between Tetraphis and Oedipodium has been outlined by Correns (1899).

Material and Methods

The study was based on two specimens of O. griffithianum. The first one was collected in the Russian Far East, in alpine belt of the Tardoki-Yani Mountain by V.A. Bakalin in the late August 2013 and still not completely dried (for herbarium) collection was put in a refrigerator with +4°C. Illustrations based on this specimen are in Figs. 1-12, 14-17, 23-24.

Second specimen was collected in 2014 in September in Olkhovaya Mountain in Primorsky Territory by V.E. Fedosov, and delivered in perfectly living condition. Capsules were opened likely long ago and almost empty, but at its bottom spores were observed lying near spore sac wall, allowing comparing surface of the latter with that of spore surface. Illustrations of this second specimen are in Figs. 13, 18-22, 25-29. Some differences were found between these somewhat premature spores from capsule bottom and fully mature spores in the first specimen, so below their differences are specially discussed.

Specimens for SEM studies were coated by gold and studied under JSM-6380LA SEM (JEOL, Japan). TEM specimen preparation included wetting in cacodylate buffer for 1 hour, fixation in 2% glutaraldehyde (on the same cacodylate buffer for 1 hour at room temperature, washed in buffer and postfixed in 1% osmium tetroxide for 2 hours, room temperature. Then spores were dehydrated in ethanol series to 96%, moved to pure, acetone, acetone-epon and then epon-mix medium for 24 hours. After that, polymerization was conducted for 5 days at +62°C. The sectioning was done with a Leica-5 ultratome, for sections 50 nm thick. Specimens partly underwent contrasting with the uranyl acetate and lead citrate by the protocol at http://www.2spi.com/catalog/chem/lead_cit-addinfo.html, partly were studied without any additional treatment.

Sections were studied under JEM-1011 TEM (Jeol, Japan) at 80 kV and a CCD GATAN ESS500W under control Digital Micrograph GATAN in Laboratory of electron microscopy at the Biological faculty of Lomonosov Moscow State University. The terminology follows Brown & Lemmon (1990) and Brown et al. (2015).

Results

General morphology of mature spores

Spores are trilete, convex-hemispheric and trihedral, round in polar view, hemispheric to convex-hemispheric in equatorial view, 24–25 μm in polar axis and 29–35 μm in equatorial diameter. Laesurae are straight, with labrum and never reach the sporoderm thickness; suture is 13.3–16.7 μm long. Sporoderm thickened by wall sculpture on distal hemisphere and thickenened under laesura on proximal hemisphere (Figs. 1-4).
Sporoderm ultrastructure of Oedipodium griffithianum (Oedipodiopsida)

Figs. 1-7. SEM micrographs of Oedipodium griffithianum. 1: spores in tetrads; 2: two spores of disintegrated tetrad, still adjoin- ing by their equatorial edge (above); 3: spore proximal hemisphere showing micro-waved sculpture, small globular orbicules (Ubish bodies) and trilete laesura; 4: spore distal hemisphere, clavate sculpture and large globular orbicules (Ubish bodies) are visible; the conglomerate heads of clavae are fused in reticulum at places; 5: sculpture of distal spore surface, showing scabrate-microverrucate tops of clubs coalesced in the reticulum; 6: equatorial region, a view from proximal side, showing edge of area covered by clavae and end of triradiate laesura, enlarged from Fig. 3; 7: sculpture of spore surface at transition from distal side to equatorial region.
Sporoderm ultrastructure of Oedipodium griffithiaum (Oedipodiopsida)

Sporoderm appears to be difficult for impregnation, thus the spore content was observed only partly. At the same time invagination of laesura was commonly observed (Figs. 8-9).

Sporoderm ultrastructure

Distal hemisphere is covered by clavate ornamentation and bacula. The sporoderm surface and the top of clubs are scabrate-micro verruculate, while their lateral surface is smooth. The height of clubs vary from 2.3 to 3.5 μm, while bacula often intermingled with them are shorter, to ca. 1.5 μm. The diameter of the club heads is 1.5–2.0 μm in average, while the distance between them is 3–4 μm, so larger heads of the clubs are partly fused forming a reticulum (Figs. 2, 4, 5, 9, 11). Ultrasound type is changing abruptly to finely wavy one at the transition to the proximal hemisphere (Figs. 2, 3, 6).

Sporoderm ultrastructure

In general, Sporoderm of Oedipodium consists of a twolayered exine (exosporium), intine (endosporium), separated along most of spore surface by a well-differentiated innermost layer of exine, called here TPL-layer, the derivate of tripartite lamellae, the structure crucial for exine formation in mosses (Brown & Lemmon, 1990; Brown et al., 2015). As spore walls mature, the lamellae are cemented with sporopollenin and obscured, but a distinctive multilamellate layer is often seen in the innermost exine. TPL recently has been studied at developmental level (Wallace, 2013).

Outside the sporopollenin wall a layer of perine occurs at places, more pronounced in spores from capsule bottom, apparently somewhat premature ones.

Exine in most cases is stratified into the outer exine (E1) and inner exine (E2). These two layers are differentiated mainly in electron-density: the inner exine is lighter inside and gradually changed to somewhat darker, so at the border of the inner and outer exine the outer exine appears to be lighter than inner exine, although in average both layers of exine can be of about the same color (Figs. 12-13). However the outer exine is darker (Fig. 26). Within laesura exine structure can be even more complicated, as in the peripheral zone of inner exine two slightly differentiated layers may be recognized, being differentiated in electron density and in fine texture (Fig. 26).

Outer exine is also grading in color, being lighter in its innermost part, which additionally contrasting border with the inner exine (Figs. 12, 13, 16). Inner exine is fairly homogeneous in most places (Figs. 11, 15, 17), and forms sculpture of clavae and bacula on the distal hemisphere (Fig. 11). The outer exine has at places apparent stratification in color (Figs. 16), however in most cases is electron grey, grading to lighter zone towards the border with inner exine (Figs. 14, 15, 22). Upon the heads of sculpture elements outer exine may be thinning up to the total absence (Figs. 11, 27).

The layer between intine and exine in the distal hemisphere is thin, dark and homogeneous and occasionally totally absent, in the equatorial region it is widened, distinctly multilamellar to almost homogeneous, while in proximal part of spore and in laesura this median layer has complex structure. The transitions of this median layer from one variant of structure to another was observed in numerous spore sections, ensuring that the structure of the common origin is at hand and it is called and denoted in figures as TPL layer following Brown & Lemmon (1990) and Brown et al. (2015).

Electron-dark perine coats exine, but in Oedipodium it is quite unevenly developed. It forms more or less solid layer in a quite few places (Fig. 18), more commonly it is thin and fragmentary (Fig. 16), mixed with electron-light material (Fig. 20), strongly eroded and appeared as unconnected immediately to exine (Fig. 15) or almost absent (Figs. 9, 12, 14). It is granulose, with electron-dark granules of 0.1 μm or smaller. In the capsule bottom, perine upon the spore wall (Fig. 28) is quite similar to the electron dense layer upon the spore sac (Fig. 29), just near the corresponding spore (cf. Fig. 27), which indicates a putatively common origin of this material.

Distal hemisphere and equatorial region. The spore outer surface is moderately smooth (Figs. 12, 14) to at places wavy and channelled (Fig. 10). It is covered by electron-light spheroidal granules of orbicules (Ubish bodis) partly mixed with electron-dark, or occasionally only moderately electron-dark microgranules of perine. In mature spore perine is poorly represented on distal hemisphere, often almost absent, while in the capsule bottom, likely a somewhat premature spores, the poorly structured mass is seen between clavae of the distal hemisphere (Figs. 11, 25) and close to equatorial region the perine layer is sometimes quite apparent (Fig. 15).

Figs. 8-14. Spores of *Oedipodium griffithiaum* with details of sporoderm ultrastructure on the distal hemisphere, TEM (9-14) and LCSM (8). 8: spore section in distal/proximal direction, showing in orange color fluorescence of cellulose in intine stained by berberine, in contrast exine is dark brown; clavate bacula cover all surface of the distal hemisphere; the intine is thickened on the proximal hemisphere; the middle layer is arrowed on the proximal hemisphere; 9: total spore section in parallel to proximal side, which is somewhat invaginated, thus the laesura near proximal pole is cut (in the middle of the figure); 10: part of sporoderm between bacula in a spore younger than one in Fig. 14; the filled with the electron-dark substance, narrow channels pierce the outer exine, it is possible that this exine layer is formed by granule aggregation; 11: ultrastructure of distal sporoderm, showing thin, electron-light intine (I), an almost unseen TPL layer, darkened outer exine (E1), lighter inner exine (E2) and electron-dark micro-granules of perine (P) on club tops; 12: distal sporoderm between clavae, with weak differentiation into E2 and E1, and orbicules (O); TPL-layer is seen as dark line between exine and intine. 13: distal sporoderm in base of clavae, TPL unseen, E1 somewhat striolate, E2 homogenous, thin electron-light intine (I), with surface covered by orbicules (O) and mass of fine particules of perine (P); 14: ultrastructure of distal sporoderm: thin, spotted, electron-light intine, the electron-dark TPL-layer, homogenous inner exine, the thin electron-lighter outer exine with orbicules on its surface are visible;
Thin electron-dark TPL-layer of to ca. 0.05 μm thick occurs between the exine and the intine in distal hemisphere in most spore sections (Figs. 12, 14), although sometimes it is totally indiscernible (Figs. 11, 13). TPL-layer is more apparent towards the equatorial region where it changes into thicker and multilamellar, especially distinct at the bend to the proximal hemisphere (Fig. 15). The multilaminar structure, however, is not apparent in all sections: Figs. 16, 17 illustrate rather electron light TPL with non contrast lamellae while no traces of lamellae are seen in Fig. 19. Further on from equator to proximal side, such TPL appears to be more homogeneous than intine, which in the distal hemisphere and in transition from equator to proximal hemisphere, is often distinctly fibrillose.

The total exine thickness is 0.58–0.67 μm between the sculpture elements on the distal hemisphere. The outer exine ranges from 0.12 to 0.17 μm, and the inner exine being 0.42–0.52 μm between the sculpture elements on the distal hemisphere. The intine thickness on the distal hemisphere varies at 0.08–0.21 μm.

Proximal hemisphere. Sporoderm has the same layers without sculpture of clavae and bacula. Perine is also fragmentary in fully mature spores (e.g. Fig. 24), but is much better developed in spores from capsule bottom (e.g. in Figs. 18, 20). The outer exine in such places has more rough surface than in other places and somewhat narrow channeled (Fig. 24 and 24a).

The total exine thickness (E1+E2) is 0.31–0.55 μm between laesurae, thinning to 0.21–0.24 μm on the laesura side. The outer exine is 0.10–0.18 μm and almost constant throughout proximal hemisphere, while the inner exine varies from 0.11–0.15 μm on the laesurae side and to 0.21–0.42 μm in between laesurae. The TPL-layer between exine and intine is very different in thickness and structure (see below). The intine ranges in thickness from 0.10–0.17 μm at equatorial zone to 0.54–1.52 μm on the proximal pole.

Sporoderm ultrastructure of laesura is formed of thin outer exine, thin inner exine, thick TPL-layer and intine. Both exine layers are as apparent as in distal hemisphere, becoming abruptly thin in the laesura centre (Figs. 21-24). A narrow canal in exine provides a contact between the intermediate layer and environment (Fig. 24a).

TPL-layer being often distinctly multilamellar in the equatorial zone, abruptly changes towards of the proximal pole: apparent lamellae are disappearing, although a weakly discernible lamellose patterns can be seen (Fig. 20). The overall color of the layer is quite similar to those of intine or only slightly darker, however the wavy texture allows delimitation of the TPL layer and intine without difficulty. In many cases (e.g. Fig. 15), the TPL-layer has “hatched” appearance, due to short irregularly arranged dark lamella clusters spreading among the light matrix. These clusters being darker provide a wavy appearance of the layer, due to darker clusters of lamellae are arranged at a narrow angle, 20-30°, with the inner exine border.

Ring-like structures are visible on the transverse cross-sections of TPL-layer (middle layer) in laesura (Fig. 21-23). It is probable that these structures looking like a ring or slits on cross-sections are tubulose being formed by lamellae. However details of the connections between sharp continuous lamellae in the spore equatorial zone and structures within the median part of laesura require special studies.

DISCUSSION

Spores of *Oedipodium* are somewhat larger than average in mosses, considering that in many families 20 μm is the maximal spore size. In the moss spore atlas of Boros *et al.* (1993), the mean size is below 20 μm in 151 species out of 210 species described.

The reason for such an upper limit is likely related to the peristome, an organ specifically designed for optimizing moss spore release. The ventral trabeculae on the inner side of peristome teeth are spaced usually at 15-20 μm, which is the average cell size in moss sporophyte. As they work as the mechanism carrying spores outside, it can be assumed that the spore size in peristomate mosses is under the pressure of natural selection, which adjusts spore size to the distance between ventral trabecula. A partial proof of such a correlation was published by Hutunen *et al.* (2004) for pleurocarpous mosses, where the enlarged spore size is associated with the peristome reduction/modification.

Thus 24–35 μm spore size in *Oedipodium* well coincides with eperistomate *Sphagnum*, 15–41 μm, *Andreaea*, (10–)20–50(–110) μm; *Andreaeobryum*, (50–)90–100(–120) μm, and *Takakia*, 25–36 μm.
Even more apparent (although never statistically supported) is the trend to large and heavily ornamented spores in euperisomatous ephemeral acrocarpous mosses, e.g. Phyllcomitrium, Physcomitrella, Weissia, Bruchia, Ephemerum, Archidium. It seems that the advantages of spore enlargements are almost universal, as there are rather few groups where gymnostomous sporophytes are associated with the spores less than 20 μm.

In the spore wall structure, Oedipodium has a number of characters that are rare in other mosses. These are: (1) clear trilete laesura; (2) the lack of perine in the fully mature spores; (3) the column-like sculpture on the distal hemisphere contrasting different from the proximal side which is only slightly wavy and the fusion of clavate heads with reticulum formation on distal spore surface.

(1) The clear trilete laesura occurs in many groups of hepatics and hornworts (Boros et al., 1993, Brown & Lemmon, 1990; Brown et al., 2015), characterized by a rather passive spore spreading. A clear trilete laesura is never observed in mosses with well-developed peristomes, being restricted to basal lineages, which are primarily euperisomatous: Sphagnum, Takakia, Oedipodium. However the facts that some rather advanced groups, like Hedwigiaceae, Helicophyllaceae and Rhacocarpaceae may develop at least a superficially very similar structure indicate that this developmental pathway still remains. Note however that the laesura in Hedwigia is much less distinctly armed compared with that in e.g. Sphagnum (Brown et al., 1982a,b), as well as in Oedipodium.

(2) An unusual character of Oedipodium spores is the absence of perine in the fully mature spores, although slightly premature ones are covered by electron-dark granulose mass. The perine presence was indicated and illustrated for Oedipodium by Brown et al. (2015), who likely described somewhat premature spores (given that spores were still in tetrads and clavate elements were lower, more scattered and not fused by their heads). Perine forms spore surface sculpture in almost all reports of mosses, with the only exception of Bruchia brevifolia (McClymont & Larson, 1964), however Rushing (1985) supposed that in other species of this genus with ca. 25 species, spore walls may be formed with the more contribution of perine.

Among the other moss genera studied with TEM for the spore wall structure, a series of proportion on exine and perine contribution to spore wall formation occur. Most mosses have distinct perine sitting on the smooth surface of exine. Loose and fragmentary deposition of perine is typical to basal lineages of mosses including Sphagnopsida, Andreaeopsida and Oedipodiopsida, although it varies from species to species (Table 1).

There are also examples where the base of sculpture elements is formed by electronically transparent layer of exine (Trematodon longicolliis, Ditrichum ssp., Polytichum commune), while the main part of papillae are evenly dark to almost black, thus composed of material referred to for this reason as perine. Further, the spore wall in Astomum phasoides has a sculpture formed both by exine and perine, while in Ephemerum spinulosum perine forms a thin (but continuous) layer upon sculpture formed principally by exine.

The perine particles in mosses are usually larger than observed here in Oedipodium, except Andreaea (Brown & Lemmon, 1984).

The record of the electron-light perine (Estébanez et al., 1997) likely corresponds to orbicules (Ubish bodies) that are seen also on the sporoderm of Oedipodium, as well as of Bruchia brevifolia (Fig. 6 in McClymont & Larson, 1964). However the problem of referring to these electron-light structures as perine require a specific study of spore development.

(3) The column-like clavate on the distal spore surface is not a unique feature in mosses, but the fusion by their distal parts has never been reported except for Oedipodiopsida.

Figs. 21-29. Details of laesura and inner wall of spore sac ultrastructure of Oedipodium griffithianum, TEM. 21: Transversal section of laesura, showing greatly thickened middle layer, TPL intruding in laesura, which raised over the proximal surface (cf. Fig. 3); the uniform two layered exine covers the middle layer on and between laeaeae, the micro-granulate moderately electron-dark perine remains between laeaeae; 22: inner part of laesura with granulose perine and homogeneous inner and outer exine; intine thickened immediately under laesura, while TPL-layer is much broadened, filling the main body of inner part of laeaeae; hachures in TPL is directed towards the top of laesura; 23: upper part of laesura beside proximal pole; perine granulose, inner and outer exine homogeneous; TPL included dark structures directed towards the laesura top; ring-like structure in TPL is arrowed; 24: outer parts of ultrastructure of laesura nearly a place of convergence of two rays (cf. Fig. 3), showing narrow hole in two-layered exine on the laesura center (cf. Figs. 3) and the loose micro-granulose perine; the thickened TPL layer contacts the spore environment, likely obtaining liquid water and conducting it through the intine and to a protoplast; 24a: close up of 24: note porex exine near hollow, that are likely also may contribute to water uptake; 25: distal sporoderm of spore at open capsule bottom; the bacula are composed of the homogeneous inner exine and heterogeneous outer exine, some bacteria are located between bacula; 26: transverse section of laesura top, somewhat beside from the proximal pole; exine fully covers the surface and the main body is filled by TPL-layer. 27: Spore sac wall (SSW) with nearby spore distal surface, in open capsule bottom; numerous bacteria are located between the spore sac and spore; electron-dark micro-granules covers bacula, and especially space in between them, as well as spore sac wall (cf. Figs. 25, 28-29); 28: part of outer exine with the electron-dark microgranules of perine; 29: part of spore sac wall with the electron-dark microgranules similar to those in Fig. 28; cell wall and intracellular structures of spore sac not visible; it is possible this granules are composed of the same material as the perine. Abbreviations: B: bacteria, C: clava, E1: outer exine, E2: inner exine, I: intine, O: orbicule (Ubish body), ML: middle layer, P: perine, PM: plasma membrane; SSW: spore sac wall.
<table>
<thead>
<tr>
<th>Systematic position</th>
<th>Species</th>
<th>Perine</th>
<th>Exine</th>
<th>Layer between exine and intine</th>
<th>Intine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnopsida: Sphagnaceae</td>
<td>Sphagnum lescurii (Brown et al., 1982a, b)</td>
<td>Loose and fragmentary</td>
<td>Sculpture forming</td>
<td>Lamellar exine A</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Sphagnopsida: Sphagnaceae</td>
<td>Sphagnum capillifolium (Filina & Filin, 1985)</td>
<td>Loose and fragmentary</td>
<td>Sculpture forming</td>
<td>Lamellar exine</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Takakiaopsida: Takakiaceae</td>
<td>Takakia ceratophylla (Renzaglia et al., 1997; Brown et al., 2015)</td>
<td>Sculpture forming</td>
<td>Thin, electron-light</td>
<td>Lamellar exine</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Andreaeopsida: Andreaeaceae</td>
<td>Andreaea rothii (Brown & Lemmon, 1984)</td>
<td>Loose and fragmentary</td>
<td>Loose</td>
<td>Not observed</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Andreaeopsida: Andreaeaceae</td>
<td>Andreaea rupestris (Filina & Filin, 1984)</td>
<td>Absent</td>
<td>Loose</td>
<td>Not observed</td>
<td>Fibrillose</td>
</tr>
<tr>
<td>Oedipodiopsida: Oedipodiaceae</td>
<td>Oedipodium griffithianum (Brown et al., 2015)</td>
<td>Present</td>
<td>Sculpture forming</td>
<td>Lamellar TPL at places</td>
<td>Fibrillose</td>
</tr>
<tr>
<td>Bryopsida: Funariaceae</td>
<td>Physcomitrium turbinatum (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Fibrillate-granulate</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Funariaceae</td>
<td>Physcomitrella patens (Schuette et al., 2009)</td>
<td>Sculpture forming</td>
<td>Two layered</td>
<td>?</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Ecaleyptaceae</td>
<td>Encalypta rhabdocarpa (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Lamellar in apertures region</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Archidiaceae</td>
<td>Archidium alternifolium (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Two layered</td>
<td>Different intine in different species</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Grimmiaenceae</td>
<td>Grimnia ssp. (Estebanez et al., 1997)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Lamellar in distal hemisphere</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Helicophyllaceae</td>
<td>Helicophyllum torquatum (Luizi-Ponzo & Melhem, 2006)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Lamellar or non-lamellar</td>
<td>Bilayered</td>
</tr>
<tr>
<td>Bryopsida: Ptychomitiaceae</td>
<td>Ptychomitrium ssp. (Estebanez et al., 2006)</td>
<td>Sculpture forming</td>
<td>Thin or thick in different species</td>
<td>Lamellar</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Bruchiaceae</td>
<td>Bruchia brevifolia (McClymont & Larson, 1964)</td>
<td>Almost absent</td>
<td>Sculpture forming</td>
<td>Lamellar</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Fissidentaceae</td>
<td>Fissidens limbatus (Mueller, 1974)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Electron-gray</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Dichitaceae</td>
<td>Ditrichum pallidum (Brown and Lemmon, 1980)</td>
<td>Sculpture forming</td>
<td>Forming bases of sculpture elements</td>
<td>Electron-dark in proximal hemisphere</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Ephemeraceae</td>
<td>Ephemerum spinulosum (McClymont & Larson, 1964)</td>
<td>Thin</td>
<td>Sculpture forming</td>
<td>Opaque</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Pottiaceae</td>
<td>Astonum phaseoides (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Forming bases of sculpture elements</td>
<td>Opaque</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Pottiaceae</td>
<td>Phascodum cuspidatum (Carrion et al., 1990)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Separating layer in proximal hemisphere</td>
<td>Homogeneous, gray</td>
</tr>
<tr>
<td>Bryopsida: Pottiaceae</td>
<td>Phascodum cuspidatum (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Separating layer in proximal hemisphere</td>
<td>Homogeneous, light</td>
</tr>
<tr>
<td>Bryopsida: Pottiaceae</td>
<td>Pterygoneurum ssp. (Carrion et al., 1995)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>?</td>
<td>Homogeneous, light</td>
</tr>
<tr>
<td>Bryopsida: Pottiaceae</td>
<td>Weissia viridula (McClymont & Larson, 1964)</td>
<td>Sculpture forming</td>
<td>Thin</td>
<td>Opaque</td>
<td>Homogeneous or not specified</td>
</tr>
<tr>
<td>Bryopsida: Orthotrichaceae</td>
<td>Orthotrichum (Medine & Estebanez, 2014)</td>
<td>Sculpture forming</td>
<td>Thin, with inner lamellae</td>
<td>Expanded and with labyrinth-like intrusions</td>
<td>Bilayered</td>
</tr>
</tbody>
</table>
um. At the same time it appears to be quite similar to ectrine of angiosperms (Hesse et al., 2009). A somewhat similar pattern has also been described in Haplomitrium (Brown & Lemmon, 1986; Brown et al., 2015) and Apotrebia (Brown & Lemmon, 1990; Brown et al., 2015).

Contribution of spore wall layers in surface sculpturing

Perine is a layer forming the surface ornamentation in most mosses. More rarely exine participates in the spore surface ornamentation, but most commonly only slightly participates in forming of basal parts of the spore surface ornamentation, but most commonly operated lamellar structure formed by 5 alternations of dark in all spores. Equatorial region with the maximally developed to the stage of development. The layer between exine and intine treated here as TPL-layer (Figs. 12-29) was recognized in many mosses, although some being to the stage of development. Brown et al. (2015) illustrated a very distinct multilamellar structure in Sphagnum, where however multilamellar layer is performed along almost whole border of exine and intine. Lamellar structure is poorly expressed in the same place in spores from capsule bottom (Figs. 18-19), however their putatively premature state is hardly a reason. Brown et al. (2015) illustrated a very distinct multilamellar structure in Oedipodium, in spores which are assumed to be somewhat premature (by reasons explained above).

In the aperture region, there are a number of common trends in mosses, including thinning of perine, and more rarely thinning of exine, like it is seen in Oedipodium lasera near proximal pole (Fig. 24). Splayed TPL fills most volume of laesa, forming the aperture plug and favoring sporuling. Electron-dark ‘hachures’ are arranged along the proximal spore wall in the proximal hemisphere outside laesa and radially within laesa itself (Fig. 22). The short lamellae are arranged in direction from the pore where water uptake by spore is possible. The obtained images allow suggestion that the lamellae of the TPL-layer in proximity to aperture are functioning as a wicks or even at places tubes, accelerating water conduction from the aperture to other spore regions (cf. Figs. 15 & 20 with Figs. 21-23).

ACKNOWLEDGEMENTS

I am grateful to V.A. Bakalin and V.E. Fedosov for providing plant material for this study, and to R.C. Brown, V.F. Tarasevich and M.S. Ignatov for helpful comments on the manuscript. SEM and TEM studied were conducted in UFC MSU under support of MESRF. The work was partly supported by the RSF grant 14-50-00029.

LITERATURE CITED

